PDF-(READ)-Big Data et Machine Learning - 3e éd.: Les concepts et les outils de la data science
Author : oluwatobilobajaven | Published Date : 2023-03-14
Cet ouvrage s8217adresse 224 tous ceux qui cherchent 224 tirer parti denbsp l8217233norme potentiel des 171 technologies Big Data 187 qu8217ils soient datanbsp scientists
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "(READ)-Big Data et Machine Learning - 3e..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
(READ)-Big Data et Machine Learning - 3e éd.: Les concepts et les outils de la data science: Transcript
Cet ouvrage s8217adresse 224 tous ceux qui cherchent 224 tirer parti denbsp l8217233norme potentiel des 171 technologies Big Data 187 qu8217ils soient datanbsp scientists DSI chefs de projets ou sp233cialistes m233tierLe Big Data s8217est impos233 comme une innovation majeure pournbsp toutes les entreprises qui cherchent 224 construire un avantagenbsp concurrentiel gr226ce 224 l8217exploitation de leurs donn233es clientsnbsp fournisseurs produits processus machines etcMais quelle solution technique choisir Quelles comp233tencesnbsp m233tier d233velopper au sein de la DSI Ce livre est un guide pour comprendre les enjeux d8217un projet Bignbsp Data en appr233hender les concepts sousjacents en particulier lenbsp Machine Learning et acqu233rir les comp233tences n233cessaires 224 lanbsp mise en place d8217un data labIl combine la pr233sentation 8226 de notions th233oriques traitement statistique des donn233es calculnbsp distribu233 8226 des outils les plus r233pandus 233cosyst232me Hadoop Storm 8226 d8217exemples d8217applications 8226 d8217une organisation typique d8217un projet de data scienceLes ajouts de cette troisi232me 233dition concernent principalement la vision d8217architecture d8217entreprise n233cessaire pour int233grer les innovations du Big Data au sein des organisations et le Deep Learning pour le NLP Natural Language Processing qui est l8217un des domaines de l8217intelligence artificielle qui a le plus progress233 r233cemmentnbsp. with Eliezer Kanal and Brian . Lindauer. Copyright 2016 Carnegie Mellon University. This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.. for. Jianlin Cheng, PhD. Computer Science Department, University of Missouri, Columbia. Center. Importance of Machine Learning and Data Mining. Computer Science . (AI, database, robotics, vision, image processing, . The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand Ce livre s8217adresse 224 toutes les personnes concern233es par l8217ing233nierie des exigences qu8217elles soient managers, responsables d8217233quipes, chefs de projet, analystes, architectes, d233veloppeurs ou testeurs.L8217ing233nierie des exigences est une discipline qui consiste 224 d233velopper un r233f233rentiel d8217exigences, mais aussi 224 le maintenir 224 jour en pr233sence d8217233volutions. Le r233f233rentiel constitue un support au pilotage de projet et 224 la ma238trise du changement des exigences au cours du temps.L8217objectif de ce livre est de fournir les connaissances de base li233es 224 l8217ing233nierie des exigences pour le d233veloppement de syst232mes complexes 224 forte composante logicielle, et ce pour tous les domaines.8226 La premi232re partie pr233sente les enjeux et les fondamentaux.8226 La deuxi232me partie aborde les activit233s de d233veloppement et de gestion d8217un r233f233rentiel d8217exigences apr232s avoir pr233sent233 ce que sont le p233rim232tre et le contexte d8217un syst232me.8226 La troisi232me partie est consacr233e 224 l8217outillage et aux relations entre l8217ing233nierie des exigences et les autres activit233s du projet de r233alisation et de maintenance d8217un syst232me.8226 La derni232re partie pr233sente les normes et les r233f233rentiels de bonnes pratiques dans diff233rents domaines qui ont trait 224 l8217ing233nierie des exigences. Les syst232mes d\'information, tout ennbspoccupant une place de plus en plus strat233gique dans l\'entreprise, se complexifient. Pour y rem233dier il est important d\'en optimiser la structure et notamment denbsples subdiviser en blocs homog232nes et coh233rents. Or cette urbanisation du SI passe n233cessairement par une urbanisation des donn233es. Les quotdonn233es de r233f233rencequot constituent l\'ossature informationnelle sur laquelle les applications informatiques fonctionneront.Cet ouvrage a l\'ambition de donner une vue d\'ensemble sur les r233f233rentiels en donner une d233finition, des caract233ristiques et une typologie, montrer les enjeux strat233giques qu\'ils portent, indiquer comment les concevoir et les piloter, etnbspexpliquer leur impact sur les