/
DraftgenomesequenceoftheAntarcticgreenspUWO241 DraftgenomesequenceoftheAntarcticgreenspUWO241

DraftgenomesequenceoftheAntarcticgreenspUWO241 - PDF document

rose
rose . @rose
Follow
343 views
Uploaded On 2022-09-06

DraftgenomesequenceoftheAntarcticgreenspUWO241 - PPT Presentation

iScience XiZhangMarinaCvetkovskaRachaelMorganKissNormanPAnerDavidRoySmithnhuneruwocaNPAHdsmit242uwocaDRS HIGHLIGHTS ChlamydomonasUWO241isagreenalgaoriginatingfromLakeBonneyAntar ID: 950231

february19 2017 openaccess 2020 2017 february19 2020 openaccess 2012 kiss 102084 iscienc 2021 ice 2008 biol 2014 owska 2018

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "DraftgenomesequenceoftheAntarcticgreensp..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

iScience DraftgenomesequenceoftheAntarcticgreensp.UWO241 XiZhang,MarinaCvetkovska,RachaelMorgan-Kiss,NormanP.A.ner,DavidRoySmithnhuner@uwo.ca(N.P.A.H.)dsmit242@uwo.ca(D.R.S.) HIGHLIGHTS ChlamydomonasUWO241isagreenalgaoriginatingfromLakeBonney,AntarcticaWepresentadraftnucleargenomesequenceofUWO241(212Mb).TheUWOgenome OPENACCESS iScience ArticleDraftgenomesequenceoftheAntarcticgreenalgasp.UWO241XiZhang,MarinaCvetkovska,RachaelMorgan-Kiss,NormanP.A.HuandDavidRoySmithAntarcticaishometoanassortmentofpsychrophilicalgae,whichhaveevolvedvarioussurvivalstrategiesforcopingwiththeirfrigidenvironments.Here,weexploreAntarcticpsychrophilybyexaminingthe212MbdraftnucleargenomeofthegreenalgaChlamydomonassp.UWO241,whichresideswithinthewatercolumnofaperenniallyice-covered,hypersalinelake.LikecertainotherAntarcticalgae,UWO241encodesalargenumber(37)ofice-bindingproteins,putativelyoriginatingfromhorizontalgenetransfer.Evenmorestrik-ing,UWO241harborshundredsofhighlysimilarduplicatedgenesinvolvedin DepartmentofBiology,University

ofWesternOntario,London,ONN6A5B7,CanadaDepartmentofBiology,UniversityofOttawa,Ottawa,ONK1N6N5,CanadaDepartmentofMicrobiology,MiamiUniversity,Oxford,OH45056,Leadcontact*Correspondence:nhuner@uwo.cadsmit242@uwo.cahttps://doi.org/10.1016/j.isci. ,102084,February19,20212021TheAuthor(s). OPENACCESS RESULTSANDDISCUSSIONDraftnucleargenomesequenceofanalgafromanAntarcticlakeThehaploidnucleargenomeofUWO241wasassembleddenovousingacombinationoflong-readPacBio16.5Gb)andshort-readIllumina(40Gb)data,resultingin2,458scaffolds(N50=375.9kb)withanaccu-mulativelengthof211.6Mb(%GC=60.6)(Figures1Dand).Thislengthisconsistentwithowcytometry-merspectralanalysisofUWO241,whichpredictedanoverallgenomesizeof230Mb(FigureS1).Intotal,16,325protein-codinggeneswereannotated(allsupportedbytranscriptomicdata),capturingoftheChlorophyteBenchmarkingUniversalSingle-CopyOrthologsdatasets(FigureS1),indicatingahighlevelofgeneregioncompleteness.TheUWO241genomeisrichinfunctionalRNAs(630tRNAsand480rRNAs)aswellasnoncodingDNA(87%),havingthehighestaver

ageintrondensityyetobservedfromagreenalga(10introns/gene;avg.intronlength0.9kb).Theintergenicregionsaboundwithrepeats,ac-countingfor104Mb(49%)ofthetotalassemblylength,70Mbofwhicharerepresentedbytranspos-ableelements(TEs)(discussedbelow).Thepastdecadehasbroughtdraftnucleargenomesfor�25differentgreenalgalspecies,withespeciallystrongsamplingfromtheorderChlamydomonadales(Chlorophyceae)(Figure1D).TheUWO241genomeisthesecondtobesequencedfromtheMoewusiniacladeoftheChlamydomonadales(Nakadaetal.,2008),theothercomingfromtheacidophilicspeciesChlamydomonaseustigmaHirookaetal.,2017TheMoewusiniaiscloselyafliatedwiththeMonadinia,thecladetowhichtheAntarcticpsychrophilesICE-LandICE-MDVbelong(Figures1Aand1D)(Demchenkoetal.,2012).KeepinmindthattheChlamydomonasgenusispolyphyleticandthatUWO241,C.eustigma,andICE-LbranchclosertoDunaliellasalinaFigure1D),forexample,thantheydotoC.reinhardtii,whichhailsfromtheRein-hardtiniaclade(Possmayeretal.,2016Zhangetal.,2020).WhatimmediatelystandsoutfortheUWO241 DCB Figure1.Chlamydomon

