PDF-Theconceptoflongestcommonpre xescanbegeneralizedforsets:De nition1.7:F

Author : phoebe-click | Published Date : 2015-08-25

Theorem110ThenumberofnodesintrieRisexactlyjjRjjLR1wherejjRjjisthetotallengthofthestringsinRProofConsidertheconstructionoftrieRbyinsertingthestringsonebyoneinthelexicographicalorderInitia

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Theconceptoflongestcommonpre xescanbegen..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Theconceptoflongestcommonpre xescanbegeneralizedforsets:De nition1.7:F: Transcript


Theorem110ThenumberofnodesintrieRisexactlyjjRjjLR1wherejjRjjisthetotallengthofthestringsinRProofConsidertheconstructionoftrieRbyinsertingthestringsonebyoneinthelexicographicalorderInitia. &EEEEEEEEEEEEEEEEFGFF GG// &EEEEEEEEEEEEEEEEFGFG FGProof.Fromthede nitionoftheadjunction,wehavetheisomorphism:(3)'='c;d:D(Fc;d)'C(c;Gd):Ifweplug1Gd:Gd!Gdintotheright-handsideof(3),andrecallth Denition1.ThesizeofanELconceptDisdenedasfollows:–forD2sig(T),s(D)=1;–forD=9r:C,s(D)=s(C)+1wherer2sigR(T)andCisanarbitraryconcept;–forD=C1uC2,s(D)=s(C1)+s(C2)whereC1;C2arearbitraryconc jVjPv2Vd(v)istheaveragedegreeoftheverticesinthegraphG[7]Denition1.4AfangraphisobtainedbyjoiningallverticesofapathPntoafurthervertex,calledthecenter.ThusFncontainsn+1verticessayc;v1;v2;v3;:::;vnand2n For,wehavetondabasisforthatis,Sowehave402whichtellus.Therefore,.Hence,isthebasisofeigenspaceFor,wehavetondabasisforthatis,Sowehave whichtellus.Therefore,.Hence,isthebasisofeigenspace3.Tondanorthonorma whichwillalsoserveasmotivationforDenition1.2below.Itmustbenotedthatthisisverydifferentfromtheexpectedmaximumexpansionforthecompletespace,asthatwillbe"$#\n !%'&() +*&(, - %)*, ./*whichis Figure1:ThegraphD2(P2)anditsoddharmoniouslabelingCase(ii)nisodd,n3f(v1)=0,f(v2)=1,f(v2i+1)=8i;1in1 2f(v2i+2)=8i+1;1in3 2f(v01)=4,f(v02)=3,f(v02i+1)=12+8(i1);1in1 2f(v02i+2)=11+8(i1);1in FixanintervalIintherealline(e.g.,Imightbe(17;19))andletx0beapointinI,i.e.,x02I:Nextconsiderafunction,whosedomainisI,f:I!Randwhosederivativesf(n):I!RexistontheintervalIforn=1;2;3;:::;N.De nition1.TheN Denition1(DisagreementCoefcient) LetHbeahypothesisclass,DbeadistributionoverXf0;1g,andDxbethemarginaldistributionoverX.Leth?beaminimizeroferrD(h).Thedisagreementcoefcientisdef=supr2(0;1)(B(h?;r) Figure1.Thein nitealternatingweaveDe nition1.2.AsequenceoflinksKnwithc(Kn)!1isgeometricallymaximaliflimn!1vol(Kn) c(Kn)=v8:Similarly,asequenceofknotsorlinksKnwithc(Kn)!1isdiagrammaticallymaximaliflimn De nition1(RealizableGraphs,Edges,andSubgraphs).AgraphGisrealizablei thereexistsasequenceofassignmentsa1;:::;aNsuchthatG0a1!G1!aN!GNGwhereG0:(X;;)istheinitialgraphofthepoints-to-analysisproblem Denition1(OrthogonalVectors)Twovectorsu,varesaidtobeorthogonalprovidedtheirdotproductiszero:uv=0: Ifbothvectorsarenonzero(notrequiredinthedenition),thentheanglebetweenthetwovectorsisdeterminedbyco @t=X()(0;x)=x:De nition1.3.IfVisavarifoldinUandX2C1c(U;RN),thenthe rstvariationofValongXisde nedbyV(X)=d dt t=0M((t)]V);(1.1)wheretistheone-parameterfamilygeneratedbyX.Vhasboundedgeneralizedme 1Bilu{LinialStabilityKonstantinMakarychevkomakary@microsoft.comMicrosoftResearchRedmond,WA,USAYuryMakarychevyury@ttic.eduToyotaTechnologicalInstituteatChicagoChicago,IL,USAThischapterdescribesrecentre 1BiluLinialStabilityKonstantinMakarychevkomakarymicrosoftcomMicrosoftResearchRedmondWAUSAYuryMakarychevyurytticeduToyotaTechnologicalInstituteatChicagoChicagoILUSAThischapterdescribesrecentresultsonBi

Download Document

Here is the link to download the presentation.
"Theconceptoflongestcommonpre xescanbegeneralizedforsets:De nition1.7:F"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents