/
2P.BourgadeHarvardCollegeMathematicsReviewnaturalquestion.Choosenindep 2P.BourgadeHarvardCollegeMathematicsReviewnaturalquestion.Choosenindep

2P.BourgadeHarvardCollegeMathematicsReviewnaturalquestion.Choosenindep - PDF document

sherrill-nordquist
sherrill-nordquist . @sherrill-nordquist
Follow
362 views
Uploaded On 2016-08-11

2P.BourgadeHarvardCollegeMathematicsReviewnaturalquestion.Choosenindep - PPT Presentation

Figure1Histogramof105nearestneighborspacingsienDashedtherescaledeucurveChoosingu nandconsideringthelimitn1wegetthattheprobabilitythatthegapbetweenx1anditsrightneighborisgreaterthanu nc ID: 442957

Figure1{Histogramof105nearest-neighborspacings(i.e.n).Dashed:there-scaledeucurve.Choosing=u nandconsideringthelimitn!1 wegetthattheprobabilitythatthegapbetweenx1anditsrightneighborisgreaterthanu nc

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2P.BourgadeHarvardCollegeMathematicsRevi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

HarvardCollegeMathematicsReviewTeaTimeinPrincetonHesaid:\That'stheformfactorforthepaircorrelationofeigenvaluesofrandomHermitianmatrices!".Thisnoteisaboutwho\He"is,what\That"is,andwhyyoushouldnevermissteatime.SincetheseminalworkofRiemann,itiswell-knownthatthedistributionofprimenumbersiscloselyrelatedtothebehaviorofthefunction.Mostimportantly,itwasconjecturedin[13]thatallits(non-trivial)zerosarealigned1,andHilbertandPolyaputforwardtheideaofaspectraloriginforthisphenomenon.IspenttwoyearsinGottingenendingaroundthebeginof1914.ItriedtolearnanalyticnumbertheoryfromLandau.Heaskedmeoneday:\Youknowsomephysics.DoyouknowaphysicalreasonthattheRiemannhypothesisshouldbetrue?"Thiswouldbethecase,Ianswered,ifthenontrivialzerosofthe-functionweresoconnectedwiththephysicalproblemthattheRiemannhy-pothesiswouldbeequivalenttothefactthatalltheeigenvaluesofthephysicalproblemarereal.GeorgePolya,correspondencewithAndrewOdlyzko,1982.Despitethelackofprogressconcerningthehorizontaldistributionofthezeros(i.e.alltheirrealpartsbeingsupposedlyequal),somesupportfortheHilbert-Polyaideacamefromtheverticaldistribution,i.e.thedistributionofthegapsbetweentheimaginarypartsofthenon-trivialzeros.Indeed,in1972,thenumbertheoristHughMontgomeryevaluatedthepaircorrelationofthesezeros,andthemathematicalphysicistFreemanDysonrealizedthattheyexhibitthesamerepulsionastheeigen-valuesoftypicallargerandomHermitianmatrices.Inthisexpositorynote,weaimatexplainingMontgomery'sresult,placingemphasisonthecommonpointswithrandommatrices.ThesestatisticalconnectionshavesincebeenextendedtomanyotherL-functions(e.g.overfunction elds,cf.[12]);forthesakeofbrevityweonlyconsidertheRiemannzetafunction,andreferforexampleto[8]formanyotherconnectionsbetweenanalyticnumbertheoryandrandommatrices.1IndependentrandompointsAsa rststeptowardstherepulsionbetweensomeparticles,eigenvaluesorzerosofthezetafunction,wewishtounderstandwhathappenswhenthereisnorepul-sion,inparticularforindependentrandompoints.Forthis,considerthefollowing 1.Forade nitionoftheRiemannzetafunctionandtheRiemannhypothesis,seethebeginningofSection2. 