/
IOP P UBLISHING UROPEAN OURNAL OF HYSICS Eur IOP P UBLISHING UROPEAN OURNAL OF HYSICS Eur

IOP P UBLISHING UROPEAN OURNAL OF HYSICS Eur - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
409 views
Uploaded On 2015-04-25

IOP P UBLISHING UROPEAN OURNAL OF HYSICS Eur - PPT Presentation

J Phys 30 2009 7584 doi10108801430807301008 Dynamic soaring aerodynamics for albatrosses Mark Denny 5114 Sandgate Road RR1 Victoria British Columbia V9C 3Z2 Canada Email markandjaneshawca Received 27 August 2008 in nal form 1 October 20 ID: 55101

Phys 2009

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IOP P UBLISHING UROPEAN OURNAL OF HYSICS..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

MDenny thedragonwingsandbody,respectively)andistheinduceddragcoefcient[].Liftmaybeconstant(equaltoforhorizontalight)butingeneralit,too,dependsuponairspeed.Thecoefcientsdependuponmorphologicalfactorsthatare,atleastinpart,underthebird’scontrol.Weusethisfacttosimplifyequations(4)byassumingthatouralbatrossmaintainsaconstantratioof;letusdenotethisratioby,andadoptaminimumvalueof1andamaximumvalueof25foralbatrossightFromequations(4)andourassumptionweobtain() ()()() () again,foratailwind.Equation()isrelativelyeasytoworkwith;intheremainderofthispaper,wesolvespecialcasesofinterestanalyticallyandinsodoingobtainanunderstandingofhowalbatrossescanylongdistanceswithoutexpendingmuchenergy.3.Specialcases:glideangle,efÞciencyandequilibriumspeedFirstlyletusassumethatouralbatrossisinstillair(sothat0).Foraglidealongastraighttrajectory(constant),equation()reducesto() ()andsoaconstantequilibriumspeedoccursforadiveanglegivenbytan.(Negativeadescendingtrajectory;positivemeansascending,asshowningure.)Thiswell-knownresult[]showsthatahigh(correspondingtoalarge)resultsinalongglidedistance;analbatrossglidingfromacertainheightwilltravelfurtherthanotherbirdsglidingfromthesameheight.Nowweconsiderarisingtrajectoryinstillairwithconstant,sothatequation(reducesto(t) (t) .Thisequationcanbesolvedanalytically(viaanintegratingfactorexp())toyieldfortheairspeed:v(t) ()exp kt +g (twheresin() Letussaythatthealbatrossascendsaheightandinsodoingitsspeeddropsfrom0tozeroat2.Theheightisgivenbytv(t)(t).Fromequations()and()andfromtheboundaryconditions,itisstraightforwardtocalculatetheefciencyofthisclimbingightmanoeuvre.Thebird’sinitialenergyis anditsnalenergyismgH.TheefciencyisThefractionallossofenergy1forthisclimbingmanoeuvreisplottedingureasafunctionofthelift-to-dragratio,.Notethat,becauseoftheirhighvalue,albatrosseslosemuchlessenergyduringaclimbthandobirdswithlowerlift-to-dragratios.Wecaninferfromthisobservationthatthereissignicantselectionpressureforalbatrossestoevolvehighlift-to-dragratios(becausethesebirdsaresodependentuponefcientight).Nowweconsidertheequilibrium(0)speedforthemoregeneralcase0.Againwerestrictattentiontolineartrajectorieswithaconstant.Equilibriumspeedisreadilyfoundfromequation()tobe  ()wheretan() Barnes[]suggestsamaximumvalueof27whereasAlexanderandVogel[]adoptasomewhatlowergure18.Thisrangeofalbatrossmaximumlift-to-dragratiosishighforbirds,butislessthancanbeattainedbymodernglidersandsailplanes. Dynamicsoaring:aerodynamicsforalbatrosses79 1Š 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Figure3.Fractionofalbatrossenergylostduringaclimb(describedinthetext)versusthelift-to-dragratioDoesthisspeedcorrespondtostableorunstableequilibrium?Stabilityrequiresthatthecoefcientofinequation()(theterminsquarebrackets)benegative.Itisnotdifculttoshowthatthisrequirement,combinedwiththerequirementthatspeedbepositive,meansthatforthetwocasesofpracticalinterest(divinginatailwindandclimbinginaheadwind)theequilibriumspeedisunstable.Soanalbatrossmustconstantlyadjustparametersinordertomaintainaconstantspeed.4.RayleighdynamicsoaringWhatisspecialaboutthetwotrajectoriesjustmentioned(divingwhilemovingdownwindandclimbingwhilemovingupwind)?Whencombinedintoasingleloopingtrajectory,theseconstitutedynamicsoaring(DS),familiartoeverygliderpilot.DSpermitsaglider(oralbatross)toextractenergyfromthewindwhenthereisaverticalvelocitygradient,suchastheonethatoccursintheleeofahillorontheboundarylayeradjacenttotheearth’ssurface.HerewewillanalyseasimpletrajectorythatshowshowanalbatrossusesDStomoveacrossthewind,withnonetenergyexpenditure.Rayleigh,in1883,wasthersttosuggestthatseabirdssuchasalbatrossesmightexploittheDStechnique[Considertheighttrajectorythatissketchedingure.Herewehavejoinedtogetherthreetwo-dimensionaltrajectories,andsowecanapplyequation()toeachsegmentseparately.Thealbatrossbeginsatthetopoftheboundarylayer(altitude20m)with12ms,whichwetaketobetheminimumairspeedthatthebirdrequirestomaintainlift[].Groundspeedis.Therstphaseofthetrajectoryconsistsofadiveataconstantanglealongthewinddirection;thesecondphaseisalongglideatzeroaltitude;thethirdphaseisaclimbataconstantangleintothewind,endingatanaltitudeNegativecorrespondstomovementtotheleft,ingure,whichmeansthatthewind(assumedinguretobeheadwind)isatailwind.Similarly,negativeinatailwindimpliesheadwind.So,mustbepositive. Dynamicsoaring:aerodynamicsforalbatrosses81 Wechoose1.Wealsoseethatclimbangleshouldbesmall,andthattheshouldbeaslargeaspossible.Wechoose25,andwendthataclimbangleofworks.Theequationsofmotionshowthatthetrajectoryofgureispossibleonlyforsteepdiveangles;herewechoosediveangleCalculationsshowthatguretrajectoriesarepossibleinmoderatetostrongwinds,withgradientsexceeding0.5s(whichcorrespondstowindspeedsabovetheboundarylayer10msor36kph).Thechangeinalbatrossenergyduringeachphaseis mgh h) 22Š1 mgh h) Notethatenergyisdeterminedinareferenceframethatisxedtotheearth’ssurface.Thetotalenergychangeoverthetrajectoryiszero,inthisframe,byconstruction.TheairapplyatthebeginningandendofphaseII,asshowningure.Thesespeedsarefoundtobequitehigh,varyingfrom29.760ms0.5to40.094ms0.9.Solutionsinstrongerwinds(larger)arepossible,atevenhigherspeeds.Albatrossesarecertainlycapableofsuchspeeds:measurementsofonegrey-headedalbatrossduringanAntarcticstormshowedthatthebirdtravelledfor9hatgroundspeedsofbetween110kph(30.5ms)and168kph(46.7mss14].Thechangesinenergyforthethreephasesoftheguretrajectoryareplottedingure.Energyisgainedduringthedive(phaseI),lostduringthezero-altitudeglide(phaseII)andlostalittleduringtheclimb(phaseIII).Thisbehaviouriseasytounderstandqualitatively.Thealbatrossispushedalongbythewindduringthedive,andsopicksupmorespeedthanwewouldexpectsimplyfromthechangeinaltitude.Energyislosttodragduringthehorizontalwave-topglide.Perhapsmoresurprisingistherelativelysmalllossofenergyduringtheclimbphase.Herethealbatrossisgainingheightandyingintothewind,andyetitpicksupairspeed.Ofcourse,thegroundspeedfallsasthebirdrises.Wealsoplotthealbatrosscross-windandupwindspeedsingure.Thesespeedsarecalculatedrelativetothesurface.So,forexample,analbatrossthatrepeatedlyiestheDStrajectoryofgureinastrongwindgradientof0.9swilldriftmoreorlessperpendiculartothewinddirectionataspeedofabout19ms.Inagentlergradientof0.6s,assumingthatthebirdadoptsthesamediveandclimbangles,thecross-windspeedwillbeabout9ms,whiletheupwindspeedis8ms.Bychangingdiveandclimbangles,analbatrosscanalteritsdriftdirection.Finally,wenotethatDSstilloccursifthealbatrossmaximumisreduced(toandtheminimumvelocityisincreased(to15ms);thetrajectoryspeedisincreasedbyabout3ms,assumingallotherparametersareunaltered,andDSrequiresstrongerwinds(aminimumvalueof0.65s).DSismoreseverelylimitediftheminimummustexceed0.85sisincreasedfrom1.0to1.5.Wemayconcludethat,forawiderangeofparameters,itispossibleforalbatrossestoexploittheRayleighDSinmoderatetostrongwindconditions.5.DSmodellimitationsThecentralassumptionsofourDSmodelare(1)constantduringeachphaseofthetrajectory,(2)linearwindspeedprole, Dynamicsoaring:aerodynamicsforalbatrosses83 