assp.UWO241 (A)OriginsofisolationofUWO241andChlamydomonassp.ICE-MDV(LakeBonney),aswellasChlamydomonassp.ICE-L(seaiceoffofZhongshanStation);imagefromNASAEarthObservatory.(B)PhotographofLakeBonney(Wikimedia-Commons,2020(C)SimplieddiagramshowingenvironmentalconditionsinLakeBonney.(D)Treeofvariouschlamydomonadaleanalgaeandtheirnucleargenomestatistics;branchingorderbasedonpreviousphylogeneticanalyses(Nakadaetal.,2008Possmayeretal.,2016Zhangetal.,2020 OPENACCESS,102084,February19,2021 iScienc genomeascomparedtootheravailablegreenalgalnuclearDNAs(nucDNAs)isitsrelativelylargesize(approximatelytwicethatofC.reinhardtii),record-settingintrondensity,andhighrepeatcontent,outdoneonlybythatofICE-L(64%repeats)(Zhangetal.,2020).However,closeinspectionoftheUWO241codingregionsuncoveredsomethingmuchmoreunique:widespreadgeneduplicationtoadegreeunmatchedinanychlorophytestudiedtodate.HundredsofgeneduplicatesFunctionalannotationofthe16,325RNA-supportedgenemodelsrevealedthestandardcohortofproteinstypicallyencodedingreenalgalnucl

eargenomes(DataS1),aswellasmanyhypotheticalproteins(21.8%),parallelingthetrendsfromotheravailablechlamydomonadaleannucleargenesets,whicharegenerally20-30%hypothetical.Therewerenoobvioussignsofcontaminationintheassemblyorannotationsand,withoneconspicuousexception(discussedbelow),littleevidenceofhorizontalgenetransfer(HGT).Whenexaminingtheannotationsindetail,itbecameobviousthatmanygeneswererepresentedtwoormoretimeswithintheassembly.Toexplorethevalidityofthesemulti-copygenes,weperformedaseriesofBLAST(BasicLocalAlignmentSearchTool)-basedanalyseswithstrictdownstreamltering.AproteinBLASToftheUWO241genemodelsagainstthemselves(E-valuecut-off10)detected901pu-tativeduplicates(encompassing2,012genecopies)allwithpairwiseaminoacididentities80%.Welteredthisgenesettoonlythosewithnear-identicalproteinlengths(within10aminoacids)andpairwiseidentities,givingapared-downlistof336highlysimilarduplicates(HSDs),totaling1,339genecopies(Table1DataS2).Bysettingsuchastrictcutoff,wehaveundoubtedlyremovedsomegenuinedu-plicatesfromth

islist,butwewouldratherbeconservativeinourapproach,ensuringthatthegenepairsinquestionarebonadeduplicatesratherthanspuriousones.TheproteinsequencesoftheHSDsweresearchedagainsttheKEGG(KyotoEncyclopediaofGenesandGenomes)andPfamdatabases,providingafunctionalbreakdown(Table1DataS2).HSDsinUWO241areinvolvedinvariouscellularpathways,includinggeneexpression,cellgrowth,membranetransport,andenergymetabolism,butalsoincludehy-potheticalproteins(37%)andreversetranscriptases(11%)(Table1DataS2).HSDsforproteintranslation,DNApackaging,andphotosynthesiswereparticularlyprevalent,with19duplicationsofgenesforribo-somalproteins,10forhistones,andatleast4forproteinsofthechlorophylla/bbindinglight-harvestingcomplex(Table1Figures2A–2C).Aswiththepreviouslydescribedduplication(Cvetkovskaetal.,2018),manyoftheseHSDsarevirtuallyindistinguishablefromeachotherattheaminoacidleveland65areidenticalacrosstheirnucleotidecodingregions(DataS2ThearrangementsoftheHSDsareinformative.Approximately,20%containgenecopiesthataresituatedclosetooneanothe

