/
SolutionoftheInverseProblemofLinearOptimalControlwithPositivenessCondi SolutionoftheInverseProblemofLinearOptimalControlwithPositivenessCondi

SolutionoftheInverseProblemofLinearOptimalControlwithPositivenessCondi - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
360 views
Uploaded On 2015-09-28

SolutionoftheInverseProblemofLinearOptimalControlwithPositivenessCondi - PPT Presentation

Settingt1t0t2tfPtfFitisseenthatJxTt0Pt0xt0sincethe naltermisnonnegativeNotealsothatonsettingt2tfanduDxitfollowsthatifQCandF0thenPt10forallt1tfbecausetheleftsideisnonnegativeAlsomul ID: 143185

Settingt1t0 t2tf P(tf)=F itisseenthatJxT(t0)P(t0)x(t0);sincethe naltermisnon-negative.Notealsothatonsettingt2tfanduDxitfollowsthatifQCandF0 thenP(t1)0forallt1tfbecausetheleftsideisnon-negative.Alsomul

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "SolutionoftheInverseProblemofLinearOptim..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

SolutionoftheInverseProblemofLinearOptimalControlwithPositivenessConditionsandRelationtoSensitivityAntonyJamesonandElizerKreindlerJune19711FormulationLet_xAxBu;(1.1)wherethedimensionsofxanduaremandn,andletuDx;(1.2)beagivencontrol.Itisdesiredto ndaperformanceindexJtft0(xTQxuTRu)dtxT(tf)Fx(tf);(1.3)withRRT0,QQT0,whichisminimizedbyu.ThesolutionofthisproblemwithoutpositivenessconditionsonQisgivenin([?]).Ifaperformanceindex(1.3)existswhichisminimizedby(1.2),thenRDBTP;(1.4)wherePisasymmetricmatrixsatisfying_PATPPADTRDQ;P(tf)=F:(1.5)If(1.5)ismultipliedontheleftbyxTandontherightbyx,thensubstitutingfrom(1.1)and(1.4)xTQxuTRuddt(xTPx)+(uDx)TR(uDx)Integratingfromt1tot2t2t1(xTQxuTRu)dtxT(t2)P(t2)x(t2)=xT(t1)P(t1)x(t1)+t2t1((uDx)TR(uDx))dt:(1.6)1 Settingt1t0,t2tf,P(tf)=F,itisseenthatJxT(t0)P(t0)x(t0);sincethe naltermisnon-negative.Notealsothatonsettingt2tfanduDxitfollowsthatifQCandF0,thenP(t1)0forallt1tfbecausetheleftsideisnon-negative.Alsomultiplying(1.4)ontherightbyB,thesymmetryofPisseentoimplythesymmetryofRDB.TheconditionfortheexistenceofRRT0andPPT0satisfying(1.4)aregivenin([?]).Theyare:A1:DBhasnindependentrealeigen-vectors.A2:Theeigen-valuesofDBarenon-positive.A3:rDBrD,whererDdenotestherankofD,etc.ForP&#x-410;&#x.126;0A3isreplacedbyA3*:rDBrDrB.IfRRT0isgiven,thentheconditionsforasolutionP0to(1.4)areB1:RDBissymmetric.B2:RDB0.B3:rRDBrRD.ForP&#x-410;&#x.126;0B3isreplacedbyB3*:rRDBrRDrBHereB3andB3*aresimplyrestatementsofA3andA3*,butB3andB3*wouldstillbeneededforacasewhereRisonlynon-negative.2TheSensitivityInequalityThepropertythatthefeedbackcontrolminimizessomeperformanceindex