oursimpleDSmodelistodemonstratethatanalbatrosscanusethewindenergytomove;itcantravellargedistanceswithoutexertingmuchinternalenergy.NeglectingtheturnbetweenightphaseIIIandightphaseIdoesnotinvalidatethismodelresult,weargue,becausetheturnwillincreasethealbatrossenergy,sothatitiseasierthanpredictedhereforthealbatrosstoutilizeDS.Thusoursimplemodelcannotcalculatetheturn,andsounderestimatesthebenetsgainedbyDS.Thefourthassumptionismadebecausemodellingthegroundeffect,andtheinuenceofsurfacewavesuponalbatrossight,iscomplicated.Thegroundeffect(disturbanceofwingtipvorticesbytheground,oroceansurface,resultinginadditionallift)isexploitedinseveralairplanedesigns.Ithasalsobeenshowntobenetcertainbirds(suchasskimmers)thatyclosetothewatersurface[].Theactionofwaveshasbeenshowntobenetalbatrossight:thebirdgainsthrustwhiledragisreduced,toanextentthatdependsinacomplicatedwayuponthesurfacewaveparameters[].Thus,onceagain,ignoringacomplicationleadstoourmodelunderestimatingtheabilityofalbatrossestoexploitDS.ThusoursimplemodelpredictsaDScapability.6.SummaryanddiscussionAlbatrossightdynamicsisofinterestbeyondthebiomechanicscommunity.Thereismuchresearchtodayintomicroairvehicles(MAVs)andtheaerodynamicsofsuchvehicleshasmuchincommonwiththoseofsoaringbirds.Thus,muchoftheanalysisassociatedwithMAVdevelopmenthasincorporatedalbatrossDSstudies[]orhasbeeninspiredbyalbatrossight[].Radio-controlledmechanicalmodelsofalbatrosseshavebeendemonstratedtoexploitDS.(Thesemodelsarehand-launchedandtheenergyforight,apartfromthisinitialboost,isextractedfromthewind.)Detailedmodelsofalbatrossight[]aretoocomplicatedtobetransparenttonon-specialists.HerewehavedevelopedamathematicalmodelofalbatrossDSthatissimpleandyetcapturesmuchoftheunderlyingphysics.ThealbatrossisassumedtoprogressbyrepeatingaDStrajectorythatisdividedintothreetwo-dimensionalphases.Theresultingequationsofmotionforeachphaseareverysimple.Complicationsthatareomitted(thegroundeffectandtheinuenceofwavesduringightphaseII,andthedynamicsoftheturnthatoccursbetweenphaseIIIandphaseI)willaidthealbatross,andsooursimplemodelunderestimatesthebenetsthatitgainsfromDS.Despitetheseoversimplications,ourmodelagreesquitewellwiththefewexperimentalresultsandobservationsthatareavailable.Thus,forexample,thebankangleduringturnsisreadilydeterminedfromthecentrifugalforceandweightvectors:tan(B)/gR;inourmodelitvariesbetween0.55–0.9.Observedbankanglesareestimatedtobeintherange606020].LoopingDStrajectoryinourmodelvariesinlengthscalefrom230mat0.55to2240mat0.9,whereasobservationsfromshipsindicatelengthscalesofafewhundredmetres[].Trajectorydurationsof5.0–12.7scomparewithobserveddurationsof9.6–10.9ss20].Clearlythesimplemodelisatleastcompatiblewithobservations.Theturnincreasesenergybecausethebird’scross-sectionalareaprojectedalongthewinddirectionwillincrease,reachingamaximumwhenthebirdismid-turn,andthisincreasedareawillincreasethewindforceactinguponthebird,sothatthedownwindspeedatthestartofphaseIwillexceedSee,forexample,theYouTubevideoathttp://www.youtube.comwatch?vThus,forexample,weseewhyalbatrossesloopanticlockwisewhenheadingnorthandclockwisewhenheadingsouth:theprevailingwindsarewesterlyandsotheRayleighDStechniquerequiressuchtrajectories. MDenny References[1]PennycuickCJ1982Phil.Trans.R.Soc.[2]WeimerkirchHetalProc.R.Soc.[3]BarnesJP2004HowiestheAlbatrossSAEInternationalDoc.no.2004-01-3088[4]RaynerJMVetalAm.Zool.[5]PennycuickCJ2001J.Exp.Biol.[6]TobalskeBW2007J.Exp.Biol.[7]PennycuickCJ1989BirdFlightPerformance:APracticalCalculationManual(Oxford:OxfordUniversity[8]WoodCJ1973[9]BosloughMBE2002AutonomousdynamicsoaringplatformfordistributedmobilesensorarraysSandiaNationalLaboratoriesDOETechnicalReportNo[10]VogelS2006J.Biosci.[11]AlexanderDEandVogelS2002Nature’sFlyers:Birds,InsectsandtheBiomechanicsofFlightMD:JohnsHopkinsUniversityPress)p62[12]ThomsonW1883Nature534–5(LordRayleigh)[13]VidelerJJ2005AvianFlight(Oxford:OxfordUniversityPress)p153[14]CatryP,PhillipsRAandCroxallJP2004Auk[15]WithersPCandTimkoPL1977J.Exp.Biol.[16]ShengQi-huetalAppl.Math.Mech.[17]BarateRetalBioinspirationBiomimetics[18]WharingtonJM2004Heuristiccontrolofdynamicsoaring5thAsianControlConf.vol2pp714–22[19]LangelaanJWandBramesfeldG2008Gustenergyextractionformini-andmicro-uninhabitedaerialvehicles46thAerosciencesConf.AmericanInstituteofAeronauticsandAstronauticsPaper2008-0223[20]LangelaanJW2007LongdistancedurationtrajectoryoptimizationforsmallUAVsGuidance,NavigationandControlConf.AmericanInstituteofAeronauticsandAstronauticsPaper2007-6737