/
AreQuantumStatesExponentiallyLongVectors?ScottAaronsonI'mgratefultoOd AreQuantumStatesExponentiallyLongVectors?ScottAaronsonI'mgratefultoOd

AreQuantumStatesExponentiallyLongVectors?ScottAaronsonI'mgratefultoOd - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
370 views
Uploaded On 2016-03-23

AreQuantumStatesExponentiallyLongVectors?ScottAaronsonI'mgratefultoOd - PPT Presentation

CurrentlyattheUniversityofWaterlooandsupportedbyARDAEmailaaronsoniaseduThisabstractismostlybasedonworkdonewhileIwasastudentatUCBerkeleysupportedbyanNSFGraduateFellowship1SanjeevAroraaskedwhyId ID: 266543

CurrentlyattheUniversityofWaterlooandsupportedbyARDA.Email:aaronson@ias.edu.ThisabstractismostlybasedonworkdonewhileIwasastudentatUCBerkeley supportedbyanNSFGraduateFellowship.1SanjeevAroraaskedwhyId

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "AreQuantumStatesExponentiallyLongVectors..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

AreQuantumStatesExponentiallyLongVectors?ScottAaronsonI'mgratefultoOdedGoldreichforinvitingmetothe2005OberwolfachMeetingonComplexityTheory.Inthisextendedabstract,whichisbasedonatalkthatIgavethere,IdemonstratethatgratitudebyexplainingwhyGoldreich'sviewsaboutquantumcomputingarewrong.Whyshouldanyonecare?Becauseinmyopinion,Goldreich,alongwithLeonidLevin[10]andother\extreme"quantumcomputingskeptics,deservescreditforfocusingattentiononthekeyissues,theonesthatoughttomotivatequantumcomputingresearchinthe rstplace.Personally,Ihaveneverlainawakeatnightyearningforthefactorsofa1024-bitRSAinteger,letalonetheclassgroupofanumber eld.Therealreasontostudyquantumcomputingisnottolearnotherpeople'ssecrets,buttounraveltheultimateSecretofSecrets:isouruniverseapolynomialoranexponentialplace?LastyearGoldreich[7]camedown rmlyonthe\polynomial"side,inashortessayexpressinghisbeliefthatquantumcomputingisimpossiblenotonlyinpracticebutalsoinprinciple:AsfarasIamconcern[ed],theQCmodelconsistsofexponentially-longvectors(possiblecon gurations)andsome\uniform"(or\simple")operations(computationsteps)onsuchvectors...Thekeypointisthattheassociatedcomplexitymeasurepostulatesthateachsuchoperationcanbee ectedatunitcost(orunittime).Mymainconcerniswiththispostulate.Myownintuitionisthatthecostofsuchanoperationorofmaintainingsuchvectorsshouldbelinearlyrelatedtotheamountof\non-degeneracy"ofthesevectors,wherethe\non-degeneracy"mayvaryfromaconstanttolinearinthelengthofthevector(dependingonthevector).Needlesstosay,Iamnotsuggestingaconcretede nitionof\non-degeneracy,"Iammerelyconjecturingthatsuchexistsandthatitcapture[s]theinherentcostofthecomputation.Myresponseconsistsoftwotheorem-encrustedprongs:1 rst,thatyou'dhavetroubleexplainingevencurrentexperiments,ifyoudidn'tthinkthatquantumstatesreallywereexponentiallylongvectors;andsecond,thatformostcomplexity-theoreticpurposes,theexponentialityofquantumstatesisnotthatmuch\worse"thantheexponentialityofclassicalprobabilitydistributions,whichnobodycomplainsabout.The rstprongisbasedonmypaper\MultilinearFormulasandSkepticismofQuantumComputing"[1];thesecondisbasedonmypaper\LimitationsofQuantumAdviceandOne-WayCommunication"[2].Prong1:QuantumStatesAreExponentialForme,themainweaknessintheargumentsofquantumcomputingskepticshasalwaysbeentheirfailuretosuggestananswertothefollowingquestion:whatcriterionseparatesthequantumstateswe'resurewecanprepare,fromthestatesthatariseinShor'sfactoringalgorithm?Icallsuchacriteriona\Sure/Shorseparator."Tobeclear,I'mnotaskingforaredlinepartitioningHilbertspaceintotworegions,\accessible"and\inaccessible."Butaskepticcouldatleastproposeacomplexitymeasureforquantumstates,andthendeclarethatastateofnqubitsis\ecientlyaccessible"onlyifitscomplexityisupper-boundedbyasmallpolynomialinn.Inhisessay[7],GoldreichagreesthatsuchaSure/Shorseparatorwouldbedesirable,butaversthatit'snothisjobtoproposeone: CurrentlyattheUniversityofWaterlooandsupportedbyARDA.Email:aaronson@ias.edu.ThisabstractismostlybasedonworkdonewhileIwasastudentatUCBerkeley,supportedbyanNSFGraduateFellowship.1SanjeevAroraaskedwhyIdon'thavethreeprongs,therebyforminga -shapedpitchfork.1 MymaindisagreementwithScottisconceptual:Hesaysthatitisuptothe\skeptics"tomakea[concrete]suggestion(ofsucha\complexity")andviewstheir[arguments]asweakwithoutsuchasuggestion.Incontrast,Ithinkitisenoughforthe\skeptics"topointoutthatthereisnobasistothe(over-simpli edandcounter-intuitivetomytaste)speculationbywhichaQCcanmanipulateormaintainsuchhugeobjects\freeofcost"(i.e.,atunitcost).Motivatedbythe\hands-o "approachofGoldreichandotherskeptics,in[1]Itriedtocarryouttheskeptics'researchprogramforthem,byproposingandanalyzingpossibleSure/Shorseparators.Thegoalwastoillustratewhatascienti cargumentagainstquantumcomputingmightlooklike.Forstarters,suchanargumentwouldbecarefultoasserttheimpossibilityonlyoffutureexperiments,notexperimentsthathavealreadybeendone.Asanexample,itwouldnotdismissexponentially-smallamplitudesasphysicallymeaningless,sinceonecaneasilyproducesuchamplitudesbypolarizingnphotonseachat45.Norwoulditappealtothe\absurd"numberofparticlesthataquantumcomputerwouldneedtomaintainincoherentsuperposition|sinceamongotherexamples,theZeilingergroup'sC60double-slitexperiments[4]havealreadydemonstrated\Schrodingercatstates,"oftheformj0i\nn+j1i\nn p 2,fornlargeenoughtobeinterestingforquantumcomputation.Ofcourse,therealproblemisthat,onceweacceptj iandj'iintooursetofpossiblestates,consistencyalmostforcesustoaccept j i+ j'iandj i\nj'iaswell.Soisthereanydefensibleplacetodrawaline?Thisconundrumiswhatledmetoinvestigate\treestates":theclassofn-qubitpurestatesthatareexpressiblebypolynomial-sizetreesoflinearcombinationsandtensorproducts.Asanexample,thestatej0i+j1i p 2\n\nj0i+j1i p 2isatreestate.Forthatmatter,soisanystatethatcanbewrittensuccinctlyintheDiracketnotation,usingonlythesymbolsj0i;j1i;+;\n;(;)togetherwithconstants(noP'sareallowed).InevaluatingtreestatesasapossibleSure/Shorseparator,weneedtoaddresstwoquestions: rst,shouldallquantumstatesthatariseinpresent-dayexperimentsbeseenastreestates?Andsecond,wouldaquantumcomputerpermitthecreationofnon-treestates?Myresultsimplyapositiveanswertothesecondquestion:notonlycouldaquantumcomputerecientlygeneratenon-treestates,butsuchstatesarisenaturallyinseveralquantumalgorithms.2Inparticular,letCbearandomlinearcodeoverGF2.Thenwithoverwhelmingprobability,auniformsuperpositionoverthecodewordsofCcannotberepresentedbyanytreeofsizen"logn,forsome xed"�0.3Indeed,n"lognsymbolswouldbeneededeventoapproximatesuchastatewellinL2-distance,andevenifwereplacedtherandomlinearcodebyacertainexplicitcode(obtainedbyconcatenatingtheReed-SolomonandHadamardcodes).Ialsoshowedann"lognlowerboundforthestatesarisinginShor'salgorithm,assumingan\obviouslytrue"butapparentlydeepnumber-theoreticconjecture:basically,thatthemultiplesofalargeprimenumber,whenwritteninbinary,constituteadecenterasurecode.Alloftheseresultsrelyonaspectacularrecentadvanceinclassicalcomputerscience:the