/
.Homogeneous Cosmological Models .Homogeneous Cosmological Models

.Homogeneous Cosmological Models - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
382 views
Uploaded On 2017-03-28

.Homogeneous Cosmological Models - PPT Presentation

A873CosmologyCourseNotesThecosmologicalmodelssubsequentlydevelopedbyFriedmannandLeMaitreretainsomeideasfromtheEinsteincosmologyGRlargescalehomogeneitylargescalecurvaturebuttheydroptheassumptiont ID: 332073

A873:CosmologyCourseNotesThecosmologicalmodelssubsequentlydevelopedbyFriedmannandLeMa^itreretainsomeideasfromtheEinsteincosmology|GR largescalehomogeneity largescalecurvature|buttheydroptheassumptiont

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document ".Homogeneous Cosmological Models" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

A873:CosmologyCourseNotesIII.HomogeneousCosmologicalModelsReadingsmaterialinthissectioniscoveredinchapters3-7ofRyden,andinchapter3ofPeacock.IverymuchlikethediscussioninJimGunn's(1978)articleTheFriedmannModelsandOpticalObservationsinCosmology,fromtheSAAS-FEEProceedingsObservationalCos-mology,editedbyA.Maederetal.Thisarticleishardtotrackdown,andIwilldistributethe rst40pagesorso(whicharethemostuseful).Fordistancemeasures,IrecommendthecompactsummarybyDavidHogg,DistanceMea-suresinCosmology,availableasastro-ph/9905116.Itgenerallydoesnotgivederivations,butitsummarizesthestandardresultsinadmirablyclearform.Notationdi ersfromonetreatmenttoanother.IwilltrytomostlyfollowRyden'snota-tion.EinsteincosmologicalmodelCosmologicalConsiderationsontheGeneralTheoryofRelativity(Einstein,1917,reprintedinthePrincipleofRelativitybook)Einsteinconstructsthe rstmoderncosmologicalmodel,drawingonnewconceptsofrelativity.Givesarguments,notparticularlypersuasive,againstanin niteuniverse.Introduceshypothesis:universeishomogeneousonlargescales.Howcanuniversebe niteandhomogeneous?Whataboutboundary?GRallowsasolution:spaceispositivelycurved,likethesurfaceofasphere.Finite,butnoboundary.Seeksstaticsolutionwithconstant,positivecurvature.Provesthatnosuchsolutionexists.Inresponse,Einsteinmodi esthe eldequationfromG=8TtoGg=8T;addingthe\cosmologicalterm."Ofthe\principles"thatleadtothe eldequation,theonehedropsistherequirementthatspacetimeis\ratwhenT=0everywhere.Foraspeci crelationbetweenthecosmologicalconstantandthematterdensity,thisallowsastaticsolution.11 A873:CosmologyCourseNotesThecosmologicalmodelssubsequentlydevelopedbyFriedmannandLeMa^itreretainsomeideasfromtheEinsteincosmology|GR,largescalehomogeneity,largescalecurvature|buttheydroptheassumptionthattheuniverseisstatic.Theythereforedonotrequireacosmologicalconstant.Einsteinabandonedthecosmologicaltermforgoodwhenthecosmicexpansionwasdis-covered(in1929).Heisreputedtohavecalledit\thegreatestblunderofmylife."TheCosmologicalConstantThecosmologicalconstantideahasnevercompletelygoneaway.Ithasbeenespeciallyprominentinthelast20years,butitisnowviewedaspartofT.InsteadofGg=8T;G=8(Tmatter+TVAC);whereTVACg=8:TVACisthestress-energytensorofa\falsevacuum"or\scalar eld"withequationofstatep=.Thebasice