2P.BourgadeHarvardCollegeMathematicsReviewnaturalquestion.Choosenindependentanduniformpointsontheinterval[0;1].Whatisthetypicalspacingbetweentwosuccessivesuchpoints?Agoodwaytomakethisquestionmorepreciseistoassumethatamongstthesepointsx1;:::;xn,welabelone,sayx1,andweconsidertheprobabilitythatithasnoright-neighboruptodistance.Denoting(I)thenumberofxi'sinanintervalI,theprobabilityofsuchaneventisZ10P(((y;y+])=0jx1=y)dy;becausex1isuniformlydistributed.Now,asallthexi'sareindependent,theinte-grandisalso(wheny+1)P(\ni=2fxi62(y;y+]g)=nYi=2P(xi62(y;y+])=(1�)n�1: Figure1{Histogramof105nearest-neighborspacings(i.e.n).Dashed:there-scalede�ucurve.Choosing=u nandconsideringthelimitn!1,wegetthattheprobabilitythatthegapbetweenx1anditsrightneighborisgreaterthanu nconvergestoe�u.Morege-nerally,denotingbythegapbetweenx1anditsright-neighbor,weobtainthat,forany0ab,P(n2[a;b])�!n!1Zbae�udu:(1)Anotherwaytoquantifythemicrosco-picstructureoftheseindependentpointsconsistsinlookingatthefollowingstatis-tics,r(f;n)=1 nP1j;kn;j6=kf(n(xj�xk));foragenerictestfunctionf.Thereaderwilleasilyprovethefollowingasymptotics:E(r(f;n))�!n!1ZRf(y)dy:(2)Thislimitingexponentialdistribution(1)andthepaircorrelation(2)appearuniversally,i.e.whenthesampledpointsaresucientlyclosetoindependence,nomatterwhichdistributiontheyhave2.Itisanaturalquestionwhetherthisremainsvalidforotherrandompoints,andwewillexplainwhathappenswhenconsideringthezeroswithlargeimaginarypartortheeigenvaluesofrandommatrices.Thegapsstatisticswillbeverydi erent,bothfortheformer(Section2)andthelatter(Section3),forwhichacommontypeofcorrelationsappearsinthelimit.Thefollowingsectionsarewidelyindependent. 2.Forexample,thereadercouldconsiderindependentpointswithstrictlypositivedensitywithrespecttotheuniformmeasureon[0;1],andhewouldobtainanexponentiallawinthelimitaswell. Vol.00,2012TeaTimeinPrinceton32Thepaircorrelationofthezeros.Inthissection,westatesomeelementarypropertiesoftheRiemannzetafunc-tion,mentioningalongthewayaformalanalogybetweenthezerosandtheeigenva-luesoftheLaplacianonsomesymmetricspaces.WethencometomorequantitativeestimatesthroughMontgomery'sresultontherepulsionbetweenthezeros.For=(s)&#x]TJ/;༖ ;.9;Ւ ;&#xTf 8;&#x.634;&#x 0 T; [0;1,theRiemannzetafunctioncanbede nedasaDirichletseriesoranEulerproduct:(s)=1Xn=11 ns=Yp2P1 1�1 ps;wherePisthesetofallprimenumbers.Thesecondequalityisaconsequenceoftheexpansion(1�p�s)�1=Pk0p�ksanduniquenessoffactorizationofintegersintoprimenumbers.Remarkably,asprovedinRiemann'soriginalpaper,canbemeromorphicallyextendedtoC�f1g,andthisextensionsatis esafunctionalequation(seee.g.[15]foraproof):writing(s)=�s=2�(s=2)(s),wehave(s)=(1�s):Consequently,thezetafunctionadmitstrivialzerosats=�2;�4;�6;:::corres-pondingtothepolesof�(s=2).Alltheotherzerosarecon nedinthecriticalstrip01,andtheyaresymmetricallypositionedabouttherealaxisandthecriticalline=1=2.TheRiemannHypothesisstatesthatallofthisnon-trivialzerosareexactlyontheline=1=2.Traceformulas.The rstsimilaritybetweenthezetazerosandspectralproper-tiesofoperatorsoccurswhenlookingatlinearstatistics.Namely,westatetheWeilexplicitformulaconcerningthezerosandSelberg'straceformulafortheLaplacianonsurfaceswithconstantnegativecurvature.FirstconsidertheRiemannzetafunction.Forafunctionf:(0;1)!C,de neitsMellintransformF(s)=R10f(s)xs�1dx.Thentheinversionformula(whereischoseninthefundamentalstrip,i.e.wheretheimagefunctionFconverges)f(x)=1 