aspectsnbspbusiness. Le concept de processus m233tier occupe aujourd\'hui une place majeure dans le domaine des syst232mes d\'information. L\'objectif de cet ouvrage est de proposer des rep232res pour un usage rigoureux et pr233cis de cette approche processus. Il fournit un cadre solide pour y voir clair dans le foisonnement des langages de mod233lisation et des outils orient233s processus. Enfin il donne des 233l233ments concrets pour mod233liser, 233valuer et mettre en oeuvre des processus dans un contexte SI.nbspCette troisi232me 233dition est mise 224 jour en profondeur et introduit notamment de nouveaux d233veloppements sur l\'urbanisation des SI et une 233tude de cas avec le logiciel Aris. Cet ouvrage s?adresse 224 tous ceux qui cherchent 224 tirer parti de l?233norme potentiel des 171technologies Big Data187, qu?ils soient data scientists, DSI, chefs de projets ou sp233cialistes m233tier. Le Big Data s?est impos233 comme une innovation majeure pour toutes les entreprises qui cherchent 224 construire un avantage concurrentiel gr226ce 224 l?exploitation de leurs donn233es clients, fournisseurs, produits, processus, machines, etc. Mais quelle solution technique choisir? Quelles comp233tences m233tier d233velopper au sein de la DSI? Ce livre est un guide pour comprendre les enjeux d?un projet Big Data, en appr233hender les concepts sous-jacents (en particulier le Machine Learning) et acqu233rir les comp233tences n233cessaires 224 la mise en place d?un data lab. Il combine la pr233sentation - De notions th233oriques (traitement statistique des donn233es, calcul distribu233...) - Des outils les plus r233pandus (233cosyst232me Hadoop, Storm...) - D?exemples d?applications - D?une organisation typique d?un projet de data science. Cette deuxi232me 233dition est compl233t233e et enrichie par des mises 224 jour sur les r233seaux de neurones et sur le Deep Learning ainsi que sur Spark. Discover the incredible world of machine learning with this amazing guide.Do you want to understand machine learning but it all looks too daunting and complex? Afraid to open the quotPandora8217s boxquot and waste hours searching for answers? Then keep reading.Written with the beginner in mind this powerful guide breaks down everything you need to know about machine learning and Python in a simple easy-to-understand way. So many other books make machine learning look impossible to understand and even harder to master - but now you can familiarize yourself with this incredible technology like never beforeWith a detailed and concise overview of the fundamentals along with the challenges and limitations currently being tackled by the pros inside this comprehensive guide you willLearn the fundamentals of machine learning which are being developed and advanced with PythonMaster the nuances of 12 of the most popular and widely-used machine learning algorithms in a language that requires no prior background in PythonDiscover the details of the supervised unsupervised and reinforcement algorithms which serve as the skeleton of hundreds of machine learning algorithms being developed every dayBecome familiar with data science technology an umbrella term used for the cutting-edge technologies of todayDive into the functioning of scikit-learn library and develop machine learning models with a detailed walk-through and open source database using illustrations and actual Python codeUnderstand the entire process of creating neural network models on TensorFlow using open source data sets and real Python codeUncover the secrets of the most critical aspect of developing a machine learning model - data pre-processing and training/testing subsetsAnd so much moreWith a wealth of tips and tricks along with invaluable advice guaranteed to help you with your machine learning journey this audiobook is a powerful and revolutionary tool for creating developing and using machine learning. From understanding the Python language to creating data sets and building neural networks now you can become the master of machine learning with this incredible guideSo what are you waiting for? Listen now and join the millions of people using machine learning today The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand Sylvia Unwin. Faculty, Program Chair. Assistant Dean, iBIT. Machine Learning. Attended TDWI in Oct 2017. Focus on Machine Learning, Data Science, Python, AI. Started with a catchy opening speech – “BS-Free AI For Business”.
Download Document
Here is the link to download the presentation.
"(READ)-Big Data et Machine Learning - 3e éd.: Les concepts et les outils de la data science"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents