/
Du al Singularities Igor Burban In tro duction consider quotien singularities G where Du al Singularities Igor Burban In tro duction consider quotien singularities G where

Du al Singularities Igor Burban In tro duction consider quotien singularities G where - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
446 views
Uploaded On 2014-12-11

Du al Singularities Igor Burban In tro duction consider quotien singularities G where - PPT Presentation

Since ha 57356nite ring extension x x the Krull dimension of x is 2 Note that x xy x In order to get kind of bijection et een 57356nite subgroups and quotien singularities need the follo wing de57356nition De57356nition 11 et GL 57356nit ID: 22262

Since 57356nite ring

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Du al Singularities Igor Burban In tro d..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

DuValSingularitiesIgorBurban1IntroductionWeconsiderquotientsingularitiesC2=G,whereGSL2(C)isa nitesubgroup.Sincewehavea niteringextensionC[[x;y]]GC[[x;y]],theKrulldimensionofC[[x;y]]Gis2.NotethatC[[x;y]]2=C[[(x+y;xy)]]C[[x;y]].Inordertogetakindofbijectionbetween nitesubgroupsandquotientsingularitiesweneedthefollowingde nition.De nition1.1LetGGLn(C)bea nitesubgroup.Anelementg2Giscalledpseudo-re\rectionifgisconjugatedtodiag(1;1;:::;1;),where6=1.AgroupGiscalledsmallifitcontainsnopseudo-re\rections.Proposition1.21.LetGGLn(C)bea nitesubgroup.ThenC[[x1;x2;:::;xn]]G=C[[x1;x2;:::;xn]]G0;wherethegroupG0isacertainsmallsubgroupofGLn(C).2.LetG0;G00GLn(C)betwosmallsubgroups.ThenC[[x1;x2;:::;xn]]G0=C[[x1;x2;:::;xn]]G00ifandonlyifG0andG00toareconjugated.3.LetGGLn(C)beasmall nitesubgroup.ThenC[[x1;x2;:::;xn]]GisalwaysCohen-Macaulay.4.LetGGLn(C)beasmall nitesubgroup.ThenC[[x1;x2;:::;xn]]GisGorensteini GSLn(C).Remark1.3NotethateverysubgroupofSLn(C)issmall.Nowwewanttoanswerthefollowingquestion:whatare nitesubgroupsofSL2(C)moduloconjugation?1 2FinitesubgroupsofSL2(C)Lemma2.1Every nitesubgroupofSLn(C)(GLn(C))isconjugatedtoasub-groupofSU(n)(U(n)).Proof.Let(;)beahermitianinnerproductonCn.De nehu;vi:=1jGjXg2G(gu;gv):(NotethatincaseGU(n)itholdsh;i=(;)).Thenh;iisanewhermitianinnerproductonCn:1.hu;ui0.2.hu;ui=0impliesu=0.3.hu;vi=hv;ui.Itholdsmoreoverhhu;hvi=1jGjXg2G(ghu;ghv)=hu;vi:HenceGisunitarywithrespecttoh;i.Moreover,h;ihasanorthonor-malbasisandletS:(Cn;h;i)!(Cn;(;))beamapsendingvectorsofthechoosenorthonormalbasisoftheleftspacetovectorsofthecanonicalbasisoftherightone.Itholdshu;vi=(Su;Sv).Weknowthathgu;gvi=hu;viforallg2G,u;v2Cn.Henceweget(Su;Sv)=(Sgu;Sgv),or,settingS1uandS1vinsteadofuandv(u;v)=(SgS1u;SgS1v)forallg2Gandu;v2Cn.Nowwewanttodescribeall nitesubgroupsofSU(2).RecallthatSU(2)=fA2SL2(C)jA1=Ag=f   jj j2+j j2=1g:So,fromthetopologicalpointofviewSU(2)S3.Theorem2.2Thereisanexactsequenceofgrouphomomorphisms1!Z2!SU(2)!SO(3)!1:Moreprecisely,ker()=f1001g:TopologicallyisthemapS32:1!RP3.2 Fromthistheoremfollowsthatthereisaconnectionbetween nitesubgroupsofSU(2)andSO(3).Theclassi cationof niteisometrygroupsofR3isaclassicalresultofF.Klein(actuallyofPlaton).Therearethefollowing nitesubgroupsofSO(3;R):1.AcyclicsubgroupZn,generated,forinstance,by0cos(2n)sin(2n)0sin(2n)cos(2n)000112.DihedralgroupDn,jDnj=2n.Itistheautomorphismgroupofaprisma.Itisgeneratedbyarotationaandare\rectionbwhichsatisfytherelationsan=e;b2=e;(ab)2=e.Notethatthelastrelationcanbechoosenasba=an1borbab1=a1.3.GroupofautomorphismsofaregulartetrahedronT=A4.NotethatjTj=12.4.GroupofautomorphismsofaregularoctahedronO=S4,jOj=24.5.GroupofautomorphismsofaregularicosahedronI=A5,jIj=60.Observethatallnon-cyclicsubgroupsofSO(3)haveevenorder.Lemma2.31001istheonlyelementofSU(2)ofdegree2.Proof.Theproofisasimplecomputation.   2= 2j j2 +      2j j2=1001implies 2= 2or = .Hence =x;x2Ror =ix;x2R.Moreover 6=0sinceotherwisemustholdj j2=1.Incase 2Rwehave +  =2 hence =0and =1.Ifa=ixispurelyimaginarythen 2j j2=jxj2j j20:LetGSU(2)bea nitesubgroup,:SU(2)!SO(3)the2:1surjec-tion.Considertwocases.1.jGjisodd.ThenG\Z2=feg(noelementsoforder2inG).Soker()\G=fegandG!(G)isanisomorphism.HenceGiscyclic.2.jGjiseven.TheduetotheSylow'stheoremGcontainsasubgroupoforder2kandhencecontainsanelementoforder2.ButthereisexactlyoneelementofthesecondorderinSU(2)(seethelemmaabove).Henceker()GandG=1((G)).So,inthiscaseGisthepreimageofa nitesubgroupofSO(3).3 Fromwhatwassaidwegetthefullclassi cationof nitesubgroupsofSL2(C)moduloconjugation.1.AcyclicsubgroupZk.Letgbeitsgenerator.gk=eimpliesg"00"1;where"issomeprimitiverootof1ofk-thorder.2.BinarydihedralgroupDn,jDnj=4n.To ndthegeneratorsofDnwehavetoknowtheexplicitformofthemap:SU(2)!SO(3).Skippingalldetailswejustwritedowntheanswer.Dn=ha;biwithrelations8an=b2b4=ebab1=a1Tobeconcrete,a="00"1;"=exp(in);b=0110:3.BinarytetrahedralgroupT,jTj=24.T=h;;i;where=i00i;=0110;=1p2"7"7"5";"=exp(2i8):4.BinaryoctahedralgroupO,jOj=48.Thisgroupisgeneratedby;;asinthecaseofTandby="00"7:5.FinallywehavethebinaryicosahedralsubgroupI,jIj=120.I=h;i,where="300"2;=1p5"+"4)"2"3"2"3""4;"=exp(2i5):Remark2.4Theproblemofclassi cationof nitesubgroupsofGL2(C)ismuchmorecomplicated.Indeed,every nitesubgroupGGL2(C)canbeembeddedintoSL3(C)viathegroupmonomorphismGL2(C)!SL3(C)g7!g001det(g):FinitesubgroupsofGL2(C)givemainseriesof nitesubgroupsofSL3(C).Nowwecancomputethecorrespondinginvariantsubrings.4 3DescriptionofDuValsingularities1.AcyclicsubgroupZn=hgi,g:x7!"x;y7!"1y;"=exp(2in).ItisnotdiculttoseethatX=xn;Y=ynandZ=xygeneratethewholeringofinvariants.C[[x;y]]Zn=C[[X;Y;Z]]=(XYZn)C[[x;y;z]]=(x2+y2+zn):ItisanequationofAn1-singularity.2.BinarydihedralgroupDn.:x7!"xy7!"1y:x7!yy7!x;where"=exp(in).ThesetofinvariantmonomialsisF=x2n+y2n;H=xy(x2ny2n);I=x2y2:TheysatisfytherelationH2=x2y2(x4n+y4n2x2ny2n)=IF24I2(n+1):ThestandartcomputationsshowthatC[[x;y]]DnC[[x;y;z]]=(x2+yz2+zn+1):ItisanequationofDn+2-singularity.3.ItcanbecheckedthatforthegroupsT;O;Iwegetsingularities(a)E6:x2+y3+z4=0,(b)E7:x2+y3+yz3=0,(c)E8:x2+y3+z5=0.Wegetthefollowingtheorem:Theorem3.1DuValsingularitiesarepreciselysimplehypersurfacesingular-itiesADE:Wewantnowtoanswerournextquestion:whatareminimalresolutionsanddualgraphsofDuValsingularities?4A1-singularityConsiderthegermofA1-singularityS=V(x2+y2+z2)A3.Considertheblow-upofthissingularity.