2iZ+i1�i1F(s)x�sdsholdsundersuitablesmoothnessassumptions,inasimilarwayastheinverseFouriertransform.Hence,forexample,1Xn=2(n)f(n)=1Xn=2(n)1 2iZ2+i12�i1F(s)n�sds=1 2iZ2+i12�i1�0 (s)F(s)ds;whereisVanMangoldt'sfunction3.Toderivetheaboveformula,weusethat�0 (s)=Pn2(n) ns,whichisobtainedbyderivingtheformula�log(s)=PPlog(1�p�s).Now,changingthelineofintegrationfrom(s)=2to(s)=�1,alltrivialandnon-trivialpoles(aswellass=1)arecrossed,leadingtothefollowingformula,XF()+Xn0F(�2n)=F(1)+Xp2P;m2N(logp)f(pm); 3.(n)=logpifn=pkforsomeprimep,0otherwise. 4P.BourgadeHarvardCollegeMathematicsReviewwherethe rstsumisovernon-trivialzeroscountedwithmultiplicities.Whenrepla-cingtheMellintransformbytheFouriertransform,theaboveformulalinkinglinearstatisticsofzerosandprimestakesthefollowingform,knownastheWeilexplicitformula.Theorem.Lethbeeven,analyticonj=(z)j1=2+,bounded,anddecreasingash(z)=O(jzj�2�)forsome&#x]TJ/;༖ ;.9;Ւ ;&#xTf 1;.89; 0 ;&#xTd [;0.Here,thesumisoverall n'ssuchthat1=2+i nisanon-trivialzero,and^h(x)=1 2R1�1h(y)e�ixydy:X nh( n)�2hi 2=1 2ZRh(r)�0 �1 4+i 2r�logdr�2Xp2Pm2Nlogp pm=2^h(mlogp):(3)Inaverydistinctcontextholdsasimilarrelation,theSelberg'straceformula.Inoneofitssimplestmanifestations,itcanbestatedasfollows.Let�nHbeaquo-tientofthePoincarehalf-plane,where�isasubgroupofPSL2(R),theorientation-preservingisometriesofH=fx+iy;y�0gendowedwiththemetric(ds)2=(dx)2+(dy)2 y2:(4)TheLaplace-Beltramioperator=�y2(@xx+@yy)isself-adjointwithrespecttotheinvariantmeasureassociatedto(4),d=dxdy y2,i.e.Rv(u)d=R(v)ud,soalleigenvaluesofarerealandpositive.If�nHiscompact,thespectrumofrestrictedtoafundamentaldomainDofrepresentativesoftheconjugationclassesisdiscrete,noted001:::TostateSelberg'straceformula,weneed,aspreviously,afunctionhanalyticonj=(z)j1=2+,even,bounded,anddecreasingash(z)=O(jzj�2�),forsome&#x]TJ/;༖ ;.9;Ւ ;&#xTf 1;.42; 0 ;&#xTd [;0.Theorem.Undertheabovehypotheses,settingk=sk(1�sk),sk=1=2+irk,then1Xk=0h(rk)=(D) 2Z1�1rh(r)tanh(r)dr+Xp2P;m2N`(p) 2sinhm`(p) 2^h(m`(p));(5)where^histheFouriertransformofh(^h(x)=1 2R1�1h(y)e�ixydy),Pisnowthesetofallprimitive4periodicorbits5and`isthegeodesicdistancecorrespondingto(4).Thesimilaritybetween(3)and(5)maymakeyouwishthatprimenumberswouldcorrespondtoprimitiveorbits,withlengthslogp,p2P.Noresultinthisdirectionisknownhowever,anditseemssafernottothinkaboutthisanalogyasaconjecture,butratherjustasatoolguidingintuition(asdonee.g.in[3]tounderstandthepaircorrelationsbetweenthezerosof).Nevertheless,thereadercouldprovethat,asaconsequenceofSelberg'straceformula,thenumberofprimitiveorbitswithlengthlessthanxisjf`(p)xgjx!1ex x: 4.i.e.nottherepetitionofshorterperiodicorbits5.ofthegeodesic owon�nH Vol.00,2012TeaTimeinPrinceton5Similarly,bytheprimenumbertheorem,jflog(p)xgjx!1ex x:Montgomery'stheorem.Amorequantitativeconnectionofanalyticnumbertheorywithaspectralproblemsappearedintheearly70'sthankstoaconversation,duringteatime,inPrinceton,aboutsomeresearchonthespacingsbetweenthezeros.Hereisahowtheauthorofthiswork,HughMontgomery,relatesthis\serendipity"moment[6].ItookafternoonteathatdayinFuldHallwithChowla.FreemanDysonwasstan-dingacrosstheroom.IhadspentthepreviousyearattheInstituteandIknewhimperfectlywellbysight,butIhadneverspokentohim.Chowlasaid:\HaveyoumetDyson?"Isaidno,Ihadn't.Hesaid:\I'llintroduceyou."Isaidno,Ididn'tfeelIhadtomeetDyson.Chowlainsisted,andsoIwasdraggedreluctantlyacrosstheroomtomeetDyson.Hewasverypolite,andaskedmewhatIwasworkingon.ItoldhimIwasworkingonthedi