rstsuperpolynomiallowerboundson\multilinearformulasize,"whichwereprovenbyRanRaz[12]aboutamonthbeforeIneededthemformyquantumapplication.Incidentally,inallofthecasesdiscussedabove,Iconjecturethattheactualtreesizesareexponentialinn;currently,though,Raz'smethodcanonlyprovelowerboundsoftheformn"logn.4Perhapsmorerelevanttophysics,Ialsoconjecturethat2-Dand3-D\clusterstates"(informally,2-Dand3-Dlatticesofqubitswithpairwisenearest-neighborinteractions)haveexponentialtreesizes.5Iftrue,thisconjecturesuggeststhatstateswithenormoustreesizesmighthavealreadybeenobservedincondensed-matterexperiments|forexample,thoseofGhoshetal.[6]onlong-rangeentanglementinmagneticsalts. 2Ontheotherhand,Idonotknowwhetheraquantumcomputerrestrictedtotreestatesalwayshasanecientclassicalsimulation.AllIcanshowisthatsuchacomputerwouldbesimulablein3\3,thethirdlevelofthepolynomial-timehierarchy.3InRaz'sproof,"wasabout106,butwhat'saconstantbetweenfriends(ormoreprecisely,betweentheoreticalcomputerscientists)?4Ididmanagetoproveanexponentiallowerbound,providedwerestrictourselvestolinearcombinations j i+ j'ithatare\manifestlyorthogonal"|whichmeansthatforallcomputationalbasisstatesjxi,eitherh jxi=0orh'jxi=0.5Bycontrast,Icanshowthat1-DclusterstateshavetreesizeO n4 .2 Inmypersonalfantasyland,oncetheevidencecharacterizingthegroundstatesofthesecondensed-mattersystemsbecameoverwhelming,theskepticswouldcomebackwithanewSure/Shorseparator.Thentheexperimentalistswouldtrytorefutethatseparator,andsoon.Asaresult,whatstartedoutasaphilosophicaldebatewouldgraduallyevolveintoascienti cone|onwhichprogressnotonlycanbemade,butis.Prong2:It'sNotThatBadTodescribeastateofnparticles,weneedtowritedownanexponentiallylongvectorofexponentiallysmallnumbers,whichthemselvesvarycontinuously.Moreover,theinstantwemeasureaparticle,we\collapse"thevectorthatdescribesitsstate|andnotonlythat,butpossiblythestateofanotherparticleontheoppositesideoftheuniverse.Quick,whattheoryhaveIjustdescribed?Theanswerisclassicalprobabilitytheory.Themoralisthat,beforewethrowupourhandsoverthe\extravagance"ofthequantumworldview,weoughttoask:isitsomuchmoreextravagantthantheclassicalprobabilisticworldview?Afterall,bothinvolvelineartransformationsofexponentiallylongvectorsthatarenotdirectlyobservable.Bothallowfaulttolerance,instarkcontrastwithanalogcomputing.Neitherletsusreliablypackn+1bitsintoann-bitstate.Andneither(apparently!)wouldprovideenoughpowertosolveNP-completeproblemsinpolynomialtime.Butnoneofthisaddressesthecentralcomplexity-theoreticquestion:ifsomeonegivesyouapolynomial-sizequantumstate,howmuchmoreusefulisthatthanbeinggivenasamplefromaclassicalprobabilitydistribution?Intheirtextbook[11],NielsenandChuangweregettingatthisquestionwhentheymadethefollowingintriguingspeculation:[W]eknowthatmanysystemsinNature\prefer"tositinhighlyentangledstatesofmanysystems;mightitbepossibletoexploitthispreferencetoobtainextracomputationalpower?Itmightbethathavingaccesstocertainstatesallowsparticularcomputationstobedonemuchmoreeasilythanifweareconstrainedtostartinthecomputationalbasis.Toacomplexitytheoristlikeme,them's ghtin'words|oratleast,complexity-class-de nin'words.Inparticular,let'sconsidertheclassBQP=qpoly,whichconsistsofallproblemssolvableinpolynomialtimeonaquantumcomputer,ifthequantumcomputerhasaccesstoapolynomial-size\quantumadvicestate"j nithatdependsonlyontheinputlengthn.