~A3=f((x;y;z);(u:v:w))2A3P2jxv=yu;xw=zu;yw=zug:5 Takethechartu6=0,i.e.u=1.Weget8x=xy=xvz=xwWhatis~S=1(Snf0g)?Consider rstx6=0(itmeansthatwearelookingfor1(Snf0g)).x2+x2v2+x2w2=0;x6=0;or1+v2+w2=0;x6=0:Inordertoget~Sweshouldallowxtobearbitrary.Inthischart~SisacylinderV(1+v2+w2)A3.Whatis1(0)?Obviouslyitistheintersectionof~Swiththeexceptionalplane((0;0;0);(u:v:w)).Inthischartwejusthavetosetx=0inadditiontotheequationofthesurface~S.1(0)=1+v2+w2=0x=0:WeseethatE=1(0)isrationalandsinceall3chartsof~Saresymmetric,weconcludethatEissmooth,soE=P1.Nowwehavetocomputethesel ntersectionnumberE2.Wedoitusingthefollowingtrick.Let:~X!Xbetheminimalresolution.Itinducesanisomorphismof eldsofrationalfunctions:C(X)!C(~X).Letf2C(~X)bearationalfunction.Thenitholds:(f):E=degE(OE\nO~X(f))=degE(OE)=0:Inparticularitholdsforf2mOX;0:(f):E=0:Considerthefunctiony2OX;0.Inthechartu6=0wegety=xu.Whatisthevanishingsetofy?1.x=0isanequationofE.2.u=0impliesv2+1=0orv=i.Hence(f)=E+C1+C2andwehavethefollowingpicture:6 C2C1ESo,(f):E=E2+C1:E+C2:E=E2+2=0.FromitfollowsE2=2.5E6-singularityInthissectionwewanttocomputeaminimalresolutionanddualgraphofE6-singularityX=V(x2+y3+z4)A3.Let~X!Xbeaminimalresolution,E=[Ei=1(0)theexceptionaldivisor.Inordertocomputesel ntersectionnumbersE2iwehavetoconsiderthemap:C(X)!C(~X).Letf2mXOX,thenequalities(f):Ei=0willimplythesel ntersectionnumbersofEi.Firststep.LetX=V(x2+y3+z4)A3,f=x.Considertheblow-upofA3:~A3=f((x;y;z);(u:v:w))2A3P2jxv=yu;xw=zu;yw=zug:Take rstthechartv6=0(i.e.v=1).Wegetequations8x=yuy=yz=yw:Togettheequationofthestricttransformof~X1weassumethaty6=0andy2u2+y3+y4w4=0;oru2+y+y2w4=0:Inthischart~X1issmooth:Jacobicriteriumimplies8u=01+2yw4=0w3y2=0:Itiseasytoseethatthissystemhasnosolutions.Inthechartu=1thestricttransform~X1isagainsmooth.Consider nallythechartw=1.8x=zuy=zvz=z:7 Thestricttransformisz2u2+z3v3+z4=0;oru2+zv3+z2=0:Jacobicriteriumimpliesthatthissurfacehasauniquesingularpointu=0;v=0;z=0,orintheglobalcoordinates((0;0;0);(0:0:1)).Weseethatthispointindeedliesonlyinoneofthreeanechartsof~X1.Wenowneedanequationofexceptional bre.Theexceptional breisbythede nitiontheintersection~X1\f((0;0;0);(u:v:w))g.Togetitslocalequationinthechartw=1wejusthavetosetz=0intheequationof~X1.z=0impliesu=0.HencewegetE0=f((0;0;0);(0:v:1))gA1:GoingtotheotherchartsshowsthatE0P1.Finally,thefunctionfinthischartgetstheformf=zu.Agreement.Sincethenumberofindicesdependsexponentiallyonthenumberofblowing-ups,weshalldenotethelocalcoordinatesofallchartsofallblowing-ups~Xibytheletters(x;y;z).Secondstep.Wehavethefollowingsituation:8surfacex2+zy3+z2=0functionf=xzexceptionaldivisorE0x=0;z=0:Consideragaintheblowing-upofthissurface.Itiseasytoseethattheonlyinterestingchartis8x=yuy=yz=yv:Wegetthestricttransformy2u2+yvy3+y2v2=0;y6=0;oru2+y2v+v2=0:Againy=0;u=0;v=0istheonlysingularityoftheblown-upsurface.Theexceptional