ectcanbeseenfromourNewtonianlimitresult:r2=4(+3p):Forp=3,gravitypushesinsteadofpulls.Withtherightchoiceof,canhavestaticmodelinwhichpushofvacuumenergybalancespullofmatter(butunstable).Withlarger,getacceleration.TheFriedmann-Robertson-WalkermetricThespatialmetricoftheEinsteincosmologicalmodelisthatofa3-sphere:dl2=dr2+R2sin2(r=R)d\r2;whered\r2d2+sin2d2istheangularseparation.HereRisthecurvatureradiusofthe3-dimensionalspace,andrisdistancefromtheorigin.Inthecoordinateframeofafreelyfallingobserver,timeisjustpropertimeasmeasuredbytheobserver,andthespacetimemetricisds2=c2dt2+dl2:AnaturalgeneralizationoftheEinsteinmodelistoallowthecurvatureradiusR(t)tobeafunctionoftime.12 A873:CosmologyCourseNotesTheuniverseisstillhomogeneousandisotropiconasurfaceofconstantt,butitisnolongerstatic.Inthe1930s,RobertsonandWalker(independently)showedthatthereareonlythreepossiblespacetimemetricsforauniversethatishomogeneousandisotropic.Theycanbewrittends2=c2dt2+a2(t)dr2+S2k(r)d\r2;whereSk(r)=R0sin(r=R0);k=+1;=r;k=0;=R0sinh(r=R0);k=1:Inthisnotation,a(t)isdimensionless.Itisde nedsothata(t0)=1atthetimet0(usuallytakentobethepresent)whenthecurvatureradiusisR0.Atothertimesthecurvatureradiusisa(t)R0.TheradialcoordinaterandtheradiusofcurvatureR0haveunitsoflength(e.g.,Mpc).IhavefollowedRyden'snotationingivingSk(r)unitsoflength.InGunn'snotation,Sk(r)isdimensionless,anda(t)isreplacedbyR(),whereR()hasunitsoflength.Fork=+1,thespacegeometryatconstanttimeisthatofa3-sphere.Fork=0,thespacegeometryatconstanttimeisEuclidean,a.k.a.\\ratspace."Fork=1,thespacegeometryatconstanttimeisthatofanegativelycurved,3-dimensional\pseudo-sphere."FriedmannandLeMa^itreusedthismetricintheircosmologicalmodelsofthe1920s.RobertsonandWalkerprovedthattheyaretheonlyformsconsistentwiththeCosmolog-icalPrinciple(homogeneityandisotropy).ItiscommonlycalledtheFriedmann-Robertson-Walkermetric,orsometimestheRobertson-Walkermetric.TheFRWmetric,spacecurvature,andspacetimecurvaturek=+1=)positivecurvature,sphericalgeometry, nitespacek=0=)nocurvature,Euclideangeometry,in nitespacek=1=)negativecurvature,pseudo-spheregeometry,in nitespaceNote:thesearedescriptionsofspaceatconstantt.Formanyformsofa(t),spacetimeispositivelycurvedevenifspaceisnot,(thisisalwaysthecaseunlessacosmologicalconstantorsomeotherformofenergywithnegativepressureisimportant).Inthespecialrelativistic,Milnecosmology,spacetimeis\rat,butsurfacesofconstanttimearenegativelycurved.13 A873:CosmologyCourseNotesPositivecurvature=)geodesics\accelerate"(in2ndderivativesense)towardseachother.Initially\parallel"geodesicsconverge.Example:greatcirclesonasphere.Zerocurvature=)nogeodesic\acceleration."Initiallyparallelgeodesicsstayparallel.Euclideangeometry.Example:straightlinesonaplane.Negativecurvature=)geodesics\accelerate"awayfromeachother.Initiallyparallelgeodesicsdiverge.Example:geodesicsonasaddle.Thesubstitutionx=Sk(r)allowstheFRWmetrictobewritteninanotherfrequentlyusedform:ds2=c2dt2+a2(t)dx21kx2=R20+x2d\r2:Demonstrationisleftasa(simple)exerciseforthereader.Withrasradialcoordinate,radialdistancesare\Euclidean"butangulardistancesarenot(unlessk=0).Withxasradialcoordinate,thereverseistrue.ComovingObserversThemetricdependsonthecoordinateframeoftheobserver.Evenahomogeneousandisotropicuniverseonlyappearssotoaspecialsetoffreelyfallingobservers,called\FundamentalObservers(FOs)"or\ComovingObservers."Theseobserversare\goingwiththe\row"oftheexpandinguniverse,andtheproperdistancebetweenthemincreasesinproportiontoa(t).Inthecoordinateframeoftheseobservers,theFRWmetricapplies,andthetimecoordinateoftheFRWmetricisjustpropertimeasmeasuredbytheseobservers.ComovingspatialcoordinatestrackthepositionsoftheseFOs,i.e.,thecomovingseparationbetweenanypairofFOsremainsconstantintime.AnobservermovingrelativetothelocalFOshasa\peculiarvelocity,"wherepeculiarisusedinthesenseof\speci ctoitself"ratherthan\odd."Anobserverwithanon-zeropeculiarvelocitydoesnotseeanisotropicuniverse{e.g.,dipoleanisotropyofthecosmicmicrowavebackgroundcausedbyre\rexofthepeculiarvelocity.Examplesofapplicationofmetric(1)Anyfreelyfallingparticlefollowsgeodesicsinspacetime,whosesolutionincomovingcoor-dinatescouldbefoundfromthegeodesicequation.Forcomovingparticles(FO's),solutionistrivial:r;;=constant.14 A873:CosmologyCourseNotes(2)Lightraystravelalongnullgeodesics:ds2=0.Therefore,alongaradialray(d\r=0),dr=cdt=a(t)=)rore=Rtotecdt=a(t):(3)Inasurfaceofconstantt,metricdistancealongaradialpathofconstant;isl=Zds=Zr2r1a(t)dr=a(t)(r2r1):(4)Inasurfaceofconstantt,metricdistancealongapathofconstantr;betweentwopointsofdi erentisl=Zds=Z21a(t)Sk(r)d\r=a(t)Sk(r)sin(21):Notethatthisisnotagreatcircle(andhenceshortest)pathunless==2.(5)Inasurfaceofconstantt,metricvolumeofashellofradiusrandwidthrrisV=Zd3s=Zr+rra(t)drZ4a2(t)S2k(r)d\r2=4S2k(r)a3(t)r:Fork=0thisisjust4r2ra3(t).Notethatthe\metric"distancesandvolumesin(3)-(5)are\proper,"physicaldistancemeasuresandthatristhecomovingradialcoordinate.RedshiftofphotonsAphotonemittedbyanearbycomovingsourceatdistancedisDopplershifted:d=vc=Hdc=Hdt;whereHistheHubbleparameterandthelastequalityfollowsbecaused=cdt.TheHubbleparameterisH=_d=d=_(ar)=(ar)=_a=a:Thus,d=_adta=daa=)dln=dlna:Letthephotonbeemittedwithfrequencyeattimeteandobservedwithfrequencyoattimeto.Integratetogeteo=aoae=oe(1+z);z=redshift:Constantofintegration xedbydemandingo!easao!ae.Photonwavelengthproportionaltoa(t).15 A873:CosmologyCourseNotesFrequencyshift=)timedilation.Reale ectobservedin,e.g.,supernovalightcurves.Couldalsoderiveby(a)consideringsuccessivecreststravelingonnullgeodesics,or(b)usingequationforevolutionof4-momentumalongnullgeodesic.KinematicredshiftGiveaparticlea\peculiar"velocitywithrespecttothecomovingframe.Thepeculiarvelocitydecaysasitcatchesupwithrecedingparticles.Thisisapurelykinematice ect,thoughitlookslikea ctitious\friction."Inthenon-relativisticlimit,aparticlewithspeedvgoesdistancevdtandchangesitspeculiarvelocitybydv=H(vdt)=)dvv=_adta=daa=)pepo=mvemvo=aoae:Momentumredshiftslikethefrequencyofaphoton.Gunnshowsthatthiscontinuestoholdintherelativisticcase(dvlarge).OnecanalsoshowthatthisimpliesthatthedeBrogliewavelengthofaparticleredshiftsjustlikephotonwavelengths.Kinematicredshiftprofoundlya