/
Bunching of Photons When Two Beams Pass Through a Beam Splitter Kirk T Bunching of Photons When Two Beams Pass Through a Beam Splitter Kirk T

Bunching of Photons When Two Beams Pass Through a Beam Splitter Kirk T - PDF document

sherrill-nordquist
sherrill-nordquist . @sherrill-nordquist
Follow
478 views
Uploaded On 2014-12-19

Bunching of Photons When Two Beams Pass Through a Beam Splitter Kirk T - PPT Presentation

McDonald Joseph Henry Laboratories Princeton University Princeton NJ 08544 Lijun J Wang NEC Research Institute Inc Princeton NJ 08540 Aug 17 2003 1Problem Dirac has written 1 Each photon then interferes only with itself Interference between two di64 ID: 26446

McDonald Joseph Henry Laboratories

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Bunching of Photons When Two Beams Pass ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

BunchingofPhotonsWhenTwoBeamsPassThroughaBeamSplitterKirkT.McDonaldJosephHenryLaboratories,PrincetonUniversity,Princeton,NJ08544LijunJ.WangNECResearchInstitute,Inc.,Princeton,NJ08540(Aug.17,2003)1ProblemDirachaswritten[1]Eachphotontheninterferesonlywithitself.Interferencebetweentwodierentphotonsneveroccurs.Indeed,apracticalde“nitionisthatclassicalŽoptics Hint:arelativelyelementaryargumentcanbegivenbyrecallingthatthephaseofare”ectedphoton(i.e.,ofthere”ectedwavefromasingleinputbeam)is90dierentfromthatofatransmittedphoton[2].Consider“rstthecasesthatoneofiszero.2Solution 2.1ASingleInputBeamWe“rstconsiderthecaseofasingleinputbeamwith0.Then,ofcourse,=0.Inaclassicalview,theinputbeamwouldhaveenergy,whereistheangularfrequencyofthephotons.Then,theeectofthe50:50beamsplitterwouldbetocreateoutputbeamsofequalenergies,2.Intermsofphotonnumbers,theclassicalviewwouldimplythattheonlypossibilityfortheoutputbeamsisButinfact,thetransmittedbeamcancontainanynumberofphotonsbetween0and,whilethere”ectedbeamcontainsphotons.Ifthephotonsweredistinguishable,wewouldassignaprobabilityof(1toeachcon“gurationoftransmittedandre”ectedphotonsinthe50:50splitter.Butthephotonsareindistinguishable,sothattheprobabilitythatoutofphotonsaretransmittedislargerthan(1bythenumberofwaysthephotonscanbearrangedintoagrouptransmittedandre”ectedphotonswithoutregardtotheirorder,i.e.,bythebinomialcoecient, (1)Thus,theprobability0)thatoutofphotons(inasingleinputbeam)aretransmittedbythebeamsplitteris,0)= (2)Theresult(2)isalreadyverynonclassical,inthatthereisasmall,butnonzeroprobabilitythattheentireinputbeamistransmitted,orre”ected.However,inthelimitoflargelargestprobabilityisthatthenumbersofphotonsinthere”ectedandtransmittedbeamsareverynearlyequal.Wecon“rmthisbyuseofStirlingsapproximationforlarge n.(3)Forlarge,and=(1+2,wehave,  2k nk21Šk nnŠk2=2n +1) n/ (1+(4)Theprobabilityofphotonsoutofbeingtransmitteddropsto1/2thepeakprobabilitywhen .Hence,forlargethenumberdistributionofphotonsinthetransmitted(andre”ected)beamisessentiallyadeltafunctioncenteredat2,inagreementwiththeclassicalview.Themostdramaticdierencebetweentheclassicalandquantumbehaviorofasinglebeamina50:50beamsplitteroccurswhen=2,0)= 0)= 0)= (5) Inthesubsequentanalysisweshallneedtoconsiderinterferenceeects,sowenotethatthemagnitudeoftheprobabilityamplitudethatoutofphotonsinasinglebeamaretransmittedbya50:50beamsplittercanobtainedbytakingthesquarerootofeq.