erencesbetweenthenon-trivialzerosofRiemann'szetafunction,andthatIhaddevelopedaconjecturethatthedistributionfunctionforthosedi erenceshadintegrand1��sinu u2.Hegotveryexcited.Hesaid:\That'stheformfactorforthepaircorrelationofeigenvaluesofrandomHermitianmatrices!"I'dneverheardtheterm\paircorrelation."Itreallymadetheconnection.ThenextdayAtle(Selberg)hadanoteDysonhadwrittentomegivingreferencestoMehta'sbook,placesIshouldlook,andsoon.TothisdayI'vehadoneconversationwithDysonandoneletterfromhim.Itwasveryfruitful.Isupposebythistimetheconnectionwouldhavebeenmade,butitwascertainlyfortuitousthattheconnectioncamesoquickly,becausethenwhenIwrotethepaperfortheproceedingsoftheconference,Iwasabletousetheappropriateterminologyandgivethereferencesandgivetheinterpretation.Iwasamusedwhen,afewyearslater,Dysonpublishedapapercalled\MissedOpportunities."I'msuretherearelotsofmissedopportunities,butthiswasacounterexample.ItwasrealserendipitythatIwasabletoencounterhimatthiscrucialjuncture.SowhatwasitexactlythatMontgomeryproved?Tostatehisresult,weneedto rstintroducesomenotation.Firstbychoosingforhanappropriateapproximationofanindicatorfunction,fromtheexplicitformula(3)onecanprovethefollowing:thenumberofzeroscountedwithmultiplicitiesin0=()tisasymptoticallyN(t)t!1t 2logt:(6)Inparticular,themeanspacingbetweenzerosatheighttis2=logt.Now,wewriteaspreviously1=2i nforthezetazeroscountedwithmultiplicity,assumingtheRiemannhypothesisandtheordering 1 2:::Let!n= n 2log n 2.From(6)weknowthatn=!n+1�!nhasameanvalue1asn!1.Amorepreciseunderstandingofthezetazerosinteractionsreliesonthestudyofthespacingsdistributionfunctionbelowfort!1,1 N(t)jf(n;m)2J1;N(t)K2: !n�!m ;n6=mgj; 6P.BourgadeHarvardCollegeMathematicsReviewandmoregenerallyontheoperator~r(f;t)=1 N(t)X1j;kN(t);j6=kf(!j�!k):Aswesawin(2),ifthe!k'sbehavedasindependentrandomvariables(uptotheordering),~r(f;t)wouldconvergetoRRf(y)dyast!1.ThefollowingresultbyMontgomery[10]provesthatthezerosareactuallynotasymptoticallyindependent,butpresentsomestatisticalrepulsioninstead.Weincludeanoutlineofaproofdirectlyfollowingthestatementfortheinterestedreader. Figure2{Thefunction~r(y)andthehisto-gramofthenormalizedspacingbetweennon-necessarilyconsecutivezeros,atheight1013(anumberof2109zeroshavebeenusedtocom-putetheempiricaldensity,representedassmallcircles).Source:XavierGourdon[7]Theorem.AssumetheRiemannhypo-thesis.Supposefisatestfunctionwiththefollowingproperty:itsFou-riertransform6isC1andsupportedin(�1;1).Then~r(f;t)�!t!1ZRf(y)~r(y)dy;where~r(y)=1�sin(y) y2.InfactanimportantconjectureduetoMontgomeryassertsthattheaboveresultholdswithnoconditiononthesupportoftheFouriertransform.Ho-wever,weakeningtherestrictioneventosupp^f(�1�";1+")forsome"�0outofreachwithknowntechniques.TheMontgomeryconjecturewouldhaveim-portantconsequencesforexampleintermsofthestatisticsofgapsbetweentheprimenumbersp1p2::::forexample,itwouldimplythatpn+1�pnp