ectsthedynamicsofinstabilities:inanexpandinguni-verse(oranyexpandingmedium),undrivendisturbancesdecayinsteadofcoast.Flux,diameter,andsurfacebrightnessvs.redshiftds2=c2dt2+a2(t)[dr2+S2k(r)d\r2]:Frommetricapplication(2)above,wehavethecomovingdistancetoanobjectthatemittedlightattimeteasDc=Zt0tecdta(t):Froma(1+z)1wehaveda=dz(1+z)2=a2dz;andfromH_a=awehavedt=da=(aH)=)dt=a(t)=da=(a2H)=dz=H:PuttingtheseresultstogetheryieldsDc=Zz0cdz0H(z0)=cH0Zz0dz0H0H(z0)forthecomovingdistancetoanobjectatredshiftz.UsingtherelationforH0=H(z0)thatwewillderivelaterfromtheFriedmannequationthenreproducesequation(15)ofHogg(1999).16 A873:CosmologyCourseNotesAnobjectofangularsized\rattimetehasatransversephysicalsizedl=a(te)Sk(r)d\r=(1+z)1Sk(r)d\r:TheangulardiameterdistanceisDA=dld\r=(1+z)1Sk(r);whereristhecomovingdistanceDcasgivenabove.Wewilllater ndfromtheFriedmannequationthatthecurvatureradiusisR0=cH0j\nkj1=2;where\ntot=1\nkistheratioofthetotalenergydensityoftheuniverse(mass,radiation,darkenergy,...)tothecriticaldensity.For\nk!0,R0!1andthecurvature1=R20!0.Togetherwiththede nitionDH=c=H0,thisyieldstheresultofequations(16)and(18)ofHogg(1999):DA=(1+z)1\n1=2ksinh(\n1=2kDc=DH)k=1;=(1+z)1Dck=0;=(1+z)1j\nkj1=2sin(j\nkj1=2Dc=DH)k=+1:Thephotonsfromasourceatredshiftzaredistributedoveranarea4S2k(r)atthepresentday,sincea(t0)1:Photonsemittedinatimedtearereceivedoveranintervaldt0=(1+z)dte,andtheyareshifteddownwardinenergyby(1+z).Thebolometric\ruxFisthereforereducedbyanadditionalfactor(1+z)2:F=L4S2k(r)(1+z)2L4D2L;whereListhesourcebolometricluminosityandDL=(1+z)2DA(Hogg1999,eq.21).Inc.g.s.units,[F]=ergs1cm2;[L]=ergs1:ThesolidanglesubtendedbyasourceofprojectedareaAis\n=A=D2A,makingthesurfacebrightnessI0F\n=L4D2LD2AA=L4A1(1+z)4=Ie(1+z)4:17 A873:CosmologyCourseNotesThisisthefamous(1+z)4surfacebrightnessdimmingofcosmologicalsources,whichcanmakehighredshiftgalaxiesverydiculttodetect.Note,however,thattheserelationsfor\ruxandsurfacebrightnessarebolometric,inte-gratedoverallwavelengths.Therelationformonochromatic\ruxescanbewritten0S0=eLe4D2L:Themonochromaticorpassband\ruxofanastronomicalobjectisa ectedbytheredshiftingofthebandpassfrom0toe=0(1+z).Thise ectisreferredtoastheK-correction(seeHoggetal.2002,astro-ph/0210394).Mostimportantfactaboutredshift:Ifwemeasuretheredshiftofasource(e.g.,fromthefrequencyofaspectralline),weknowao=ae.Givenamodelofa(t),wealsoknowtheradialdistance.Forangulardiameterandlumi-nositydistances,wealsoneedtoknowthespacecurvature(R0andk,or\nk).Nearby(i.e.,to rstorderinz),cz=coee=H0d;H0_a(t0)a(t0);independentofothercosmologicalparameters.Alternatively,ifwecaninferdistancefromobserved\rux(ofasourceofknownluminosity)orobservedangularsize(ofasourceofknownphysicalsize),wecanreconstructa(t)fromobservations,andconstraincosmologicalparameters.18 A873:CosmologyCourseNotesDynamics:theFriedmannequationGravityhasn'tenteredthepictureyet.Buttogoanyfurther,weneeda(t).AssumeGRiscorrect.Wecouldgetequationsfora(t)bypluggingtheFRWmetricintothe eldequation.Thisyieldstwonon-trivialequations,oneofwhichistheintegraloftheother.offollowingthisderivation,we'llusetheNewtonianlimit,r2=4G(+3p),whichwillgetusalmostalltheway.WeappealtoBirkho 'stheorem,whichimpliesthatwecanthinkaboutasmallsphericalvolumeinisolation,ignoringthegravitationale