(2),k,n Cnk1 (6)Theseamplitudeshavetheobvioussymmetries,k,nk,kk,nk,k(7)Wemustalsoconsiderthephasesoftheseamplitudes,oratleasttherelativephases.Thehintisthatwemayconsiderthephaseofare”ectedphotontobeshiftedwithrespecttothatofatransmittedphotonby90,asfollowsfromaclassicalanalysisofwavesina50:50beamsplitter[2](seealsotheAppendix).Inthisproblem,wede“nethephaseofatransmittedphotontobezero,sothattheprobabilityamplitudeshouldincludeafactorof 1foreachre”ectedphoton.Thus,wehave,k,n0)= Cnk1 (8)k,k0)= Cnk1 (9)k,n Cnk1 (10)k,k Cnk1 (11)2.2TwoInputBeamsWenowcalculatethegeneralprobability)thatoutputphotonsareobservedalongthedirectionofinputbeam1whenthenumberofphotonsintheinputbeamsinandWe“rstgiveaclassicalwaveanalysis.Theinputwaveshaveamplitudes andareinphaseatthecenterofthebeamsplitter.Theoutputamplitudesarethesumsofthere”ectedandtransmittedpartsoftheinputamplitudes.Are”ectedamplitudehasaphaseshiftof90relativetoitscorrespondingtransmittedamplitude,asdiscussedinsec.2.1.Inthe50:50beamsplitter,themagnitudeofboththere”ectedandtransmittedamplitudesfromasingleinputbeamare1 2timesthemagnitudeoftheamplitudeofthatbeam.Hence,theoutputamplitudesare,  (12)  (13) Takingtheabsolutesquareofeqs.(12)-(13),we“ndtheoutputbeamstobedescribedby, =a21+a22 2=n1+n2 (14)Theclassicalviewisthata50:50beamsplittersimplysplitsbothinputbeams,whentheyareinphase.Foraquantumanalysis,weproceedbynotingthatofthephotonsinoutputbeam1,ofthesecouldhavecomebytransmissionfrominputbeam1,andbyre”ectionfrominputbeam2(solongas).Theprobabilityamplitudethatoutofphotonsaretransmittedfrombeam1whilephotonsarere”ectedfrombeam2is,towithinaphasefactor,theproductoftheamplitudesforeachofthesecon“gurationsresultingfromasingleinputbeam,k,Nk,n Cn1kCn2N1Šk1 (15)referringtoeqs.(8)-(11).Themostdramaticnonclassicalfeaturestobefoundbelowcanbeattributedtothepresenceofthefactor(thatarisesfromthe90phaseshiftbetweenre”ectedandtransmittedphotons.SincephotonsobeyBosestatistics,wesumthesub-amplitudes(15),weightingeachonebythesquarerootofthenumberofwaysthatoutofthephotonsinthe“rstoutputbeamcanbeassignedtoinputbeam1,namely,timethesquarerootofthenumberofwaysthattheremainingphotonsfrominputbeam1canbeassignedtothephotonsinoutputbeam2,namelytoobtain, k,Nk,n 2(n1+n2)/2k(Š (16)Whenevaluatingthisexpression,anybinomialcoecientinwhichisnegative,orgreaterthan,shouldbesettozero.Thedesiredprobabilityis,ofcourse,(17)Someexamplesoftheprobabilitydistributionsforsmallnumbersofinputphotonsaregivenbelow. Delicatetojustifynotalsoincludingfactors,and,thesebeingthewaysofassigningphotonstooutputbeam2–butthesefactorsarethesameasthosealreadyincluded,andsoshouldnotbecountedtwice... 2.2.1TwoInputPhotonsInput Output( 2|1|0| |2, 41 21 4|1, 201 2|0, 41 21 Wheniszero,theprobabilitydistributionisbinomial,asfoundinsec.2.1.When=1thereiscompletedestructiveinterferencebetweenthecaseswherebothphotonsarere”ected(combinedphaseshift=180)andwhenbotharetransmitted(combinedphaseshift=0).Thisquantumresultisstrikinglydierentfromtheclassicalexpectationthattherewouldbeonephotonineachoutputbeam.2.2.2ThreeInputPhotonsInput Output( 3|2|1|0| |3, 83 83 81 8|2, 81 81 81 8|1, 81 81 81 8|0, 83 83 81 2.2.3FourInputPhotonsInput Output( 4|4|2|1|0| |4, 43 81 41 3, 41 401 