pnlogpn.SketchofproofofMontgomery'sTheorem.ConsiderthefunctionF( ;t)=1 t 2logtX0 ; 0ti ( � 0)4 4+( � 0)2;wherethe 'saretheimaginarypartsofthezeros.ThisistheFouriertransformofthenormalizedspacings,uptothefactor4=(4+( � 0)2),presentherejustfortechnicalconvergencereasons.ThisfunctionnaturallyappearswhencountingthesecondordermomentsZt0jG(s;t )j2ds=F( ;t)tlogt+O(log3t);G(s;x)=2X xi 1+(s� )2:(7) 6.ContrarytotheWeilandSelbergformulas(3)and(5),thechosennormalizationhereis^f(x)=R1�1f(y)e�i2xydy Vol.00,2012TeaTimeinPrinceton7AsGisalinearfunctionalofthezeros,itcanbewrittenasasumoverprimesbyanappropriateexplicitformulalike(3):MontgomeryprovedthatG(s;x)=�p x Xnx(n)x n�1 2+is+X�nx(n)x n3 2+is!+"(s;x);where"(s;x)isanerrortermwhich,undertheRiemannhypothesis,canbeboundedecientlyandmakesnocontributioninthefollowingasymptotics.Themoment(7)canthereforebeexpandedasasumoverprimes,andtheMontgomery-Vaughaninequality(cf.theexercisehereafter)leadstoZt0jG(s;t )j2ds=(t�2 logt+ +o(1))tlogt:(8)TheseasymptoticscanbeprovedbytheMontgomeryVaughaninequality,butonlyintherange 2(0;1),whichexplainsthesupportrestrictioninthehypotheses.GatheringbothasymptoticexpressionsforthesecondmomentofGyieldsF( ;t)=t�2 logt+ +o(1).Finally,bytheFourierinversionformula,1 t 2logtX0 ; 0tf( � 0)logt 24 4+( � 0)2=ZRF( ;t)^f( )d :Ifsupp^f(�1;1),thisisapproximatelyZR^f( )(t�2j j+j j)d =ZRe�2j j^f( =logt)d +ZRj j^f( )d =^f(0)+f(0)�ZR(1�j j)^f( )d +o(1)=f(0)+ZRf(x) 1�sinx x2!dx+o(1);bythePlancherelformula. (Dicult)Exercise.Let(ar)becomplexnumbers,(r)distinctrealnumbersandr=mins6=rjr�sj.ThentheMontgomery-Vaughaninequalityassertsthat1 tZt0jXrareirsj2ds=Xrjarj21+3 trforsomejj1.Inparticular,Zt0 1Xn=1an nis 2ds=t1Xn=1janj2+O 1Xn=1njanj2!:Provethattheaboveresultimplies(8). 8P.BourgadeHarvardCollegeMathematicsReview Figure3{Thedistributionfunctionofasymptoticgapsbetweeneigenvaluesofran-dommatricescomparedwiththehistogramofgapsbetweensuccessivenormalizedze-ros,basedonabillionzerosnear#1:31016.TonumericallytestMontgomery'sconjec-ture,Odlyzko[11]computedthenormalizedgaps,!i+1�!i,andproducedthejointhis-togram.Inparticular,notethatthelimitingdensityvanishesat0,contrastingwithFi-gure1,andthatthistypeofrepulsioncoin-cidesremarkablywiththeshapeofgapsforrandommatrices.Moreover,Montgomery'sresulthasbeenextendedintheworkbyRudnickandSarnak[14],whoprovedthatforsomesta-tisticsdependingonmorethanjustonegap,thezerosalsopresentthesamelimitdis-tributionaspredictedbyRandomMatrixTheory.Thisurgesustoexplaininmorede-tailswhatwemeanbyrandommatrices.3EigenvaluesrepulsionforrandommatricesLetbeapointprocess,i.e.arandomsetofpointsfx1;x2;:::g,inametricspace,identi edwiththerandompunctualmeasurePixi.Thekthcorrelationfunctionforthispointprocess,k,isde nedastheasymptotic(normalized)proba-bilityofhavingexactlyoneparticleinrespectiveneighborhoodsofk xedpoints.Moreprecisely,iftheui'saredistinctin,k(u1;:::;uk)=lim"!0P((Bui;")=1;1ik) Qkj=1(Bui;");providedthatthelimitexists(hereBui;"denotestheballwithradius"andcenteru,andthemeasurewillbespeci