(1.3)withQ0isofconsiderableinterestbecauseofitsconnectionwiththeabilityofthecontroltoreducethesensitivityofthesystemfoparametervariations.Letxcbethetrajectorydeviationresultingfromplantvariations,AandB,whenthefeedbackcontrol(1.2)isused,andletxobethedeviationwhen(1.2)isreplacedbyanopenloopcontrolwhichwouldgivethesametrajectoryintheabsenceofparameterdeviations.AlsoletAA;BB;andde nex=lim!0.UsingtheequivalenceofcontrolswhenAB0wehave_xc=(ABD)xc+(ABD)x;(2.1)_x0Axo+(ABD)x:(2.2)2 Whencexcxo(2.3)where_ABDxc(2.4)Thentt0xTcDTRDxcdttt0xT0DTRDxodttt0TYdt;(2.5)foralltifthefollowingconditionissatis edC:ThesensitivityinequalitySy(t)=tt0(uDx)TR(uDx)uTRu dttt0xTYxdt0(2.6)holds,wherexisthesolutionof(1.1)withx(t0)=0underanarbitraryinputu.ThisfollowsonsettinguDxcandinterpretingxas.Nowsettingt1t0,x(t0)=0,andt2tin(1.6)itisseenthatCholdswithYQwhenthecontrol(1.2)minimizestheperformanceindex(1.3),providedthatP(t)0.ThisisinturnensuredifQ0andF0.Thenon-negativenessofQandFthusguaranteesareductioninsensitivitytoparametervariationsinthesenseof2.5.3SolutionoftheInverseProblemwithQItwasremarkedinSection1thatQ0impliesP0.IfRisnotspeci ed,conditionsA1,A2,andA3arenecessaryforasolutionoftheinverseproblem.AlsoA1,A2,andA3*arenecessaryandsucientforP�0,anditwillnowbeshownthattheexistenceofasolutionP�0to(1.4)issucientforasolutionwithQ0.WethushaveTheorem3.1ConditionsA1,A2andA3arenecessaryforasolutionoftheinverseproblemwithQ0.ConditionsA1,,A2andA3*arealsosucient.ProofNecessityhasalreadybeenestablished.Toprovesuciencyobservethatfrom(1.1)ddt(xe t)=(A I)xe tBue t:(3.1)Thusthecontrol(1.2)minimizesthepreformanceindexJtft0e2 t(xTQoxuTRou)dte2 txT(tf)Fox(tf):(3.2)3 If(1.4)holdstogetherwith_P=(A I)TPP(A I)DTRoDQo;P(tf)=Fo:(3.3)UnderconditionsA1,A2andA3*itispossibletoconstructRRT0andPPT0satisfying(1.4).ThenQomaybeconstructedasQoQ1+2 P;(3.4)whereQ1DTRoDATPPA_P:(3.5)SinceP�0andQ1isa xedfunctionoft,itisalwayspossibletochoose �0sucientlylargethatQo0.Alsocomparisonof(3.3)and(3.4)with(3.3)showsthatthecontrol(1.2)minimizes(3.2)andhence(1.3)onsettingQQoe2 t,RRoe2 t,FFoe2 t.Corollary3.2Ifthecontrol(1.2)satis esconditionsA1,A2andA3*thenitsatis esthecriterion(2.5)forsensitivityreductionforsomeY0.ProofObeservethattheprocedureofTheorem(3.1)givesajointsolutionforQandR,butcannotbeusedtoconstructQ0whenRisgiven.Inparticular,ifthesystemsiconstantitleadstoaperformancewithanexponentialtimeweightingfactore2 t, �0,andestablishesthesensitivitycriterion(2.5)withasimilarfactor.4SolutionoftheInverseProblemwithQ0forgivenWenowconsidermethodsofsolvingforQwhenRisagivenmatrixsatisfyingconditionsB1,B2andB3.To