/
Journal of Data Science    On the ThreeParameter Weibull Distribution Shape Parameter Journal of Data Science    On the ThreeParameter Weibull Distribution Shape Parameter

Journal of Data Science On the ThreeParameter Weibull Distribution Shape Parameter - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
490 views
Uploaded On 2015-01-15

Journal of Data Science On the ThreeParameter Weibull Distribution Shape Parameter - PPT Presentation

Gupta Amirkabir University of Technology Gonbad Kavous University and Bowling Green State University Abstract The Weibull distribution has received much interest in reliability theory The wellknown maximum likelihood estimators MLE of this fam ily ID: 31950

Gupta Amirkabir University

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Journal of Data Science On the ThreeP..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

404MahdiTeimouriandArjunK.Gupta respectively,forx�, �0, �0.Theparameters, , andareknownastheshape,scaleandlocationparameters,respectively.Thehazardratefunctioncorrespondingto(1.1)and(1.2)isH(x)= x�  �1;(1.3)forx�.So,theWeibulldistributioncanallowfordecreasing,constantandincreasinghazardrates.ThisisoneoftheattractivepropertiesthatmadetheWeibulldistributionsoapplicable.Thenon-centralmomentscorrespondingto(1.1)and(1.2)aregivenbyE(Xr)=rXi=0rii r�i�1+r�i ;(1.4)wherer�i� and�()denotesthegammafunction.Manyestimationmethodshavebeenproposedforestimatingtheparame-tersoftheWeibulldistribution.Wemention:maximumlikelihoodestimation(SirvanciandYang,1984),momentsestimation(Cohenetal.,1984;Cran,1988),Bayesianestimation(Tsionas,2000),quantileestimation(WangandKeats,1995),logarithmicmomentestimation(Johnsonetal.,1994)andtheprobabilityweightedmomentestimation(Bartoluccietal.,1999).Themostpopularandthemostef- cientoftheseisthemaximumlikelihoodestimation.2.MainResultsAmongmentionedinferencemethods,asthemostecientonewhichreceivedalotofattentionintheliterature,MLEofWeibullfamilyisderivedbysolvingthenon-linearsetofthreeequationsgivenasfollows:n +nXi=1logxi� �nXi=1xi�  logxi� =0;(2.1)�n + nXi=1xi�  =0;(2.2)�( �1)nXi=11 xi�+ nXi=1xi�  �1=0:(2.3)Theseequationsdonotyieldclosedformsolutionsforparameters.Theorem2.1isusefulforconstructingasimple,consistentandclosedformestimatorfor .Thisestimatorisindependentof . 406MahdiTeimouriandArjunK.Gupta Now,divideandsimultaneouslymultiplyby,respectively,Xandq 12(n�1) n+1thebothsidesof(2.8)toseetheresult.2Corollary2.1.Supposex1;x2;;xnisarandomsamplefrom(1.1)withknownlocationparameter.Letdenotethesamplecorrelationbetweenthexiandtheirranks.LetCVandS,respectively,denotethesamplecoecientofvariationandsamplestandarddeviation.Thenanestimatorfortheshapeparameter, is:^ =�ln2 lnh1� p 3�1 CV� S�1q n+1 n�1i:(2.9)FromJohnsonetal.(1994,p.656),insomecertaincases,itiswellknownthatX(1)=minfX1;X2;;XngisMLEfor.Generally,thisstatisticisaconsistentestimatoroflocationparameter(seeKunduandRaqab,2009).AbetterestimateisX(1)�1=n(seeSirvanciandYang,1984,p.74).Wetakethelatterstatisticasanestimatoroftheunknownparameter,i.e.,welet^=X(1)�1=n.Itcanbeusedforconstructinganewand -independentestimatorofshapeparameter, asfollows.Corollary2.2.Supposex1;x2;;xnisarandomsamplefrom(1.1)withunknownlocationparameter.Letdenotethesamplecorrelationbetweenthexiandtheirranks.LetCV,SandX(1),respectively,denotethesamplecoecientofvariation,samplestandarddeviationandminimumstatistic.Thenanewestimatorfortheshapeparameter, is:^ =�ln2 ln1� p 31 CV�X(1)�1=n S�1q n+1 n�1:(2.10)3.PerformanceAnalysisHereweanalyzetheperformanceofthenewestimatorgivenin(2.10).Forthesakeofsimplicity,letustoconsidertwocases:1�isknownand2�isunknown.Case1:Inthiscase,aftersubtractingfromallthepointsofdataset,theproblemisreducedtoestimatingtheshapeparameteroftwo-parameterWeibulldistribution.Nowthenewestimator(2.9)dependsonlyontheCVstatisticandis:^ =�ln2 lnh1� p 3CVq n+1 n�1i:(3.1) 408MahdiTeimouriandArjunK.Gupta where^ idenotesthevalueofeithernewestimatororMLEinithiteration.First,notethathereafterweconsiderthatisunknownandwecall(2.10)asnewestimator.Toestablishacomprehensivesimulation-basedstudyformeasuringthee-ciencyofnewestimatorcomparisonwiththeMLE,MREiscomputedforsamplesizesof100,500,1000and2000whenisseton5.LargervaluesoftheMREcorrespondtolessecientestimator.Figure1displaystheMREsforasampleofsizen=100,500,1000and2000forsomelevelsof =0.5,5and=0.TheMREsforasampleofsizen=100,500,1000and2000forsomelevelsof =0.5,5and=10areshowninFigure2.Itshouldbenotedthat,here,wesetthenumberofiterationsk,at100.ThefollowingobservationscanbemadefromFigures1and2:1.inallcasesthedi erencebetweenMREoftheNewestimatorandtheMLEisnotsigni cant.2.becausetheNewestimatorisscaleinvariant,totally,di erencebetweenMREsoftheNewestimatorandMLEisnotsubjecttothescaleparameter.3.ineachrowofFigures,when increasesfrom0.5to5,MREshavenosigni cantchanges,totally.4.ineachcolumnofFigures,whennincreasesfrom100to2000,MREsde-creasewithincreasingn,totally.5.whenincreasesfrom0to10,comparingFigures1and2,itturnsoutthatdegreeofdependenceofMREsoftwoestimatorsonisnegligible.FurtherdiscussionsshowthatbothnewestimatorandMLEbehavesthesamewhenbiasisconsideredascriterion.Themodeoftwoestimatorsoccuratorigin.AlthoughtheMLEhashigherpeakthanthenewestimatorinorigin,butsimula-tionsshowthatthesamplerangeofbiasoftheNewestimatorandtheMLEareapproximatelyequal.Also,normalityoftheNewestimatorisveri edevenformsmallsamplesize(heren=100).ThebiasfrequencyhistogramaredepictedinFigure3forsomeselectedlevelsof and whenlocationparameter,isseton10.Thehistogramisconstructedfrom500points,withaccounttakenofthefactthateachpointisobtainedviatheMLEornewestimatoronthebasisofasampleofsize100generatedfrom(1.1).3.2.ExamplesInthissubsection,weprovidetwodatasetstoshowhowmuchthenewestimatorworkswell.Forthismean,weaddressthereaderstodatasetsisassumedtobedistributedwithWeibulllaw(seeMurthyetal.,2004,pp.83,100).ThedatasetsaregiveninTables1and2asfollows.Theresultsfor tting 410MahdiTeimouriandArjunK.Gupta Figure2:MREoftheNewestimatorandMLEforsomelevelsof and when=10 OnTheThreeParameterWeibullDistribution411 (MLE)(Newestimator) ( =1, =1)( =1, =1)(MLE)(Newestimator) ( =5, =5)( =5, =5)Figure3:BiasfrequencyoftheNewestimatorandtheMLE forsomelevelsof and thethree-parameterWeibulldistributiontothedatasetsofTables1and2aregiven,respectively,inTables3and4.Itshouldbenotedthat,afterestimating ,^ isestimatedthroughaclosedformexpressionderivedby(2.2).AlsoX(1)�1=nisconsideredhereasanestimatorfor.Table1:Dataset1,failuretimesof24mechanicalcomponents 30.9418.5116.6251.5622.8522.3819.0849.5617.1210.6725.4310.2427.4714.7014.1029.9327.9836.0219.4014.9722.5712.2618.1418.84 Table2:Dataset2,lifetimesof20electroniccomponents 0.030.120.220.350.730.791.251.411.521.791.801.942.382.402.872.993.143.174.725.09 412MahdiTeimouriandArjunK.Gupta Table3:Estimatedparametersfordataset1 MethodEstimatedparametersADdistance MLE =1.171 =13.550=10.1000.301 Newestimator =1.130 =13.294=10.1980.378 Table4:Estimatedparametersfordataset2 MethodEstimatedparametersADdistance MLE =1:217 =2:057=�0:0080.432 Newestimator =1:227 =2:072=�0:0200.408 TheAnderson-Darlingstatistic(AD)isgiveninlastcolumnofeachtable.Inthesenseofthismeasure,theMLEworksbetterthanthenewestimatorfordataset1,whilethereverseisconcludedfordataset2fromTable4.4.ConclusionInthisworkanewestimatorforshapeparameter,asthemainparameter,ofthethree-parameterWeibullfamilyisproposed.Havingpropertiessuchas:closedformexpression,simplicity,asymptoticallyunbiasedness,highdegreeofperformanceandindependenceofscaleandlocationparametersmadeitasagoodcompetitorformaximumlikelihoodestimatoroftheshapeparameterwhichiscomputednumerically.Simulationsshowthatthenewestimatorworkscom-parablewiththemaximumlikelihoodestimator,inthesenseof(3.4),evenforsmallsamplesize.Tworealexamplesalsoverifythatthenewestimatorperformsverygood.ReferencesBartolucci,A.A.,Singh,K.P.,Bartolucci,A.D.andBae,S.(1999).Applyingmedicalsurvivaldatatoestimatethethree-parameterWeibulldistributionbythemethodofprobability-weightedmoments.MathematicsandCom-putersinSimulation48,385-392.Cohen,A.C.,Whitten,B.J.andDing,Y.(1984).Modi edmomentestimationforthethreeparameterWeibulldistribution.JournalofQualityTechnology16,159-167.Cramer,H.(1964).MathematicalMethodsofStatistics.PrincetonUniversityPress,Princeton. 414MahdiTeimouriandArjunK.Gupta MahdiTeimouri1-DepartmentofStatisticsFacultyofMathematics&ComputerScienceAmirkabirUniversityofTechnology424,HafezAve.,Tehran15914,Iranteimouri@aut.ac.ir2-DepartmentofStatisticsFacultyofScienceGonbadKavousUniversityShahidFallahi,163,GonbadKavous,Iranmahdiba 2001@yahoo.comArjunK.GuptaDepartmentofMathematics&StatisticsBowlingGreenStateUniversityBowlingGreen,OH43403-0221,USAgupta@bgsu.edu