edlater).Ifconsistsalmostsurelyofnpoints,thecorrelationfunctionssatisfytheintegrationproperty(n�k)k(u1;:::;uk)=Zk+1(u1;:::;uk+1)d(uk+1):(9)Interestingly,manypropertiesaboutapointprocessarewell-understoodwhenthecorrelationfunctionsarealsodeterminants.Moreprecisely,assumenowthat=C.IfthereexistsafunctionK:CC!Csuchthatforallk1and(z1;:::;zk)2Ckk(z1;:::;zk)=det�K(zi;zj)ki;j=1;thenissaidtobeadeterminantalpointprocesswithrespecttotheunderlyingmeasureandwithcorrelationkernelK.Thedeterminantalconditionforallcorrelationfunctionsisquiterestrictive.Ne-vertheless,asstatedinthefollowingtheorem,anybidimensionalsystemofparticleswithquadraticinteractionisdeterminantal(see[1]foraproof).Theorem.Letdbeany7 nitemeasureonC(eventuallyconcentratedonaline). 7.Wejustneedadecreasingofthemassatin nityoftypeRjzj�td(z)t�kforanyk�0. Vol.00,2012TeaTimeinPrinceton9Considertheprobabilitydistributionwithdensityc(n)Y1knjzl�zkj2withrespecttoQnj=1d(zj),wherec(n)isthenormalizationconstant.Forthisjointdistribution,fz1;:::;zngisadeterminantalpointprocesswiththefollowingexplicitkernel,K(x;y)=n�1Xk=0Pk(x) Pk(y)wherePk(0kn�1)isapolynomialwithdegreekandthePj'sareorthonormalfortheHermitianproductf;g7!Rf gd:Weapplytheaboveresulttothefollowingexamples,whichareamongthemoststudiedrandommatrices.First,considertheso-calledGaussianunitaryensemble(GUE).Thisistheensemble(orset)ofrandomnnHermitianmatriceswithindependent(uptosymmetry)Gaussianentries:M(n)ij= M(n)ji=1 p n(Xij+iYij);1ijn;wheretheXij'sandYij'sareindependentcenteredrealGaussiansentrieswithmean0andvariance1=2andM(n)ii=Xii=p nwithXiirealcenteredGaussianswithvariance1,stillindependent.Theserandommatricesarenaturalinthesensethattheyareuniquelycharacterizedbytheindependence(uptosymmetry)oftheirentries,andinvariancebyunitaryconjugacy.Asimilarnaturalsetofmatrices,whentheentriesarenowrealGaussian,calledGOE(Gaussianorthogonalensemble)willappearinthenextsection.FortheGUE,thedistributionoftheeigenvalueshasanexplicitdensity,1 Zne�nPni=12i=2Y1inji�jj2(10)withrespecttoLebesguemeasure(seee.g.[1]foraderivationofthisresult).Wedenoteby(hn)theHermitepolynomials,morepreciselythesuccessivemonicpoly-nomialsorthogonalwithrespecttotheGaussianweighte�x2=2dx,andconsidertheassociatednormalizedfunctions k(x)=e�x2=4 p p 2k!hk(x):ThenfromthepreviousTheorem,onecanprovethatthesetofpointf1;:::;ngwithlaw(10)isadeterminantalpointprocesswhosekernel(withrespecttotheLebesguemeasureonR)isgivenbyKGUE(n)(x;y)=n n(xp n) n�1(yp n)� n�1(xp n) n(yp n) x�y;extendedbycontinuitywhenx=y.Hereweusedasimpli cation:thesumoverallorthogonalpolynomialscansimplifyasasumoverjusttwoofthem,thisistheChristo el-Darbouxformula.ThePlancherel-RotachasymptoticsfortheHermitepolynomialsimpliesthat,asn!1,KGUE(n)(x;x)=nhasanon-triviallimit. 10P.BourgadeHarvardCollegeMathematicsReview Figure4{HistogramoftheeigenvaluesfromtheGaussianUnitaryEnsembleindi-mension104.Dashed:therescaledsemicirclelaw.Moreprecisely,theempiricalspectraldistri-bution1 nPiconvergesinprobabilitytothesemicirclelawwithdensitysc(x)=1 2p (4�x2)+withrespecttoLebesguemeasure.Thisistheasymptoticbehaviorofthespectruminthemacroscopicregime.Themicrosco-picinteractionsbetweeneigenvaluesalsocanbeevaluatedthankstoasymptoticsoftheHermiteorthogonalpolynomials:foranyx2(�2;2),u2R,1 nsc(x)KGUE(n)x;x+u nsc(x)�!n!1K(u)=sin(u) u:Thisleadstoarepulsivecorrelationstructurefortheeigenvaluesatthescaleoftheaveragegap:forexamplethetwo-pointcorrelationfunctionasymptoticsare1 