ndqdditionalrequirementsonRforQ0multiply(1.5)ontheleftbyBT.Thenusing(1.4)BT_PBTATPRDABTDTRDBTQ:Butdi erentiating(1.4)BT_P_BTPddt(RD):ThusBTQL;(4.1)whereLBTDTRDRDA(BTAT_BT)Pddt(RD):(4.2)Alsomultiplying(4.2)ontherightbyBandagainusing(1.4)BTQBM;(4.3)4 whereMBTDTRDBRDABBTATDTRddt(RDB)RD_B_BTDTR:(4.4)SinceMdependsonlyonthesystemmatricesandR,andBTQB0ifQ0,thenecessaryconditionforQ0is:B4:M0whereMisde nedin(4.4)InordertoconstructQ0weshallassumethestrongercondition:B4*M�0Aslongas(1.4)holdsBTLTM:(4.5)Thusif(4.1)isregardedasanequationforQithasasymmetricsolutionQoLTM1L:MoreoverifQisanyothersolutionthenBT(QQo)=0:ThusthegeneralsymmetricsolutionforQisQLTM1LY;(4.6)whereYisanysymmetricmatrixsuchthatBTY=0:(4.7)ConditionB4*ensuresthatQ0ifY0.Alsoletx=(IBM1L)z;wherezisanarbitraryvector.ThenxTQxzTYz:ThusY0isalsonecessaryforQ0.Considerthedi erentialequationthatisobtainedwhen(4.6)issubstitutedforQin(1.5):_PATPPADTRDLTM1LY:(4.8)SinceMisgivenandLislinearinP,thisisaRicattiequationwhichcanbeintegratedtodeterminePandhenceL.Weshallverifythat(4.8)hassolutionsthatsatisfy(1.4).De neKbyKBTPRD(4.9)5 sothatK=0if(1.4)holds.Thenwhen(1.4)isnolongerassumedtohold(4.2)and(4.4)yieldBTLTMK(AB_B)(4.10)insteadof(4.5).Alsousing(4.8)_KBT_P_BTPddt(RD)BTATPBTPABTDTRDBTLTM1LBTY_BTPddt(RD);whenceinviewof(4.2),(4.7)and(4.10)_KLKAhMK(AB_B)iM1L(4.11)KhA(AB_B)M1Li:UnderconditionsB1,B2andB3itispossibletochooseP(tf)0satisfying(1.4).ThenK(tf)=0andthesolutionof(4.11)whenintegratedbackwardsisK=0.Thecorrespondingsolutionof(4.8)thereforesatis es(1.4).Theorem4.1GivenRRT0,conditionsB1-B4arenecessaryforasolu-tionoftheinverseproblemwithQ0.ConditionsB1-B3aresucientforasolutionoversome nitetimeinterval.EverysolutionwithQ0isthengivenbythesolutionof(4.2)and(4.8)forsomeY0satisfying(4.7).Ifequation(4.11)isunstablewhenintegratedbackwardsthentheintegra-tionof(4.8)wouldtendtodriftawayfromsatisfying(1.4).ToovercomethisdicultywemayintroduceinsteadofLandMthematricesL1BTDTRDRDA1BTP(A1A)(BTAT_BT)Pddt(RD);(4.12)andM1BTL1(4.13)whereA1isamatrixtobeselected.ThenL1LK(A1A);andfrom(4.10)M1BTLTBT(AT1AT)KTMK(AB_B)(BTATBTAT1)KT:ThusL1LandM1MwhenK=0.Wenowintegrate_PATPPADTRDL1M11L1Y(4.14)6 Thenfrom(4.7)and(4.13)_KBTATPBTPABTDTRDL1_BTPddt(RD)whence(4.12)yields_KKA1ThusifA1ischosenasanystablematrix,backwardintegrationof(4.14)willpreserveK=0withoutdangerofdrift.ButthenL1LandM1M,sothatalongtheintegrationpathM1MT1andunderconditionB4*,M10.WhileconditionsB1-B3andB4*establishtheexistenceofQ0oversome