r(ofteninahead-to-headorhead-to-tailorientation)andhaveverysimilarintron Table1.Summarystatisticsofhighlysimilarduplicategenes(HSDs)inUWO241. DatabaseExampleidentiÞersNumberofHSDs(%)Numberofgenecopies(%)ChlorophyllA-BbindingproteinPF005044(1%)25(2%)RibosomalproteinPF01015;PF01775;PF0082819(5%)42(3%)CorehistoneH2A/H2B/H3/H4PF001255(1%)99(7%)Ice-bindingprotein(DUF3494)PF119998(2%)21(2%)ReversetranscriptasesPF0007838(11%)151(11%)KEGG09,101CarbohydratemetabolismK13979(alcoholdehydrogenase)12(4%)89(7%)09,102EnergymetabolismK02639(ferredoxin);K08913(light-harvestingcomplexIIchlorophylla/bbindingprotein2)10(3%)51(4%)09,103LipidmetabolismK01054(acylglycerollipase)3(1%)15(1%)09,122TranslationK02868(largesubunitribosomalproteinL11e)27(8%)47(4%)HypotheticalproteinsNA125(37%)357(27%) Notallidentiersarelisted.Atotalof336HSDswereidentiedwithintheUWO241genome,encompassing1,339genecopies.HSDsshare90%pairwiseaminoacididentityandhavelengthswithin10aminoacidsofeachother. OPENACCESS,102084,February19,2021 iScienc numbersan

dintronicsequences(basedonpairwisealignments),implyingthattheyresultfromrecenttan-demduplicationevents(Figure2DataS2).Aclearexampleofthisistheduplicationofthelhcb2geneFigure2A).TheremainingHSDsaregenerallyfarapart(mostondistinctscaffolds)and,despitetheirmatchingcodingregions,many(50%)haveun-alignableintronicsequencesanddifferingnumbersofin-trons,suggestingthattheyderivefrommoreancientduplicationevents(Figures2Band2C;DataS2).ThisisthecaseforCvetkovskaetal.,2018),aswellasforhspa5(encodingheatshock70-kDaprotein5),thetwocopiesofwhicharefoundinthemiddleofdistinctscaffoldsandshare93%codingsequenceidentitybut25%nucleotidesimilarityacrosstheirintrons(Figures2Band2C).Whatevertheirarrangement,theexonicsequencesofmorethanhalfoftheHSDs(190)areunderstrongpurifyingselectionasevidencedbylow(1)nonsynonymoustosynonymoussubstitutionrates(dN/dS),rangingfrom0to0.5(avg.=0.2)FigureS2).ItispossiblethatthestrongcodingsequencepreservationoftheseduplicatescouldbeaidingthesurvivalofUWO241inLakeBonney,perhapsduetoincreasedgenedosage

(InnanandKondrashov,2010Kondrashov,2012),aspreviouslysuggested(Cvetkovskaetal.,2018).Butvariousnon-adaptiveexpla-nationsarealsoplausible.TheHSDs,however,representonlyafractionofduplicatedregionswithinthegenome.AgenomeinupheavalTheUWO241nucDNAcontainsthousandsofpartialduplicates,characterizedbygenefragmentsandpseudogenes,aswellasduplicatedsegmentsofintergenicandintronicDNA(FigureS3DataS3).Theseincompleteduplicates,whichrangeinsizefrom100-12,000bp,canexistinhighcopynumbers.70;(6)and,liketheHSDs,canbefoundintandemorondifferentscaffolds(FigureS3DataS3).ButunliketheHSDs,theyareinvariousstatesofdecay,possiblyreectinganongoingbirth-deathprocess,whichissupported C Figure2.ExamplesofduplicategenesinChlamydomonassp.UWO241 (A)Fourdistinctcopiesoflhcb2,alllocatedonscaffoldscf7180000014917.(B)Twodistinctcopiesof,locatedonscaffoldsscf7180000011611(hspa5-1)andscf7180000015050(hspa5(C)Pairwisealignmentofthededucedaminoacidsequencesofhspa5-1andhspa5 OPENACCESS,102084,February19,2021 iScienc bythefactthatmanyofthecomp

leteandpartialduplicatesaredirectlyassociatedwithoroccurneartoretrotransposons(RTs)(FigureS3DataS3),asoutlinedfortheduplicationoflhcb2Figure2RT-mediatedgeneduplicationisarecurringthemewithinnucleargenomes(QianandZhang,2014Panchyetal.,2016CasolaandBetran,2017KubiakandMakaowska,2017),includingthoseofgreenalgae(kalskietal.,2016),andtheUWO241genomecontainsthestandardhallmarksofsuchaphenomenon,suchaspoly-(A)tailinsertionsandtargetsiteduplications(FigureS3).Butthiscertainlydoesnotruleoutthepossibilitythatotherprocesses,suchasunequalcrossing-over(Zhang,2003),arecontributingtogeneduplicationwithinUWO241.Donotethat83%oftheHSDscontainintrons,acharacteristicnotgenerallyassociatedwithRT-medi-atedduplications,butnotunprecedented(CasolaandBetran,2017KubiakandMakaowska,2017).Retrocopiesofteninheritintronsfromparentalgenes,ankinggenomicDNA,orthefusionoftranscripts(CataniaandLynch,2008Zhuetal.,2009Szczesniaketal.,2011Kangetal.,2012Zhangetal.,2014).Altogether,weidentied401putativelyfunctionalRTsinthenucDNA,including77l