nsc(x)2GUE(n)2x;x+u nsc(x)�!n!1~r(u)=1�sin(u) u2;thestrictanaloguetoMontogmery'sresult,ananalogyidenti edbyDysonasmen-tionedinSection2. Figure5{Upperline:asampleofindependentpointsdistributedaccordingtothesemicirclelawafterzoominginthebulk.Middleline:asampleeigenvaluesoftheGUEafterzoominginthebulkofthespectrum.Lowerline:asequenceofimaginarypartsofthezeros,aboutheight105.Aremarkablefactabouttheabovelimitingsinekernelisthatitappearsuni-versallyinthelimitingcorrelationfunctionsofrandomHermitianmatriceswithindependent(uptosymmetry)entries(notnecessarilyGaussian);thesedeepuni-versalityresultswereachieved,stillfortheHermitiansymmetryclass,inrecentworksbyErd}os,Yauetal,orbyTao,Vu.Inthecaseofothersymmetryclasses8,theuniversalityofthelocaleigenvaluesstatisticshasalsobeenprovedbyErd}os,Yauetal.Finallywewanttomentionthefollowingstructuralreasonfortherepulsionoftheeigenvaluesoftypicalmatrices:asanexercise,thereadercouldprovethatthespaceofHermitianmatriceswithatleastonerepeatedeigenvaluehascodimension3inthespaceofallHermitianmatrices.Repeatedeigenvaluesthereforeoccurwithverysmallprobabilitycomparedtoindependentpoints(onaproductspace,thecodimensionofthesubspacewheretwopointscoincideis1).LaszloErd}osaskedmeaboutastructural,heuristic,argumentfortherepulsionofthezeros.Unabletoanswerit,Itransmitthequestiontothereaders. 8.i.e.forrandomsymmetricmatricesorrandomsymplecticmatrices Vol.00,2012TeaTimeinPrinceton114EigenvaluesrepulsionforquantumbilliardsToconcludethisexpositorynote,wewishtomentionsomeconjecturesabouttheasymptoticdistributionofeigenvalues,fortheLaplacianoncompactspaces.Theexamplesweconsideraretwo-dimensionalquantumbilliards9.Forsomebilliards,theclassicaltrajectoriesareintegrable10andforotherstheyarechaotic. Figure6{Anintegrablebilliard(ellipse)andachaoticone(stadium)Onthequantumside,weconsidertheHelmholtzequationinsidethebilliard,describingthestandingwaves:� n=n n;wherethespectrumisdiscreteasthedomainiscompact,withorderedeigenva-lues012:::,andappropriateDirichletorNeumannboundaryconditions. Figure7{Somechaoticbilliards,fromlefttoright,uptodown:thestadium,Sinai'sbillard,thecardioid,andabilliardwithnoname.Thequestionsaboutquantumbilliardsweareinterestedhereisabouttheasymptoticbehaviorofthen's,i.e.whethertheywillpresentasympto-ticindependenceoraRandomMatrixTheorytypeofrepulsion.Thesitua-tionisstillsomehowmysterious:thereisaconjecturaldichotomybetweenthechaoticandintegrablecases.First,in1977,BerryandTabor[4]putforwardtheconjecturethatformostintegrablesystems,thelargeeigenvalueshavethestatisticsofaPoissonpointprocess,i.e.rescaledgapsbeingasymptoticallyexponentialrandomvariables,likeinSection1.Moreprecisely,byWeyl'slaw,weknowthatthenumberofsucheigen-valuesuptoisjfi:igj!1area(D) 4:(11)Toanalyzethecorrelationsbetweeneigenvalues,considerthepointprocess(n)=1 nXin4 area(D)(i+1�i):Itsexpectationconvergesto1(asn!1)from(11). 