(Fortheuninitiated,BQPstandsfor\Bounded-ErrorQuantumPolynomial-Time,"and=qpolymeans\withpolynomial-sizequantumadvice.")Notethatj nimightbearbitrarilyhardtoprepare;forexample,itmighthavetheform2n=2Pxjxijf(x)iforanarbitrarilyhardfunctionf.Wecanimaginethatj niisgiventousbyabenevolentwizard;theonlydownsideisthatthewizarddoesn'tknowwhichinputx2f0;1gnwe'regoingtoget,andthereforeneedstogiveusasingleadvicestatethatworksforallx.Theobviousquestionisthis:isquantumadvicemorepowerfulthanclassicaladvice?Inotherwords,doesBQP=qpoly=BQP=poly,whereBQP=polyistheclassofproblemssolvableinquantumpolynomialtimewiththeaidofpolynomial-sizeclassicaladvice?Asusualincomplexitytheory,theansweristhatwedon'tknow.Thisraisesadisturbingpossibility:couldquantumadvicebesimilarinpowertoexponential-sizeclassicaladvice,whichwouldletussolveanyproblemwhatsoever(sincewe'dsimplyhavetostoreeverypossibleanswerinagiantlookuptable)?Inparticular,couldBQP=qpolycontaintheNP-completeproblems,orthehaltingproblem,orevenallproblems?Ifyouknowme,youknowI'dsooneracceptthatpigscan\ry.Buthowtosupportthatconviction?In[2],Ididsowiththehelpofyetanothercomplexityclass:PostBQP,orBQPwithpostselection.Thisistheclassofproblemssolvableinquantumpolynomialtime,ifatanystageyoucouldmeasureaqubitandthenpostselectonthemeasurementoutcomebeingj1i(inotherwords,ifyoucouldkillyourselfiftheoutcomewasj0i,andthenconditiononremainingalive).MymainresultwasthatBQP=qpolyiscontainedinPostBQP=poly.Looselyspeaking,anythingyoucandowithpolynomial-sizequantumadvice,youcan3 alsodowithpolynomial-sizeclassicaladvice,providedyou'rewillingtouseexponentiallymorecomputationtime(orsettleforanexponentiallysmallprobabilityofsuccess).6Ontheotherhand,sinceNPPP,thisresultstillsaysnothingaboutwhetheraquantumcomputerwithquantumadvicecouldsolveNP-completeproblemsinpolynomialtime.Toaddressthatquestion,in[2]Ialsocreateda\relativizedworld"whereNP6BQP=qpoly.Thismeans,roughly,thatthereisno\brute-force"methodtosolveNP-completeproblemsinquantumpolynomialtime,evenwiththehelpofquantumadvice:anyproofthatNPBQP=qpolywouldhavetousetechniquesradicallyunlikeanyweknowtoday.Inmyview,theseresultssupporttheintuitionthatquantumstatesare\morelike"probabilitydis-tributionsovern-bitstringsthanlikeexponentially-longstringstowhichonehasrandomaccess.Ifexponentially-longstringswererocketfuel,andprobabilitydistributionsweregrapejuice,thenquantumstateswouldbewine|thealcoholic\kick"inthisanalogybeingtheminussigns.Icanimaginesomeoneobjecting:\Whataloadofnonsense!Whetherquantumstatesaremorelikegrapejuiceorrocketfuelisnotamathematicalquestion,aboutwhichtheoremscouldsayanything!"TowhichI'drespond:ifresultssuchasBQP=qpolyPostBQP=poly,whichsharplylimitthepowerofquantumadvice,donotcountasevidenceagainstGoldreich'sviewofquantumstates,thenwhatwouldcountasevidence?Andifnothingwouldcount,thenhowscienti callymeaningfulisthatviewinthe rstplace?AmeatierobjectioncentersaroundarecentresultofRaz[13],thataquantuminteractiveproofsystemwheretheveri ergetsquantumadvicecansolveanyproblemwhatsoever|orincomplexitylanguage,thatQIP=qpolyequalsALL.(HereALListheclassofallproblems,whichmeans,literally,theclassofallproblems.)Imadearelatedobservationin[2],whereIpointedoutthatPostBQP=qpolyequalsALL.7However,akeypointaboutbothresultsisthattheyhavenothingtodowithquantumcomputing,andindeed,wouldworkjustaswellwithclassicalrandomizedadvice.Inotherwords,theclassesIP=rpolyandPP=rpolyarealsoequaltoALL.SinceIlikemakingconjectures,I'llconjecturemoregenerallythatquantumadvicedoesnotwreakmuchhavocinthecomplexityzoothatisn'talreadywreakedbyrandomizedadvice.Soforexample,I'llconjecturethatjustastheclassMA=rpolyisstrictlycontainedinALL,8sotooitsquantumanalogueQMA=qpolyisstrictlycontainedinALL.Imightbeprovenwrong,butthat'sthewholepoint!ConclusionForalmostacentury,quantummechanicswaslikeaKabbalisticsecretthatGodrevealedtoBohr,Bohrrevealedtothephysicists,andthephysicistsrevealed(clearly)tonoone.Solongasthelasersandtransistorsworked,therestofusshruggedatallthetalkofcomplementarityandwave-particleduality,takingforgrantedthatwe'dneverunderstand,orneedtounderstand,whatsuchthingsactuallymeant.Buttoday|largelybecauseofquantumcomputing|theSchrodinger'scatisoutofthebag,andallofusarebeingforcedtoconfronttheexponentialBeastthatlurksinsideourcurrentpictureoftheworld.Andasyou'dexpect,noteveryoneishappyaboutthat,justasthephysiciststhemselvesweren'tallhappywhenthey rsthadtoconfrontitinthe1920's.Yetthisuneasehastocontendwithtwotraditionsoftechnicalresults:the rstshowingthatmanyoftheobviousalternativestoquantummechanicsarenonstarters;andthesecondshowingthatquantummechanicsisn'tquiteasstrangeasonewouldnavelythink.Bothtraditionsaredecadesold:the rstincludesBell'stheorem[5]andtheKochen-Speckertheorem[9],whilethesecondincludesHolevo'stheorem[8]andtheresultsofdecoherencetheory.Buttheoreticalcomputerscientistscometoquantummechanicswiththeirownsetofassumptions(somewouldsayprejudices),sointhisabstractI'vetriedtoindicatehowthey,too,mighteventuallybeshovedintothevastquantumocean,whichisn'tthatcoldonceonegetsusedtoit. 6In[3]IcharacterizedPostBQPexactlyintermsoftheclassicalcomplexityclassPP(ProbabilisticPolynomial-Time),whichconsistsofalldecisionproblemssolvableinpolynomialtimebyarandomizedTuringmachine,whichacceptswithprobabilitygreaterthan1=2ifandonlyiftheansweris\yes."Thus,amoreconventionalwaytostatemyresultisBQP=qpolyPP=poly.7Here'saone-sentenceproof:giventheadvicestate2n=2 xjxijf(x)i,toevaluatetheBooleanfunctionfonanygiveninputxwesimplyneedtomeasureinthestandardbasis,thenpostselectonseeingthejxiofinterest.8IndeedMA=rpoly=MA=poly;thatis,wecanreplacetherandomizedadvicebydeterministicadvice.4 References[1]S.Aaronson.Multilinearformulasandskepticismofquantumcomputing.InProc.ACMSTOC,pages118{127,2004.quant-ph/0311039.[2]S.Aaronson.Limitationsofquantumadviceandone-waycommunication.TheoryofComputing,1:1{28,2005.quant-ph/0402095.[3]S.Aaronson.Quantumcomputing,postselection,andprobabilisticpolynomial-time.Proc.Roy.Soc.London,2005.Toappear.quant-ph/0412187.[4]M.Arndt,O.Nairz,J.Vos-Andreae,C.Keller,G.vanderZouw,andA.Zeilinger.Wave-particledualityofC60molecules.Nature,401:680{682,1999.[5]J.S.Bell.SpeakableandUnspeakableinQuantumMechanics.Cambridge,1987.[6]S.Ghosh,T.F.Rosenbaum,G.Aeppli,andS.N.Coppersmith.Entangledquantumstateofmagneticdipoles.Nature,425:48{51,2003.cond-mat/0402456.[7]O.Goldreich.Onquantumcomputing.www.wisdom.weizmann.ac.il/~oded/on-qc.html,2004.[8]A.S.Holevo.Someestimatesoftheinformationtransmittedbyquantumcommunicationchannels.ProblemsofInformationTransmission,9:177{183,1973.Englishtranslation.[9]S.KochenandS.Specker.Theproblemofhiddenvariablesinquantummechanics.J.ofMath.andMechanics,17:59{87,1967.[10]L.A.Levin.Polynomialtimeandextravagantmodels,inThetaleofone-wayfunctions.ProblemsofInformationTransmission,39(1):92{103,2003.cs.CR/0012023.[11]M.NielsenandI.Chuang.QuantumComputationandQuantumInformation.CambridgeUniversityPress,2000.[12]R.Raz.Multi-linearformulasforpermanentanddeterminantareofsuper-polynomialsize.InProc.ACMSTOC,pages633{641,2004.ECCCTR03-067.[13]R.Raz.QuantuminformationandthePCPtheorem.InProc.IEEEFOCS,2005.Toappear.quant-ph/0504075.5

Related Contents

Next Show more