ectsoftherestoftheuniverse(whichcanceloutinsphericalsymmetry).ConsiderashellofphysicalradiusRcomovingwiththeHubble\row:R=43G(+3p)R31R2:ButR=arwithrconstant,soR=ar.Thus,a=43G(+3p)a=43G[3(+p)a2a]:Thisisan\acceleration"equationforthecosmicexpansion.Weseealreadythata0if+3p�0,gravityslowsexpansion.Wewouldliketohavean\energy"equationfor_a,whichwecangetbyintegratingifweknowhowandpchangewitha.Usethe rstlawofthermodynamics(energyconservation),assumingthattheexpansionisadiabatic:pdV=dU=d(V)=dV+Vd=)d=(+p)dVV=3(+p)daa=)_a=a3(+p)_:(Theadiabaticassumptionisvalidduringmostofthecosmicexpansion,butitisviolatedatsomespecialepochswhenthenumberofparticleschangessubstantially.)Multiplybothsidesoftheaccelerationequationby_atoget_aa=43Ga2_2a_a=43Ga2_+d(a2)d:19 A873:CosmologyCourseNotesRecognizethat_aa=d(_a2=2)=dtandthatthetermin[]isd(a2)=dt.Integratewithrespecttottoget_a28G3a2=constant:Unfortunately,derivingtheintegrationconstantreallydoesrequiretheGR eldequation.Wecanguessthatifthedensityishigh,spacewillbepositivelycurved,andtheuniversewillbegravitationallybound,makingtheconstant(whichplaystheroleofapotentialenergy)negative.Conversely,ifislow,spacewillbenegativelycurved,andtheuniversewillbeunbound,withapositiveconstant.GRleadstotheconclusionthattheintegrationconstantiskc2=R20.Indimensionallycorrectform,theFriedmannequationcanbewritten_aa28G3+kc2a2R20=0:Wewillsometimesrefertothe rsttermasthe\kinetic"term,thesecondasthe\gravi-tational"term,andthethirdasthe\curvature"term.ThedensityparameterNotethat_a=a=H,soifk=0theFriedmannequation=)=3H2=(8G).De nethe\criticaldensity"c=3H28G=densityofak=0Friedmannuniverse.Wecande neadimensionless\cosmologicaldensityparameter"\n=c=)=\n3H28G:TheFriedmannequationcanalsobewrittenH2(1\n)=kc2a2R20:Matchingsignsimplies\n�1!k=+1;closeduniverse\n=1!k=0;\ratuniverse\n1!k=1;openuniverse20 A873:CosmologyCourseNotesNotethat\n=\n(t),butbecausekdoesn'tchange,\nalwaysremainswithinwhicheverofthese3regimesitstartsin.Ifwede ne\nk=1\n,where\nisthesumofallotherenergydensitiesrelativetoc,thentheaboveequationimpliesR0=cH0j\nkj1=2:EvolutionofenergydensityConsideranenergycomponentwithequationofstatep=w(c=1units).Howdoesitsenergydensitychangewithexpansionfactora(t)?dU=pdVd(V)=dV+Vd=wdVVd=(1+w)dVdln=(1+w)dlnV=3(1+w)dlna(V/a3):Integratingyields/a3(1+w):Pressurelessmatter:w=0,/a3(dilution)Radiation:w=1=3,/a4(dilutionplusredshift)Cosmologicalconstant:w=1,=const.Ifthesearetheenergycomponentsintheuniverse,thentheFriedmannequationbecomes_aa28G3m;0a0a3+r;0a0a4+;0=kc2a2R20:Herethesubscript0canrepresentany ducialtimet0.Ifitrepresentsthepresentday,thena0=a=(1+z).Notethatevenifthecurvaturetermiscomparabletothegravitationaltermtoday,itwillbenegligibleatsucientlyhighredshiftbecausethemandrtermsgrowmorerapidlywith(1+z).Thus,\ratuniverse(k=0)solutionsarealwaysaccurateathighz.SolutionsoftheFriedmannequation:singlecomponentuniverseEmptyuniverse:=0,k=1_aa2=c2a2R20:21 A873:CosmologyCourseNotesSolutiona=ct=R0,R0=ct0.MetricandexpansionrateoftheMilnecosmology.Flatuniverse:k=0,=0a0an._aa2=8G30a0an:Solutiona/t2=n.Pressurelessmatter:n=3,a=a0(t=t0)2=3.Radiation:n=4,a=a0(t=t0)1=2.(Ourstandardnotationhasa0=1.)