ongterminalrepeat(LTR)and324non-LTRRTs.Thesenumbersarelikelyunderestimatesofthetruetotalastheydonotincluderetropseudogenes,partialretroele-ments,oridentiedRTswithnoRNA-seqsupport,whichtogetheraccountfor�10%oftheassembly.What’smore,thereare�480duplicatedregionscontainingareverse-transcriptasedomain,includingonesinnoncod-ingDNA.UWO241hasmoreretroelementsthanallothersurveyedchlorophytes(4timesthatofC.reinhardtiiwiththeexceptionofICE-L,forwhichnon-LTRRTsaccountforastaggering23%ofthegenome(Zhangetal.,2020).InadditiontoRTs,theUWO241andICE-Lgenomesshareanotheratypicalfeature—genesforIBPs.Horizontallyacquiredandduplicatedice-bindingproteinsTheUWO241genomeencodesnofewerthan37proteinswithanice-bindingdomain(DUF3494)(Figure3whichisamongthelargestnumberofIBPseverrecordedinaphotosyntheticprotist.ThiswealthofIBPsappearstobetheconsequenceofHGTeventsincombinationwithgeneduplication.PhylogeneticanalysesoftheIBPgenes,whichrangeinsizefrom483-37,549bp,showtheirsimilaritytotypeIbacterialandarchaealIBPs(Fig-ure3

B),whichisconsistentwithpreviouswork(RaymondandMorgan-Kiss,2013).NucleargenesacquiredviarecentHGTeventsfrombacteriausuallylackintrons(KeelingandPalmer,2008),asdo14oftheIBPgenesfromUWO241;theremaininggenes,with4exceptions,allhaveasingle,shortintronattheir3’ends.ThelargestIBPgene,however,contains29introns.TheIBPgenesshowvaryingdegreesofsimilaritywitheachother(Fig-ure3C),including8groupingsofalmostidenticalgenes,suggestingacomplicatedhistoryofIBPgeneacqui-sitionandduplicationwithinUWO241.ThepresenceofpseudogenesandgenefragmentswithsimilaritytoIBPs(DataS3)indicatesthatsomepreviouslyfunctionalIBPcodingregionsmighthavebeenlost.ThesendingsaddtothegrowinglistofpsychrophilicandpsychrotolerantalgaeencodingIBPs(Blancetal.,2012RaymondandMorgan-Kiss,2013Mocketal.,2017),mirroringthepatternofice-associatedbac-teriaandfungi(Margesinetal.,2008).GenomesequencingofthepolardiatomFragilariopsiscylindrusiden-tied11IBPs(Mocketal.,2017),almostasmanyasfoundinICE-L(12)(Zhangetal.,2020).TheIBPsofUWO241andICE-Lshowasurprisingdegre

eofsimilaritywitheachotherasevidencedinthephylogeneticanalysis(Figure3B),especiallygiventhatthesetwoalgaewereisolatedfromlocationsthataremorethan2500kmapart(Figure1A).Chlamydomonassp.ICE-MDV,acloserelativeofICE-LandaresidentofLakeBonney(Figures1A,1C,and1D),currentlyholdstherecordforthegreatestnumberofIBPisoforms(50)inagreenalga(RaymondandMorgan-Kiss,2017).Inalltheseexamples,theIBPsarebelievedtohavebeenacquiredfrombacteriaviaHGT,andtheirexistenceisthoughttobeanadaptationtopolarenviron-ments(RaymondandKim,2012).ItmightseemobviouswhyaspeciesthatlivesintheAntarcticwouldacquireIBPs,whichcanhaveicerecrystallizationinhibitionactivitiesand,thus,protectcellsfromfreezingdamage(Davies,2014).However,thepotentialbenetsbestoweduponUWO241andICE-MDVbyhavingthesegenesisnotimmediatelyclear.UnlikeICE-L,UWO241doesnotliveoniceorsnow(Morgan-Kissetal.,2006)butdeepwithinlakewater,whichremainsatCyear-round(thisisalsotrueforICE-MDV).WedonotknowtheevolutionaryhistoryofUWO241orhowlongithasbeenisolatedinLakeBonney,meaningthepresence