9.Abilliardisacompactconnectedsetwithnonemptyinterior,withagenerallypiecewiseregularboundary,sothattheclassicaltrajectoriesarestraightlinesre ectingwithequalanglesofincidenceandre ection10.Roughlyspeakingthismeansthattherearemanyconservedquantitiesalongthetrajectory,andthatexplicitsolutionscanbegivenforthespeedandpositionoftheballatanytime 12P.BourgadeHarvardCollegeMathematicsReview Figure8{EnergylevelsforthecircularbilliardcomparedtothoseoftheGaussianensemblesandPoissonianstatistics(dataandpicturefrom[2]).BytheconjecturedlimitingPoisso-nianbehavior,thespacingdistributionconvergestoanexponentiallaw:foranyIR+(n)(I)�!n!1ZIe�xdx:(12)Inthechaoticcase,thesituationdi ersradically:theeigenvaluesaresupposedtorepeleachother,withgapsstatisticsconjecturallysimilartothoseofarandommatrix,fromanensembledependingonthesymmetrypropertiesofthesystem(e.g.time-reversibilityforourquantumbilliardscorrespondtotheGaussianOrthogonalEnsemble).ThisisknownastheBohigas-Giannoni-SchmidtConjecture[5]. Figure9{EnergylevelsforthecardioidbilliardcomparedtothoseoftheGaussianensemblesandPoissonianstatistics(dataandpicturefrom[2]).Numericalexperimentswereper-formedin[5]givingacorrespondencebetweentheeigenvaluespacingsstatis-ticsforSinai'sbilliardandthoseoftheGaussianOrthogonalEnsemble.Thejointgraphs,byA.Backer,presentsimi-larexperimentsforanintegrablebilliard(Figure8)andachaoticone(Figure9).ThesestatisticsareperfectlycoherentwithboththeBerry-TaborandtheBohigas-Giannoni-Schmidtconjectures.ThisdeepenstheinterestintheseRan-domMatrixTheorydistributions,whichappearincreasinglyinmany elds,in-cludinganalyticnumbertheory.References[1]G.W.Anderson,A.Guionnet,O.Zeitouni,AnIntroductiontoRandomMa-trices,CambridgeUniversityPress,2009.[2]A.Backer,Ph.D.thesis,UniversitatUlm,Germany,1998.[3]M.V.Berry,J.P.Keating,TheRiemannzerosandeigenvalueasymptotics,SIAMReview41(1999),236{266.[4]M.V.Berry,M.Tabor,Levelclusteringintheregularspectrum,Proc.Roy.Soc.Lond.A356(1977),375{394.[5]O.Bohigas,M.-J.Giannoni,C.Schmidt,Characterizationofchaoicquantumspectraanduniversalityoflevel uctuationlaws,Phys.Rev.Lett.52(1984),1{4. Vol.00,2012TeaTimeinPrinceton13[6]J.Derbyshire,PrimeObsession:BernhardRiemannandtheGreatestUnsol-vedProbleminMathematics(PlumeBooks,2003)[7]X.Gourdon,The1013 rstzerosoftheRiemannZetafunction,andzeroscomputationatverylargeheight.[8]J.P.Keating,N.C.Snaith,Randommatrixtheoryandnumbertheory,inTheHandbookonRandomMatrixTheory,491{509,editedbyG.Akemann,J.Baik&P.DiFrancesco,OxforduniversityPress,2011.[9]M.L.Mehta,Randommatrices,Thirdedition,PureandAppliedMathematicsSeries142,Elsevier,London,2004.[10]H.L.Montgomery,Thepaircorrelationofzerosofthezetafunction,Analy-ticnumbertheory(ProceedingsofSymposiuminPureMathemathics24(St.LouisUniv.,St.Louis,Mo.,1972),AmericanMathematicalSociety(Provi-dence,R.I.,1973),pp.181{193.[11]A.M.Odlyzko,Onthedistributionofspacingsbetweenthezerosofthezetafunction,Math.Comp.48(1987),273{308.[12]N.M.Katz,P.Sarnak,RandomMatrices,FrobeniusEigenvaluesandmono-dromy,AmericanMathematicalSocietyColloquiumPublications,45.Ameri-canMathematicalSociety,Providence,Rhodeisland,1999.[13]B.Riemann,UberdieAnzahlderPrimzahlenuntereinergegebenenGrosse,MonatsberichtederBerlinerAkademie,GesammelteWerke,Teubner,Leipzig,1892.[14]Z.Rudnick,P.Sarnak,ZeroesofprincipalL-functionsandrandommatrixtheory,DukeMath.J.81(1996),no.2,269{322.AcelebrationofJohnF.Nash.[15]E.C.Titchmarsh,TheTheoryoftheRiemannZetaFunction,London,OxfordUniversityPress,1951.

Related Contents


Next Show more