nitetimeinterval,andeveryQcanthenbeconstructedfromequation(4.6)or(4.14),theseconditionsdonotestablishtheexistenceofQ0overanarbitrarilylargetimeinterval,becauseequation(4.8)or(4.14)whichfollowsthesameintegrationpath,mayhavea niteescapetime.Inparticular,conditionsB1-B3andB4*arenotsucientfortheexistenceofasolutionwithconstantQ0andR�0,whenA,BandDareconstant.Thisiseasilyseenfromanexample.Considerthesystem_x0110x10u;withu212x;whereisisdesiredto ndaperformanceindexJ10(xTQxu2)dt;whichisminimizedbyu.RDBandMarescalars,RDB2;andM=(BTDT)2+2DAB=5:SoconditionsB1-B3andB4*allhold.Ontheotherhand(1.4)maybesolvedforPtogiveP21212P22;whereP22istheonlyundeterminedelementinP.ThensubstitutingforPin(1.5)with_P=0givesQDDATPPA51P221P2234;sothatitisnotpossibletoobtainQ0bychoiceofP22whenPisconstant.7 Thisexampleindicatestheneedtoexaminetheconditionsunderwhich(4.8)or(4.14)canbeintegratedoveranarbitraryinterval.Since(4.14)followsthesamepathas(4.8)whenintegratedfroma nalvalueofPwhichsatis es(1.4),itsucestoconsider(4.8).Substitutingfrom(4.2),itmaybewrittenas_P1ATP1P1ADTRDYDT1MD1;(4.15)whereP1P;(4.16)andD1M1(BTATP1_BTDTRDRDAddt(RD)_BTP1)(4.17)Let_x1Ax1ABu1_Bu1:(4.18)Thenequations(4.15)and(4.17)areequationsfordeterminingthecontrolu1D1x1;(4.19)whichminimizesJ1tft1xT1(DTRDY)x1(4.20)+2uT1(BTDTRDRDAddt(RD))x1uT1Mu1dtxT1(tf)P1(tf)x1(tf):SubstitutingforMfrom(4.4)andusing(4.7),(4.20)becomesJ1tft1(x1Bu1)T(DTRDY)(x1Bu1)dt(4.21)+2tft1uT1(RDAddt(RD))(x1Bu1)dttft1uT1ddt(RDB)u1dtxT1(tf)P1(tf)x1(tf):Setxx1Bu1:(4.22)Thenxsatis es(1.1)where_u1u,oru1tft1udt;(4.23)therebeingnoconstantif(4.18)and(1.1)arebothtobeinequilibriumwitzerocontrol.8 Thesecondandthirdtermsin(4.21)become2tft1uT1(RDAddt(RD))(x)dttft1uT1ddt(RDB)u1dttft12uT1RD_x+2uT1ddt(RD)x2uT1RDB_u1uT1ddt(RDB)u1dt2uT1RDxuT1RDBu1tft12tft1uRDxdt:Alsousing(1.4)and(4.16)xT1P1x1+2uT1RDx1uT1RDBu1xTP1xxTPx:Thus(4.21)becomesJ1SyxT(tf)P(tf)x(tf)+I(t1);(4.24)whereSyisde nedby(2.6)andI2u1RDx1u1RDBu1:(4.25)Now(4.23)showsthatanon-zerovalueofu1attt1correspondstoanimpulseattt1inuuu1(t1)(tt1):Butundersuchanimpulsexisshiftedfromx0tox+0x0Bu1(t1)withacontributiontoSyexactlyequaltoI(t1),sincex1iscontinuoussothatx1(t1)=x0.Thusthe rstandthirdtermsinJ1equalSyevaluatedfromt1incaseofaninitialimpulseinu.ItfollowsthatxT(t1)P(t1)x(t1)istheminimumvalueofSywhenx(t1)=x0.Supposethatthisquantityisnotbounded.Thensincethesystemiscontrollable,itcanbebroughtfromx(t0)=0tox(t1)=x0witha nitecontributiontoSy,andhenceovertheinterval(to;tf)conditionCwouldbeviolated.WededucethatconditionCissucientfortheexistenceofasolutionto(4.8).9

Related Contents


Next Show more