/
InternationalJournalofMathematicsandComputerScience,(2012),no.2,101 InternationalJournalofMathematicsandComputerScience,(2012),no.2,101

InternationalJournalofMathematicsandComputerScience,(2012),no.2,101 - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
356 views
Uploaded On 2015-09-30

InternationalJournalofMathematicsandComputerScience,(2012),no.2,101 - PPT Presentation

SubsetsofPrimeNumbersBadihGhusayniDepartmentofMathematicsFacultyofScience1LebaneseUniversityHadathLebanonemailbadihfutureintechnetReceivedFebruary102012AcceptedOctober142012TheFundamentalT ID: 145659

SubsetsofPrimeNumbersBadihGhusayniDepartmentofMathematicsFacultyofScience-1LebaneseUniversityHadath Lebanonemail:badih@future-in-tech.net(ReceivedFebruary10 2012 AcceptedOctober14 2012)TheFundamentalT

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "InternationalJournalofMathematicsandComp..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

InternationalJournalofMathematicsandComputerScience,(2012),no.2,101…112 SubsetsofPrimeNumbersBadihGhusayniDepartmentofMathematicsFacultyofScience-1LebaneseUniversityHadath,Lebanonemail:badih@future-in-tech.net(ReceivedFebruary10,2012,AcceptedOctober14,2012)TheFundamentalTheoremofArithmeticshowstheimportanceofprimenumbers.Awell-knownresultisthatthesetofprimenumbersisin“nite(thesubsetofevenprimenumbersisobviously“nitewhilethatofoddprimenumbersisthereforein“nite).ThesubsetofRamanujanprimesisin“nite.Thesetoftripletprimenumbersis“nitewhileitisnotknownwhetherornotthesubsetoftwinprimenumbersisin“niteeventhoughitissoconjectured.Wegivemanyresultsinvolvingthedierenttypesofprimenumbers.1Introductionprimetripletisatripletoftheform(p,p+4)consistingofthreeprimes.Thesetofprimetripletsis“nite.Indeed,itisasingletonsetcon-tainingonly(3Toseethis,noticethat(37)isaprimetriplet.Toproveitistheonlyone,weusethecontradictionmethod.Supposetherewasaprimetriplet(P,P+4)withcanbewrittenas+1or3forsomeinteger,...However,isnotprime.+2isnotprimebeing3(+1) Keywordsandphrases:Primenumbers,RamanujanPrimes,BertrandPostulate,TwinPrimeConjecture,GoldbachConjecture,Dierentkindsofprimes,RiemannHypothesis.AMS(MOS)SubjectClassi“cations:11M06,11M38,11M50. SubsetsofPrimeNumbersNotethatBertrandPostulateisRecallthatifareprimenumbers,thenthispairissaidtobeaTwinPrimePair.ThesmallestsuchpairisTheTwinPrimeConjecturestatesthattherearein“nitelymanyTwinPrimePairs.Similarly,wede“neaTwinRamanujanPrimePair.Thesmallestsuchpairisaswecanseefromthebeginningofthissection.AswemightexpecttherearefewerTwinRamanujanPrimePairsthanTwinPrimepairs.Asamatteroffact,amongthe“rstprimenumbers,thereareTwinRamanujanPrimePairsandTwinPrimePairs.Notethat 1861 Thisobservationisimportantforthenextsection.3ResultsThefollowingconjecturewasstatedin[12]:thenthenumberofpairsofTwinRamanujanPrimesnotexceed-isgreaterthanonequarterofthenumberofpairsofTwinPrimesnotInparticular,iftherearein“nitelymanyTwinPrimes,thentherearealsoin“nitelymanyTwinRamanujanPrimes.Ontheotherhand,ifthereare“nitelymanyTwinRamanujanPrimes,thenthereare“nitelymanytwinprimes.Therefore,ifSondowConjectureisprovenandifitisprovenalsothatthereareonly“nitelymanyTwinRa-manujanPrimes,thenthatwouldsettlethefamousTwinPrimeConjecture.InalettertoLeonhardEulerin1742ChristianGoldbachstatedthathebelievesthat:G:Everyintegergreaterthan5isthesumofthreeprimes.Eulerreplied:E:ŽThateveryevennumber4isasumoftwoprimes,IconsideranentirelycertaintheoreminspiteofthatIamnotabletodemonstrateitŽ.Asamatteroffact,if(G)issatis“edand2then2+2=withprimesthatcannotallbeodd,forotherwisetheirsumwouldbeodd.Soatleastoneofthem,sayis2Then(E)obtains.Conversely,if(E)issatis“edand5,then26andweconsider SubsetsofPrimeNumbersThereforeforallwehaveven+k]+[(+2)Since2+2=wecannowchoosesuchthat+2)Inaddition,thefollowingtheoremprovidesanequivalentstatementtotheTwinPrimeconjecture:Theorem3.2.Foreachthereisatleastonesuchthat+2)+areprimenumbersifandonlyiftherearein“nitelymanypairsp,p+2)suchthatarebothprimenumbers.Proof.