-dominated\ratuniverse:k=0,=_aa2=8G3:Since_a/a,solutionisexponentialgrowth:a=a0et=tH;tH=8G31=2:SolutionsoftheFriedmannequation:twocomponentuniverseMatter+curvatureWehavepreviouslywrittentheFriedmannequationintheforms_aa28G3+kc2a2R20=0andH2(1\n)=kc2a2R20:Evaluatingthesecondequationata=a0=1gives(1\n0)=kc2R20H20;whichwecanusetochangetheR0dependenceinthe rstformtoan\n0dependence.22 A873:CosmologyCourseNotesForamatter-dominateduniverse(withorwithoutcurvature),=0a3=\n03H208Ga3;allowingtheFriedmannequationtobewrittenH2\n0H20a3+H20(\n01)a2=0;orH2H20=\n0a3+(1\n0)a2:Weseethatfor\n0�1,Hbecomeszeroatthe\turnaround"epochamax=\n0\n01:For\n01,Hdoesnotreachzero,soitcannotchangesign;anexpandingsub-criticaluniverseexpandsforever.For\n0�1,thesolution(whichcanbeveri edbydirectsubstitutionandabitofalgebra)canbewrittenintheparametricforma()=amax2(1cos);t()=amax21H0(\n01)1=2(sin)=R0camax2(sin):Maximumexpansionisreachedat=,andtheuniversecollapsesina\bigcrunch"at=2.For\n01,de nea=\n01\n0;andtheparametricsolutionisa()=a2(cosh1);t()=a21H0(1\n0)1=2(sinh)=R0ca2(sinh):whererunsfromzerotoin nity.Atlatetimes(1),thesolutionapproachesa/tasuniverseenters\freeexpansion."Atearlytimes(1,1),bothsolutionsapproacha/t2=3,asfork=0.23 A873:CosmologyCourseNotesMatter+Fora\ratuniversewithacosmologicalconstant,\n;0=1\nm;0,andtheFriedmannequationcanbewrittenH2H20=\nm;0a3+(1\nm;0):For\nm;01,\n;0�0,andthematterdensityandcosmologicalconstantareequalatanexpansionfactoram=\nm;0\n;01=3:TherelationbetweentimeandexpansionfactorcanbewritteninthecumbersomebutexplicitformH0t=23(1\nm;0)1=2ln2aam3=2+ 1+aam3!1=23:Atearlytimesa(t)32p\nm;0H0t2=3;likea\rat,matter-dominateduniverse,whileatlatetimesa(t)amexp(p\n;0H0t);givingtheexponentiallyexpandingsolutionfora-dominateduniverse.Curvature,Destiny,TopologyAstheabovesolutionshows,amatterdominatedk=+1universeeventuallycollapses,whileamatterdominatedk=0ork=1universeexpandsforever.Thisequationofclosedgeometrywithabounduniverseand\rat/opengeometrywithanunbounduniversecontinuestoholdifradiationisadded.Butvacuumenergycanchangethepicture.FollowingtheargumentsinProblemSet2,theFriedmannequationcanbewrittenintheformH2(a)=H20\n;0(a);0+\nk;0a0a2+\nm;0a0a3+\nr;0a0a4;where(a)isthevacuumenergydensityatexpansionfactoraand\nk;0=1\nm;0\nr;0\n;0:24 A873:CosmologyCourseNotesNotethatk=+1correspondstonegative\nkandviceversa.Fortheuniversetorecollapse,wemusthaveH(a)=0atsometimeinthefuture(a�a0).For\n;0=0,thismusthappenif\nk0cannothappenif\nk�0.For\n;0�0,recollapsecanbeavoidedif(a)=;0fallsslowerthana2.Bestguesscurrentparametersare\n;00:7,j\nk;0j1,(a)const:,implyingthattheuniversecouldbeopen,\rat,orclosed,butthatexpansionforeverislikely.Futurerecollapseispossibleif\nk;00andvacuumenergychangesitsequationofstateandstartstofallfasterthana2inthefuture.If\n;00(anegativevacuumenergyisnotfavoredbyobservations,butitisnotobviouslyimpossibleinprinciple),thenonecouldhavean\nk�1(open)universethatrecollapses.GRdoesnotprohibittheuniversefromhavingacomplextopology,e.g.atoroidaltopologyinwhichheadingo inonedirectioneventuallybringsyoubacktowhereyoustarted.Thus,inprinciple,theuniversecouldbenegativelycurvedor\ratandstillbespatially nite.havebeensome(unconvincing)claimsforperiodicredshiftsthatcouldbeinterpretedasevidenceforcomplextopology.PeopleareseriouslysearchingforsignsofcomplextopologyinthepatternofCMBanisotropies.25