ofIBPscouldbearemnantofanancestrallifestyleinvolvingcloseassociationwithiceandsnow.Genomeevolutioninapermanentlyice-coveredAntarcticlakeOnemustbemindfulnottoinstantlyinvokepositiveselectionwhentryingtoexplaintheevolutionofgenomicarchitecture(Lynch,2007BrunetandDoolittle,2018).ItistemptingtoproposethatpervasivegeneduplicationwithintheUWO241genomeisanadaptationtolifeinLakeBonney.Butonecouldalsoreasonthatthesefeaturesareneutral(orslightlydeleterious)outcomesofrandomgeneticevents,suchasthewhimsofselshelements.Aswithmanyaspectsofmolecularevolution,thetruthlikelyfallssomewherein-betweenthesetwoextremes. OPENACCESS,102084,February19,2021 iScienc ItisourbeliefthattheunderlyingmechanismsbehindtheduplicationswithintheUWO241nucDNA,beitretro-transpositionand/orotherprocesses,areneutralorevenmaladaptive.Likewise,wecontendthatmostoftheobservedduplicatesinthegenome,suchasthoseencodingreversetranscriptases,werexedthroughrandomgeneticdrift,perhapsexacerbatedbythehermeticenvironmentofLakeBonney.(Unfortunately,therearenod

ataontheeffectivepopulationsizeofUWO241andhowitcomparestothatofothergreenalgae,butchlor-ophytesappeartoberelativelyrareinAntarcticlakeautotrophiccommunities(Dolhietal.,2015)).Butifenoughduplicatesaregenerated,itstandstoreasonthateventuallyonewillariseresultinginanincreaseintness.Forinstance,ifanincreaseindosageofaparticulargeneisbenecial,thentheduplicationofthisgenecouldbexed(oratleastmaintainedafterthefact)bypositiveselection(InnanandKondrashov,2010Kondrashov,2012).Thisisarguablythebestexplanationfortheexistenceofthepetfduplicates(Cvetkovskaetal.,2018aswellassomeoftheotherHSDsinUWO241,includingtheIBPgenes.However,moreworkisneeded,includingadditionalgenomesequencesfromMoewusiniaalgae,especiallycloserelativesofUWO241,beforeonecan Figure3.Ice-bindingproteinsfromUWO241 (A)Maximumlikelihood(ML)phylogenetictreebasedontheaminoacidalignmentsof37IBPsinUWO241.(B)MLphylogeneticrelationshipsofIBPsinUWO241(red),ICE-L(green),Archaea(blue),andbacteria(black).(C)Aminoacidalignmentof37IBPsinUWO241viaClustalOmega,versi

on1.2.4,usingdefaultparameters. OPENACCESS,102084,February19,2021 iScienc denitivelysayifadaptationtoanextremeenvironmentiscontributingtotheretentionofHSDsinUWO241.ItisnoteworthyinthiscontextthatneithertheUWO241mitochondrialorchloroplastgenomes(Cvetkovskaetal.,2019)containduplicatedgenesorretroelement-likesequences.Geneduplicationisincreasinglybeingidentiedasameansofadaptationtoextremeenvironments(Kon-drashov,2012QianandZhang,2014).Moreover,duplicationeventsresultinginincreasedgenedosageareknowntoplayakeyroleintheinitialretentionofduplicategenes(InnanandKondrashov,2010).Thedatapresentedhereaddtothistheme.But,again,itisnotnecessarilytruethattheinfrastructurerespon-sibleforgeneratingputativelybenecialduplicationsisadaptive.Rather,somethingneutralcansome-timesgiverisetosomethinguseful,whichwethinkisthecaseforUWO241.Thequestionremains:whatprecisemolecularmechanism(s)arecausinggeneticduplicationsinthisalga?WefavoranRT-basedmodelbecauseofthecloseassociationbetweenRTsandduplicatesinthegenome,aswellastheprepon

deranceofreversetranscriptases.Butothermodelsarepossible.IfRTsarecontributingtogeneduplicationsinUWO241,thenthiscouldhelpexplainthegeneralupheavalweobservedthroughoutthegenomebutalsoraisesquestionsabouthowtheHSDsacquiredfunctionalregulatoryregions—retro-duplicationdoesnottypicallyincluderegulatoryelementsbuttheycanbeacquirebyRTsviaothermeans(KubiakandMakaowska,2017).Moreover,RTinsertionscanalsoalterthefunctionofnearbygenes,which,inturn,canhaveacascadeofeffects(Carellietal.,2016ConradandAntonarakis,2007Remarkably,similarevolutionaryprocessesappeartobeoperatingintheICE-Lgenome,inwhichgeneduplication,potentiallydrivenbyRTs,hasledtolargeexpansionsinvariousgenefamilies,includingIBPgenes(Zhangetal.,2020),aswellasHSDs(265duplicatescovering717genecopies)(Figure1Data).ManyoftheHSDsinICE-LhavesimilarfunctionstothoseinUWO241(DataS4C.eustigma,theclosestrelativeofUWO241forwhichadraftgenomesequenceisavailable,alsohasaconsiderablenumberofgeneduplicates(276),whichcouldbecontributingtoitssurvivalinanextremelyacidicenviro

