/
 ECCD for Advanced Tokamak Operations Fisch Booze versus  ohkawa methods  ECCD for Advanced Tokamak Operations Fisch Booze versus  ohkawa methods

ECCD for Advanced Tokamak Operations Fisch Booze versus ohkawa methods - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
393 views
Uploaded On 2017-07-13

ECCD for Advanced Tokamak Operations Fisch Booze versus ohkawa methods - PPT Presentation

Decker September 2003 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 USA This work was supported by the US Department of Energy Grant No DEFG0291ER54109 by the US Department of Energy jointly with the Natio ID: 49691

Decker September 2003 Plasma

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document " ECCD for Advanced Tokamak Operations Fi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

detrapped.Bananaorbitsarethenwell-deÞnedand,tothelowestorderinthecollisionalityparameter,isconstantalongtheÞeldlinesandsymmetricinthetrappedregion.Applyingthebounce-averagingoperator{A} b1 2T cŠcd 2r v B theÞrsttermin(2)isannihilated.In(3),istheturninganglefortrappedparticles,andthesumoverappliesonlytotrappedelectrons,forwhichtheaveragemustbeperformedoverboththeforwardandbackwardmotions.Asaresult,weobtainthebounce-averaged,Fokker-Planckequationwhichmustbesolvednumericallyinthe2Dmomentumspace.NumericalCodeEquation(4)issolvedusingthecodeDKE[11].ThiscodeusesthefullyrelativisticcollisionaloperatordevelopedbyBraamsandKarney[12]andtherelativisticRFquasilinearoperatorproposedbyLerche[13].Becausethedistributionfunctionissymmetricinthetrappedregion,onlyonehalfofthetrappedregionistobeconsideredintheFPcalculations[14].However,thisrequiresaparticulartreatmentoftheparticleßuxesinmomentumspaceatthetrapped/passingboundary,sinceelectronsthatarebarelytrappedcanbedetrappedeitherontheco-orcounter-passingside,giventhatthebounceperiodismuchshorterthanthecollisionaldetrappingtime.Withthisscheme,thebounce-averageddynamicsincludetrappingeffectsimplicitly,leadingtoveryfastcomputercalculations.Inaddition,non-uniformgridsareusedbothinmomentumandpitch-anglecoordinates,allowingforÞnercalculationsinthemostimportantregionsofmomentumspaceforECCDandOKCD,particularlynearthetrapped/passingboundary.ThecalculationspresentedinthispaperwerecarriedoutforatypicalDIII-Dplasma,withmajorradiusm,minorradiusm,andmagneticÞeldonaxisT.ThetemperatureanddensityproÞlesweretakentobeparabolic,withrespectivecoreandedgetemperatureskeVandkeV,anddensities.TheeffectiveionchargewastakenuniformlyeffTheECwavewasconsideredtobeaGaussianbeamofwidthcm,polarizedinthequasi-Xmode.Thewave-particleinteractionoccurednearthesecondharmonic,Momentsofthedistributionfunctioncalculatedfrom(4)givetheßux-surfaceaveragedcurrentdensityandtheßux-surfaceaveragedabsorbedpowerdensity.AnormalizedintrinsicCDÞgureofmeritisdeÞnedby istheelectroncollisionalfrequencyln) - 10 - 5 0 5 5 ///p/p - 10- 50510 - 10- 50510- 10- 50510 (a)(b)(c)(d) Figure1:2Ddistribution(a)-(b)andcorrespondingparalleldistribution(c)-(d)forthecasesofECCDandOKCD,respectively.Thedashedlinesongraphs(a)-(b)areacontourplotofthediffusioncoefÞcient.NotethatforaMaxwellian,thecontourswouldbeequidistantconcentriccircles.OntheLFS,thereisalargefractionoftrappedparticles,sothat,inthepresentcase,theresonantregioninvelocityspace-indashedcontoursongraph(b)-islocatedrightunderthetrappedpassingboundary.Asaconsequence,barelycounter-passingelectronsaretrappedundertheactionoftheECwave,whichincreasestheirperpendicularmomentum.Becauseofthefastbouncemotion,thedistributionfunctionisrapidlysymmetrizedinthetrappedregion,andtheseelectronscanbedetrappedeitherontheco-orcounter-passingside.Theconsequenceofanasymmetrictrappingduetothewave-whichcreatesasinkofelectronsonthecounter-passingside-,andthesymmetricdetrapping,isanaccumulationofelectronsontheco-passingside.Thisaccumulationisvisibleontheparalleldistribution,shownongraph(d),andgeneratestheOhkawacurrent.TheOKCDdrivencurrentdensityisandthedensityofpowerabsorbedis.TheÞgureofmerit(5)isthen.ThecurrentdensitydrivenbyOKCDissensiblylargerthanECCD;however,thedensityofpowerabsorbedisalsolarger,sothattheÞguresofmeritarecomparable.ThiscomparisondoesnotpredicthowmuchtotalcurrentwouldbedrivenbyaECbeamusingtheECortheOKmethod;however,thelargerpowerabsorbedandcurrentdensitiessuggestthatOKCDmayleadtonarrowercurrentproÞles,whichisimportantfortheaccuracyofcurrentproÞlecontrolandNTMstabilization. 0 0.25 0.5 0.75 1 0 20 40 60 80 100  = r/aI (kA)ECCD ( = 180o) OKCD ( = 0o) ECCD ( = 90o) Figure3:TotalcurrentgeneratedbyaECbeamMWlaunchedhorizontallyfromtheLFS.TwoECCDcasesareconsidered,withdepo-sitionat=180=90,andaOKCDcaseWecanseethattheECCDcurrentdecreasessteadilywiththenormalizedradius.Thede-creaseisfasterforECCDabovethemagneticaxis(=90),whichbecomesimpossiblebe-yondacertainradius(),inaccordancewithexperimentalobservations[7].OKCDcur-rentcanbedrivenwhenthenumberoftrappedparticlesbecomessufÞcient()andbe-comesrapidlylargerthanECCDat=90Beyondsomepoint(),itbecomesevenlargerthanECCDat=180.Itisinterestingtonotethat,inthepresentcase,OKCDwoulddriveasmuchcurrentatasECCD=90woulddriveat;therefore,OKCDcandriveappreciablecurrentsfaroff-axis,whereECCDcannot.WhencomparedtoECCDat=180,OKCDgivesslightlyhighercurrentsforVaryingtheRadialLocationofDepositioninOKCDInECCDandOKCD,thecurrentisdepositedneartheintersectionoftheraypathwiththecyclotronresonancelayer.Experimentally,theradiallocationofdepositionmayhavetobecontrolledandmodiÞedduringtheoperation.Thishasbeendonebychangingthelocationoftheresonancelayer,bymovingtheplasma,orchangingthemagneticÞeld[4][3];ithasalsobeendonebysteeringlaunchingmirrors,inordertomodifytheraypath[5].  = 0o = 60o - 0.5 0.5 ce Figure4:SimulationofOKCDwithvaryingpoloidallaunchingangle.TheresonancelayerismaintainedÞxed. 0.65 0.7 0.75 0.8 0 10 20 30  I (kA)OKCD Currentpeak Figure5:OKCDtotalcurrentasafunc-tionofthecurrentproÞlepeakTheeffectofsteeringthepoloidallaunchingangleisinvestigatedbycalculatingOKCDwithlaunchingfromtheLFSatananglewithrespecttothehorizontalplane.TheECWfrequency,andthereforetheresonancelayer,isÞxed,asshownonFig.4.TheECbeam ECCDforAdvancedTokamakOperationsFisch-BoozerversusOhkawaMethodsJoanDeckerPlasmaScienceandFusionCenter,MIT,CambridgeMA02139Currentcanbedrivenusingelectroncyclotronwaves(ECW)byoptimizingeithertheFisch-Boozermechanism(ECCD)ortheOhkawamechanism(OKCD).InECCD,perpendicularheatingduetoECWcreatesanasymmetricresistivity.InOKCD,currentisgeneratedbyECW-inducedasymmetricelectrontrapping.OKCDisagoodcandidateforoff-axisCDwheretheECCDeffectivenessisreducedduetotrappedelectrons.Thetwomechanismsaredescribedusingthekinetic,bounce-averaged,Fokker-PlanckcodeDKEwithaquasilinearECWoperator.CurrentsandCDefÞcienciesforthetwomethodsarecalculatedandcomparedindifferentregionsofanadvancedtokamakplasma.NumericalresultsconÞrmtheexperimentalobservationsthatECCDisbestforcentralCDbutbecomesineffectivebeyondacertainradialdistancefromtheplasmacenter.Onthelow-Þeldside(LFS)ofthisoutboardregion,OKCDcanveryeffectivelygeneratelocalizedcurrents.AsitisoptimizedontheLFS,OKCDrequireslowerwavefrequenciesthanECCD-anadvantagewhenconsideringECWsources.INTRODUCTIONElectroncyclotroncurrentdrive(ECCD)hasbeensuccessfullyusedforfullcurrentdrive[1],currentproÞlecontrol[2],andthestabilizationofMHDinstabilities,particularlyneoclassicaltearingmodes(NTM)[3][4][5].InaccordancewiththeFisch-Boozermethod[6],ECWareusedtotransferperpendicularenergytotheresonantelectrons.Thiscreatesanasymmetricresistivity,becausemoreenergeticelectronsarelesscollisional.Thisasymme-tryintheresistivitygeneratesaelectronßowinthesameparalleldirectionastheresonantelectronvelocity.However,ithasbeenfoundexperimentally[7][1]thattheECCDefÞ-ciencydecreasesascurrentisdrivenfurtheroff-axis.ThisdecreaseintheECCDefÞciencyhasbeenunderstoodtobeduetotheeffectoftrappedparticles.BecauseECCDincreasestheperpendicularenergyofelectrons,italsodiffusesthemtoaregionofvelocityspacethatisclosertothetrappedregion.Afractionoftheseelectronsarepitch-anglescatteredintothetrappedregion.Sincethebounceperiodoftrappedelectronsismuchshorterthanthecollisionaldetrappingtime,halfoftheelectrondetrappingwilloccurthroughtheoppositesideofthetrappedregion,thuscreatingacountercurrent.TheresultingCDefÞciencycanthusbestronglyreduced.TheOhkawamethod[8]forcurrentdrive(OKCD)makesuseofelectrontrappingtogeneratecurrent.TheECWarelaunchedintheoppositedirectionfromECCDandthewaveparametersarechosensothatthewave-particleinteractioninducestrapping.Thistrapping WorkcarriedoutincollaborationwithAbrahamBersandAbhayK.Ram,PSFC,MIT,andYvesPeyssonCEA-Cadarache,France PSFC/JA-03-17 ECCD for Advanced Tokamak Operations Fisch-Boozer versus Ohkawa Methods J. Decker September 2003 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A. This work was supported by the U.S. Department of Energy, Grant No. DE-FG02-91ER-54109, by the U.S. Department of Energy jointly with the National Spherical Torus Experiment, Grant No. DE-FG02-99ER-54521, and by the U.S. Department of Energy for the United States government is permitted. Proceedings of the 15th Topical Conference on Radio Moran, Wyoming, May 19–21,