():Thisfollowssinceisin“niteandtherepresentation[(2++n+k]=2holdswithand(2+primenumbers(Noticethatdistinctvaluesyielddistinctvaluesof,forifthereissuchthatk,n+2)=(k,n+2)):LetUsingthehypothesis,wecanchoosesuchthatand(+2)+areprimenumbers.Remark3.3.Lookingatthestatementsontheleft-handsidesintheprevioustwotheorems,weobservetheunusualfeaturethatprovingoneoftheGoldbachortheTwinPrimeconjectureprovestheother.4Connectionbetweenvariouskindsofprimes)denotingthenumberofprimesdenotingthethprimenumber,letusstateandprovethefollowingresultsLemma4.1.)log xn Proof.():LetThenlim pn/n(pn Thenthereissuchthat 2pn n.n0pn2nn. SubsetsofPrimeNumbersRemark4.2.ThePrimeNumberTheoremstatesthat)log BytheabovelemmaitfollowsthatthePrimeNumberTheoremisequivalentn,nDe“nition4.3.(a)Asetinavectorspaceissaidtobeconvexifwhen-x,y(b)TheconvexhullconvexenvelopeofasetofpointssionsistheintersectionofallconvexsetscontainingTheorem4.4.[10]Let...beasequenceofnumberswith Thentherearein“nitelymanyforwhichforallpositivei.Proof.Clearlytheboundaryoftheconvexhullofthesetn,a,...ispolygonal.Theadditionalassumptionlim =0impliesthatthenonverticalportionofthispolygonalboundaryisconvexandhasin“nitelymanyvertices.Sinceeachoftheseverticesisoftheform(n,a)fortheresultfollows.Corollary4.5.Therearein“nitelymanyforwhichallpositivei.Proof.Clearly0...Inaddition,usingtheabovelemma,itfollowsthatlim Theorem4.6.Let...beasequenceofnumberswith Thentherearein“nitelymanyforwhichforallpositivei.Proof.Clearlytheboundaryoftheconvexhullofthesetn,a,...ispolygonal.Theadditionalassumptionlim =0impliesthatthenonhorizontalportionofthispolygonalboundaryisconcaveandhasin“nitelymanyvertices.Sinceeachoftheseverticesisoftheform(n,a)fortheresultfollows.Remark4.7.Since isnotnecessarilywecannothopetogetthattherearein“nitelymanyforwhichforallpositivefromtheabovetheorem.However,wecanprovethefollowing B.Ghusayni5LandauOpenProblemswithRemarksAtthe1912InternationalCongressofMathematicians,EdmundLandau[7]raisedthefollowingfourmajoropenquestions(conjectures)aboutprimenumberswhichwerecharacterizedinhisspeechatthattimeasŽunattackableatthepresentstateofscienceŽ:1.GoldbachConjecture.2.TwinPrimeConjecture.3.LegendreConjecture:Foreachnaturalnumberthereisalwaysaprimenumbersuchthat+1)4.Therearein“nitelymanyprimenumbersoftheformaninteger.Almostacenturylater,theseproblemshaveremainedde“ant.Indeed,aswementionedearlierthe“rstonehadbeenopensinceGoldbachraiseditin1742inalettertoEulerandthesecondoneisa2300-year-oldmysterynow.ThethirdoneresistedallattemptseventhoughitisinthesamespiritasBertrandPostulate(Theorem)andthefollowingtheoremduetoIngham[6]:Foreverylargeenoughnaturalnumberthereisaprimenumbersuch+1)Moreover,in[4]M.ElBachraouiraisedaquestionwhichwerephraseas:Isittruethatforallintegers1anda“xedintegerthereexistsaprimenumberintheinterval(kn,+1)Thecase=1isBertrandPostulate.ElBachraoui[4]gaveapositiveanswerforthecaseAndyLoo[5]gaveapositiveanswerforthecaseApositiveanswertotheproblemwouldimplyapositiveanswertoLegendreConjecture(bytakingFinally,concerningthefourthproblem,itcanbeobviouslybephrasedas:Therearein“nitelymanyprimenumbersoftheformisanaturalnumber.itisknownthattherearein“nitelymanyprimenumbersoftheformsisarealnumber.Ontheotherhand,in1978HendrikIwaniecshowedthattherearein“nitelymanyvaluesof+1thatareeitherprimesoraproductoftwoprimes.Finally,Ishowamethodwhichcouldleadtotheproofofproblem4Suppose,togetacontradiction,thattherewereonly“nitelymanyprimesofthatform: B.Ghusayni[9]PaulErd¨BeweiseinesSatzesvonTschebyschef,ActaLitt.Sci.Sze-(1932),194-198.[10]CarlPomerance,ThePrimeNumberGraph,Math.Computation,(1979),399-408.[11]SrinivasaRamanujan,AproofofBertrandPostulate,J.IndianMath.Soc.,(1919),181-182.[12]JonathanSondow,RamanujanPrimesandBertrandsPostulate,Math.Monthly,(2009),630-635.