nment(ookaetal.,2017).TheUWO241,ICE-L,andC.eustigmagenomesstandincontrasttootherexploredgreenalgalnucDNAs,whichdonothavelargenumbersofHSDs.Indeed,whenthesamebioinformaticsproced-uresusedtoidentifyandclassifyHSDsinUWO241werecarriedoutonavailablechlamydomonadaleange-nomes,smalltomoderatenumbersofgeneduplicationswereidentied(Figures1Dand),whichisconsistentwithpreviousanalysesofthesegenomes.ItwillbeespeciallyinterestingtoseeifICE-MDV—whichlikeUWO241livesdeepwithinthewatercolumnofLakeBonney—alsoharborsexpandedgenefam-iliesandHSDs.Whatevertheresult,Antarcticlakeshavealottoteachusaboutgenomeevolutionattheextremesoflife.LimitationsofthestudyAlargenumberofRTsandrampantgeneduplicationcancauseerrorsduringgenomeassembly(Ziminetal.,2017).WeperformedmultipleiterationsoftheUWO241assembly,usingdifferentprotocolsandal-gorithms,andarecondentthattheavailabledraftgenomesequenceinGenBankisofgoodquality.TheHSDs,inparticular,aresupportedbyRNA-seq,meaningthereexistsaspecictranscriptcorrespondingtoeachduplicategene.Butgiventhe

massiveextentofduplicationsintheUWO241genome,itislikelythatsomeregionsweremisassembled,especiallysegmentsofduplicatednoncodingDNA,andwillneedtoberesolvedthroughsubsequentsequencingprojects.Thatsaid,theoverallconclusionspresentedhereshouldnotbeaffected.ResourceavailabilityLeadcontactFurtherinformationandrequestsforresourcesshouldbedirectedtoandwillbefullledbytheLeadCon-tact,DavidR.Smith(MaterialsavailabilityThisstudydidnotgeneratenewreagentsorothermaterials.DataandcodeavailabilityTheassembledgenomesequencesandtherawsequencingdataofUWO241aredepositedattheUSNa-tionalCenterforBiotechnologyInformation(NCBI)databaseunderBioProjectaccessionPRJNA547753, OPENACCESS,102084,February19,2021 iScienc nucleotideaccessionVFSX00000000,andBioSampleaccessionsSAMN11975472andSAMN11975511.Thisstudydidnotgeneratenewcode.METHODSAllmethodscanbefoundintheaccompanyingTransparentmethodssupplementalleSUPPLEMENTALINFORMATIONSupplementalinformationcanbefoundonlineathttps://doi.org/10MC,NPAH,andDRSaresupportedbyDiscoveryGrantsfromtheN

aturalSciencesandEngineeringResearchCouncilofCanada(NSERC).WethankBojianZhongandJinlaiMiaoforsharingtheICE-Lgenomesequences,aswellasRoryCraigforusefuldiscussiononTEcuration.WealsothankYiningHuforherassis-tancewithcomputerprogramming.AUTHORCONTRIBUTIONSThestudywasconceptualizedbyMC,NPAH,andDRS.ThedatawereanalyzedbyMCandXZ.DRSandXZdraftedthemanuscriptandallauthorscommentedtoproducethemanuscriptforpeerreview.DECLARATIONOFINTERESTSTheauthorsdeclarenocompetinginterests.Received:November6,2020Revised:December8,2020Accepted:January14,2021Published:February19,2021Blanc,G.,Agarkova,I.,Grimwood,J.,Kuo,A.,Brueggeman,A.,Dunigan,D.D.,Gurnon,J.,Ladunga,I.,Lindquist,E.,andLucas,S.(2012).ThegenomeofthepolareukaryoticmicroalgaCoccomyxasubellipsoidearevealstraitsofcoldadaptation.GenomeBiol.,1–12Brunet,T.,andDoolittle,W.F.(2018).Thegeneralityofconstructiveneutralevolution.Biol.Philos.Carelli,F.N.,Hayakawa,T.,Go,Y.,Imai,H.,Warnefors,M.,andKaessmann,H.(2016).Thelifehistoryofretrocopiesilluminatestheevolutionofnewmammaliangene