breofthisblowing-uphastwoirreduciblecomponents:y=0impliesuiv=0(wecallthiscomponentsE01andE002).Whatisthepreimage(underpreimagewemeanitsstricttransform)ofE0?x=0;z=0impliesu=0;v=0.Thefunctionf=xzgetsinthischarttheformf=y2uv.8 Thirdstep.Wehavethefollowingsituation:8surfacex2+y2z+z2=0functionf=xy2zexceptionaldivisorE0x=0;z=0exceptionaldivisorE1y=0;xiz=0:EEE110'''Letusconsiderthenextblowing-up.8x=yuy=yz=yv:Thestricttransformisy2u2+y2yv+y2v2=0;y6=0;oru2+yv+v2=0:ItisanequationofA1-singularity(anditmeansthatwearealmostdone).Theexceptional breconsistsagainoftwoirreduciblecomponentsE02;E002.Theylocalequationsarey=0;uiv=0.Thefunctionfisuy4v.ItiseasytoseethatthepreimageofE0isu=0;v=0.WhataboutthepreimageofE1?OursurfaceliesintheanechartA3em-beddedintoA3P2viathemap(y;u;v)7!((yu;y;yv);(u:1:v)).Butthentheconditiony=0wouldimplythatthepreimageofE1liesintheexceptionalplane((0;0;0)(u:1:v)).Butitcannotbetrue!ThesolutionofthisparadoxisthatthepreimageofofE1liesinanothercoordinatechart.Consider8x=xy=xuz=xv;9 Thestricttransformisx2+x2u2xv+x2v2=0;x6=0or1+xu2v+v2=0:Theequationsoftheexceptional breE2inthischartarex=0,whatimpliesv=i.ThepreimageofE1xiz=0y=0isgivenbyxixv=0xu=0;x6=0;hence8v=iu=0xarbitraryInthepictureitlookslike:E'E"E'E"122(u=0, v=-i, x=0)(u=0,v=i, x=0)1Itiseasytoseethatallintersectionsaretransversal.Fourthstep.Wehavethefollowingsituation:therearetwocoordinatecharts8surfacex2+yz+z2=0functionf=xy4zexceptionaldivisorE0x=0;z=0exceptionaldivisorE2y=0;xiz=0:8surface1+xy2z+z2=0functionf=x4y2zexceptionaldivisorE1y=0;z=iexceptionaldivisorE2x=0;z=i:10 E2'E2''E0E1'E1''Ournextstepistheblowing-upatthepoint(0;0;0)inthe rstcoordinatechart.Again,inordertogetequationsofthepreimagesofE0andE2wehavetoconsidertwocoordinatecharts.8x=yuy=yz=yw:Thestricttransformisacylinderu2+v+v2=0:ThepreimageofE0isgivenbyequationsu=0;v=0,theexceptional breE3isgivenbyu2+v+v2=0;y=0,ourfunctionf=uy6v.Inanotherchartwehave8x=xy=xuz=xv:Thestricttransformisgivenbyx2+x2uv+x2v2=0;x6=0or1+uv+v2=0:Theexceptional breE3isgivenby1+uv+v2=0;x=0,thepreimagesofE02andE002aregivenbyu=0;v=i,f=x6u4v.Henceourexceptional breEisgivenbythefollowingcon gurationofprojectivelines:11 E0E'2E'1E"1E"2E3Thedualgraphofthiscon gurationisFifthstep.Wehavetotakeintoaccountthreecoordinatechartsofaminimalresolution.~X:x2+z+z2=0f:xy4zE0:x=0;z=0E3:y=0;x2+yz+z2=08~X:1+yz+z2=0f:x6y4zE3:x=0;x2+yz+z2=0E2:y=0;z=i8~X:1+xy2z+z2=0f:x6y2zE1:y=0;z=iE2:x=0;z=i:Nowwehavetocomputethedivisor(f).LetXA3beanormalsurface,YXaclosedcurve,f2C(X)arationalfunction.SupposethatpC[X]istheprimeidealcorrespondingtoY.ThenC[X]pisadiscretevaluationringandmultY(f)=valC[X]p(f):1.Considerthe rstchart.Letf=xy6z=0.x=0impliesz=0orz=1.x=0,z=0isanequationofE0,x=0;z=1isthestricttransformCofthecurvex=0inV(x2+y3+z4)A3.WhatisthemultiplicityofE0?Thegeneratorofthemaximalidealofthering(C[x;y;z]=(x2+z+z2))pisxandx2z.ThereforemultE0(f)=3.y=0givesanequationofE3.ItiseasytoseethatmultE3(f)=6.NotethatthecurveChastransversalintersectionwithE3atthepointx=0;y=0;z=1.2.Considerthesecondchart.Inthischartholdsf=x6y4z=0:z=0isimpossible,x=0cutouttheequationofE3andy=0equationsofE02andE002.ThesamecomputationasaboveshowsthatmultE3(f)=6(whatisnotsurpriseandmakesussurethatwedidnotmakeamistakeincomputations)andmultE02(f)=multE002(f)=4.12 3.InthesamewayweobtainthatmultE01(f)=multE001(f)=2:Thereforeweobtain:(f)=6E3+4(E02+E002)+2(E01+E001)+3E0+C:WehaveC:E3=1,allotherintersectionnumbersofCwithirreduciblecomponentsofEarezero.Intersectionnumbersofirreduciblecomponentsarecodedinthedualgraph(whichisE6,seethepictureabove).Thewholejobwasdoneinordertocomputeself-intersections.(f):E0=6+3E20=0=)E20=2:Inthesamewayweconcludethattheothersel ntersectionnumbersare2.Remark5.1LetXbeanormalsurfacesingularity,:~X!Xitsminimalresolution,E=nSi=1Ei=1(0)theexceptionaldivisor.Supposethat~Xisagoodresolution,allEiP1andE2i=2.ThenXisasimplehypersurfacesingularity.Indeedweknowthattheintersectionmatrix(Ei:Ej)n=1isnegativelyde -nite.LetbethedualgraphofX.Thenthequadraticformgivenbyintersec-tionmatrixcoinsidewiththeTitsformofthedualgraph:Q(x1;x2;:::;xn)=2(nXi=1x2X1=i=naijxixj);whereaijisthenumberofarrowsconnectingverticesiandj.FromthetheoremofGabrielweknowthatQisnegativelyde nite(andquiverisrepresentation nite)ifandonlyif=ADE.Sinceoursingularityisrational,itistautanduniquelydeterminedbyitsdualgraph.62-dimensionalMcKaycorrespondenceRecallthatwede nedDuValsingularitiesasquotientsingularitiesC[[x;y]]G,whereGSU(2)issome nitesubgroup.Anaturalquestionis:arethereanyconnectionsbetweentherepresentationtheoryofGandgeometryoftheminimalresolutionofasingularity?Letusrecallsomestandartfactsaboutrepresentationsof nitegroups.Theorem6.1(Mashke)LetGbea nitegroup.ThenthecategoryofC[G]-modulesissemi-simple.ThistheoremmeansthatanyexactsequenceofC[G]-modulessplits.Inpartic-ular,every nite-dimensionalC[G]-moduleisinjectiveandprojective.Butan13 indecomposableprojectivemodulebyatheoremofKrull-Schmidtisisomorphictoadirectsummandoftheregularmodule.LetC[G]sMi=1niibeadirectsumdecompositionofC[G].Then1;2;:::;sthewholelistofindecomposableC[G]-modules.Lemma6.2LetC[G]=sLi=1niibeadecompositionoftheregularmoduleintoadirectsumofindecomposableones.ThenitholdsdimC(i)=ni:Inparticular,thefollowingidentityistrue:sXi=1n2=jGj:De nition6.3LetGbeagroup,(;V),:G!End(V)itsrepresentation.Thecharacterofarepresentationisthefunction:G!Cde nedbytherule(g)=Tr((g)).Remark6.41.Itiseasytoseethatthecharacterdoesnotdependonthechoiceofarepresentativefromtheisomorphismclassofarepresentation:Tr((g))=Tr(S1(g)S):2.Itholds:\n = ; =+ :Inotherwords,de nesaringshomomorphismfromtheGrothendieckringofC[G]toC.3.Itholds:(h1gh)=Tr((h1gh))=Tr((h)1(g)(h))=Tr((g))=(g):Itmeansthatisacentralfunction,i.e.afunctionwhichisisconstantonconjugacyclassesofG.Theorem6.5A nitedimensionalrepresentationofa nitegroupGisuniquelydeterminedbyitscharacter.14 Ideaoftheproof.Let'; betwocentralfunctionsonG.Seth'; i:=1jGjXg2G(g) (h):Itde nesanhermitianinnerproductonthespaceofallcentralfunctionsonG.Thetheoremfollowsfromthefactthat1;2;:::;sisanorthonormalbasisofthisvectorspace.Indeed,letbeany nite-dimensionalrepresentationofG.Thenweknowthatmii:Thenitobviouslyholdsmi=h;ii.Corollary6.6Thenumberofindecomposablerepresentationsofa nitegroupGisequaltothenumberofitsconjugacyclasses.De nition6.7(McKayquiver)LetGSU(2)bea nitesubgroup,0;1;:::;sallindecomposablerepresentationsofG.Let0bethetrivialrepresentation,natthenaturalrepresentation(i.e.therepresentationgivenbytheinclusionGSU(2)).De netheMcKaygraphofGasthefollowing:1.Verticesareindexedby1;:::;s(weskip0).2.Leti\nnat=sMj=0aijj:(or,thesameinat=sXi=0aijj:Thenweconnectverticesiandjbyaijvertices.Itiseasytoseethat0\nnat=nat.Remark6.8Itholdsaij=aji.Indeed,aij=hinat;ji=1jGjXg2Gi(g)nat(g)j(g)=Xg2Gi(g)nat(g)j(g1)(hereweusethatgn=1andhence(g)n=id.Fromthisfollows(g)diag("1;"2;:::;"k)and(g1)diag("11;"12;:::;"1k)=diag("1;"2;:::;"k):)Sincenatisthenaturalrepresentation,allnat(g)2SU(2);g2G:LetA2SU(2).IfAdiag(a;b)thenA1diag(b;a)(ab=1.)Thereforewehavenat(g)=nat(g1).Thenwecancontinueourequality:Xg2Gi(g)nat(g)j(g1)=Xg2Gi(g)nat(g1)j(g1)=hi;natji=aji:15 Example6.9LetG=D3beabinarydihedralgroup.Aswealreadyknow,jD3j=12.ThegroupD3hastwogeneratorsa;bwhichsatisfythefollowingrelations:8a3=b2b4=eaba=b1:ThegroupD3has41-dimensionalrepresentationsa=1;b=1;a=1;b=1;a=1;b=ianda=1;b=i.Thenaturalrepresentationisalsoknown:itisjusta="00"1;b=0110:where"=exp(i6)=12p32i:Thereisalsoanotheroneirreducible2-dimensionalrepresentation:a=cos23isin23isin23cos23;b=0110:WehavefoundallindecomposablerepresentationsofG:1+1+1+1+4+4=12=jD3j.Wecansumuptheobtainedinformationintothecharactertable.(a)(b)dim0111trivial111121i131i14102natural5102FromthistablewecanderivethewholestructureoftheGrothendieckringofjD3j.2canbeonly0+1+5:Inthesameway5nat=2+3+4.WegettheMcKaygraphofjD3j:1221521043ObservethatweobtainedthedualgraphoftheD5-singularity.NotethatthefundamentalcycleoftheD5-singularityisZfund=E1+2E4+2E5+E2+E3:ButthecoetientsofthisdecompositionarethesameasthedimensionsoftherepresentationscorrespondingtotheverticesoftheMcKayquiver.16 Theorem6.10(McKayobservation)LetGSU(2)bea nitesubgroup,C[[x;y]]Gthecorrespondinginvariantsubring.ThentheMcKayquiverofGcoinsidewiththedualgraphofC[[x;y]]G,dimensionsoftherepresentationcor-respondingtoavertexofMcKayquiverisequaltothemultiplicityofthecorre-spondingcomponentoftheexceptional breinthefundamentalcycle.17