s.GenomeRes.301–314Casola,C.,andBetran,E.(2017).Thegenomicimpactofgeneretrocopies:whathavewelearnedfromcomparativegenomics,populationgenomics,andtranscriptomicanalyses?GenomeBiol.Evol.,1351–1373Catania,F.,andLynch,M.(2008).Wheredointronscomefrom?PLoSBiol.,e283Conrad,B.,andAntonarakis,S.E.(2007).Geneduplication:adriveforphenotypicdiversityandcauseofhumandisease.Annu.Rev.GenomicsHum.Genet.,17–35Cvetkovska,M.,Orgnero,S.,Huner,N.P.,andSmith,D.R.(2019).Theenigmaticlossoflight-independentchlorophyllbiosynthesisfromanAntarcticgreenalgainalight-limitedenvironment.NewPhytol.,651–656Cvetkovska,M.,Szyszka-Mroz,B.,Possmayer,M.,Pittock,P.,Lajoie,G.,Smith,D.R.,andHuner,N.P.(2018).CharacterizationofphotosyntheticferredoxinfromtheAntarcticalgaChlamydomonassp.UWO241revealsnovelfeaturesofcoldadaptation.NewPhytol.588–604Davies,P.L.(2014).Ice-bindingproteins:aremarkablediversityofstructuresforstoppingandstartingicegrowth.TrendsBiochem.Sci.548–555Demchenko,E.,Mikhailyuk,T.,Coleman,A.W.,andProschold,T.(2012).Genericandspeciesc

onceptsinMicroglena(previouslytheChlamydomonasmonadinagroup)revisedusinganintegrativeapproach.Eur.J.Phycol.264–290Dolhi,J.M.,Teufel,A.G.,Kong,W.,andMorganKiss,R.M.(2015).DiversityandspatialdistributionofautotrophiccommunitieswithinandbetweenicecoveredAntarcticlakes(McMurdoDryValleys).Limnol.Oceanogr.977–991Dore,J.E.,andPriscu,J.C.(2001).PhytoplanktonphosphorusdeciencyandalkalinephosphataseactivityintheMcMurdoDryValleylakes,Antarctica.Limnol.Oceanogr.,1331–1346Hirooka,S.,Hirose,Y.,Kanesaki,Y.,Higuchi,S.,Fujiwara,T.,Onuma,R.,Era,A.,Ohbayashi,R.,Uzuka,A.,andNozaki,H.(2017).Acidophilicgreenalgalgenomeprovidesinsightsintoadaptationtoanacidicenvironment.Proc.Natl.Acad.Sci.USA,8304–8313Innan,H.,andKondrashov,F.(2010).Theevolutionofgeneduplications:classifyinganddistinguishingbetweenmodels.Nat.Rev.Genet.,97–108kalski,M.,Takeshita,K.,Deblieck,M.,Koyanagi,K.O.,Makaowska,I.,Watanabe,H.,andMakaowski,W.(2016).ComparativegenomicanalysisofretrogenerepertoireintwogreenalgaeVolvoxcarteriChlamydomonasreinhardtii.Biol.Di

rect,1–12Kalra,I.,Wang,X.,Cvetkovska,M.,Jeong,J.,Mchargue,W.,Zhang,R.,Huner,N.,Yuan,J.S.,andMorgan-Kiss,R.(2020).Chlamydomonassp.UWO241exhibitshighcyclicelectronowandrewiredmetabolismunderhighsalinity.Plant,588–601Kang,L.-F.,Zhu,Z.-L.,Zhao,Q.,Chen,L.-Y.,andZhang,Z.(2012).Newlyevolvedintronsinhumanretrogenesprovidenovelinsightsintotheirevolutionaryroles.BMCEvol.Biol.,128Keeling,P.J.,andPalmer,J.D.(2008).Horizontalgenetransferineukaryoticevolution.Nat.Rev.Genet.,605–618Kondrashov,F.A.(2012).Geneduplicationasamechanismofgenomicadaptationtoachangingenvironment.Proc.R.Soc.B,5048–5057 OPENACCESS,102084,February19,2021 iScienc Kubiak,M.R.,andMakaowska,I.(2017).Protein-codinggenes’retrocopiesandtheirfunctions.Viruses,80Lynch,M.(2007).Thefrailtyofadaptivehypothesesfortheoriginsoforganismalcomplexity.Proc.Natl.Acad.Sci.USA,8597–Margesin,R.,Schinner,F.,Marx,J.-C.,andGerday,C.(2008).Psychrophiles:FromBiodiversitytoBiotechnology(SpringerVerlag)Merchant,S.S.,Prochnik,S.E.,Vallon,O.,Harris,E.H.,Karpowicz,S.J.,Witman,G

.B.,Terry,A.,Salamov,A.,Fritz-Laylin,L.K.,andMareDrouard,L.(2007).TheChlamydomonasrevealstheevolutionofkeyanimalandplantfunctions.Science,245–250Mock,T.,Otillar,R.P.,Strauss,J.,Mcmullan,M.,Paajanen,P.,Schmutz,J.,Salamov,A.,Sanges,R.,Toseland,A.,andWard,B.J.(2017).Evolutionarygenomicsofthecold-adapteddiatomFragilariopsiscylindrus.Nature,536–540Morgan-Kiss,R.M.,Priscu,J.C.,Pocock,T.,Gudynaite-Savitch,L.,andHuner,N.P.(2006).Adaptationandacclimationofphotosyntheticmicroorganismstopermanentlycoldenvironments.Microbiol.Mol.Biol.Rev.222–252Morita,R.Y.(1975).Psychrophilicbacteria.Bacteriol.Rev.,144–167Nakada,T.,Misawa,K.,andNozaki,H.(2008).MolecularsystematicsofVolvocales(Chlorophyceae,Chlorophyta)basedonexhaustive18SrRNAphylogeneticanalyses.Mol.Phylogenet.Evol.,281–291Panchy,N.,Lehti-Shiu,M.,andShiu,S.-H.(2016).Evolutionofgeneduplicationinplants.PlantPhysiol.,2294–2316Pocock,T.,Lachance,M.A.,Proschold,T.,Priscu,J.C.,Kim,S.S.,andHuner,N.P.(2004).IdenticationofapsychrophilicgreenalgafromLakeBonneyAntarctica:Chlam

ydomonasraudensisETTL.(UWO241)chlorophyceae.J.Phycol.,1138–1148Possmayer,M.,Gupta,R.K.,SzyszkaMroz,B.,Maxwell,D.P.,Lachance,M.A.,Huner,N.P.,andSmith,D.R.(2016).ResolvingthephylogeneticrelationshipbetweenChlamydomonassp.UWO241andChlamydomonasraudensisSAG49.72(Chlorophyceae)withnuclearandplastidDNAsequences.J.Phycol.,305–310Qian,W.,andZhang,J.(2014).Genomicevidenceforadaptationbygeneduplication.GenomeRes.,1356–1362Raymond,J.A.,andKim,H.J.(2012).Possibleroleofhorizontalgenetransferinthecolonizationofseaicebyalgae.PLoSOne,e35968Raymond,J.A.,andMorgan-Kiss,R.(2013).Separateoriginsofice-bindingproteinsinAntarcticChlamydomonasspecies.PLoSOneRaymond,J.A.,andMorganKiss,R.(2017).MultipleicebindingproteinsofprobableprokaryoticorigininanAntarcticlakealga,Chlamydomonassp.ICEMDV(Chlorophyceae).J.Phycol.,848–854sniak,M.W.,Ciomborowska,J.,Nowak,W.,Rogozin,I.B.,andMakaowska,I.(2011).Primateandrodentspecicintrongainsandtheoriginofretrogeneswithsplicevariants.Mol.Biol.Evol.Wikimedia-Commons.(2020).Wikimediacommons,thefree

mediarepository.commons.wikimedia.org/wiki/Main_PageZhang,C.,Gschwend,A.R.,Ouyang,Y.,andLong,M.(2014).Evolutionofgenestructuralcomplexity:analternative-splicing-basedmodelaccountsforintron-containingretrogenes.Plant,412–423Zhang,J.(2003).Evolutionbygeneduplication:anupdate.TrendsEcol.Evol.,292–298Zhang,Z.,Qu,C.,Zhang,K.,He,Y.,Zhao,X.,Yang,L.,Zheng,Z.,Ma,X.,Wang,X.,andWang,W.(2020).AdaptationtoextremeAntarcticenvironmentsrevealedbythegenomeofaseaicegreenalga.Curr.Biol.,1–12Zhu,Z.,Zhang,Y.,andLong,M.(2009).Extensivestructuralrenovationofretrogenesintheevolutionofthegenome.PlantPhysiol.,1943–1951Zimin,A.V.,Puiu,D.,Luo,M.-C.,Zhu,T.,Koren,S.,¸ais,G.,Yorke,J.A.,Dvok,J.,andSalzberg,S.L.(2017).HybridassemblyofthelargeandhighlyrepetitivegenomeofAegilopstauschiiprogenitorofbreadwheat,withtheMaSuRCAmega-readsalgorithm.GenomeRes.787–792 OPENACCESS,102084,February19,2021 iScienc iScience,VolumeSupplementalInformationDraftgenomesequenceoftheAntarcticgreenalgasp.UWO241XiZhang,MarinaCvetkovska,RachaelMorgan-Kiss,NormanP.

Related Contents


Next Show more