41 4|2, 801 403 8|1, 41 401 41 4|0, 43 81 41 2.2.4SymmetricInputBeams:Inthiscasethereiszeroprobabilityofobservinganoddnumberofphotonsineitheroutputbeam. Toseethis,notethatwhen,themagnitudesofthesubamplitudesareequalforhavingphotonsappearinginoutputbeam1fromeitherinputbeam1orinputbeam2.However,thephasesofthesetwosubamplitudesare180apart,sothattheycancel.Inparticular,whenphotonsaretransmittedintooutputbeam1frominputbeam1,thenphotonsarere”ectedfrominputbeam2intooutputbeam1;meanwhile,photonsarere”ectedfrominputbeam1intooutputbeam2.So,theoverallphasefactorofthissubamplitudeis.Whereas,ifphotonsarere”ectedfrominputbeam2intooutputbeam1,thenphotonsaretransmittedfrominputbeam1intooutputbeam1,andsophotonsarere”ectedfrominputbeam1intooutputbeam2.So,theoverallphasefactorofthissubamplitudeis.Thephasefactorbetweenthesetwosubamplitudes(whosemagnitudesareequal)iswhichis1forodd,asclaimed.Forthecaseofobservinganevennumberofphotonsintheoutputbeams,aremarkablesimpli“cationofeq.(16)holds[3].Wehavenotbeenabletoshowthisbyelementarymeans.Itdoesfollowbyinspectionwhen,inwhichcaseeq.(16)containsonlyasinglenonzeroterm.Ingeneral,theindexineq.(16)forn,nrunsfrom0to,orfrom.Thereareanoddnumberofterms,thecentralonehavingindex.Byastrangemiracleofcombinatorics,thesumcollapsestoasimpli“edversionofthecentraltermoftheseries....Namely,n,n)=( 2n (18)Therefore,the+1nonvanishingprobabilitiesforsymmetricinputbeamsare.n,n 22nC2mmC2nŠ2mnŠm1 m nm (19)wheretheapproximationholdsforlargeandlarge.Notethatdx/ Thisprobabilitydistributionpeaksfor=0ori.e.,forallphotonsinoneortheotheroutputbeam,withvalue,n,nn,n (20)Theprobabilityof“ndingalloutputphotonsinasinglebeamwhentheinputbeamsaresymmetricislargerbyafactorthanwhenthereisonlyasingleinputbeam(ofthesametotalnumberofphotons),becausetherearewaysofassigningthephotonsfrominputbeam1tothe2photonsintheoutputbeam.Thisisanextremeexampleofphotonbunchingcausedbythebeamsplitter.Itisnoteworthythattheresult(19)doesnotagreewiththeclassicalprediction(14)inthelargelimit.Ofcourse,aspointedoutbyGlauber[8],aclassicalwavecorrespondstoaphotonstatewithminimumuncertaintyproducts,whereandaretheelectricandmagnetic“eldamplitudesofthewave,respectively.Incaseofapulse,weexpectclassicallythatbothitsenergyandphasearewellde“ned,buttheclosestquantumequivalentisacoherent statewithminimaluncertaintytotheproduct.ThisstateisasuperpositionofstatesofvariousphotonsnumberswhoseexpectationvalueforfollowsaPoissondistributionwith.Forlarge,thevarianceinphotonnumberis Hence,inanexperimentinwhichlargenumbersandofphotonsareobservedatthetwooutputportsofthebeamsplitter,wecansaythatthenumbersandofphotonsattheinputportsobeyed,butwecannotknowandseparately(iftheinputsbeamsareclassicalŽ).AllwecanknowarethemeanvaluesandTherefore,weshouldrewritetheprobabilitydistribution(17)as,(21)whereistheamplitudethatinputbeamcontainedphotonswhenthemeannumberofphotonsinthisbeamis.Weconjecturethatadetailedcalculationofeq.(21)wouldagreewiththeclassicalprediction(14),butwehavenotcon“rmedthis.3Appendix:PhaseShiftinaLosslessBeamSplitterWegiveaclassicalargumentbasedonaMach-Zehnderinterferometer,showninthe“gurebelow,thatthereisa90phaseshiftbetweenthere”ectedandtransmittedbeamsinalossless,symmetricbeamsplitter.Then,followingDiracsdictum[1],thisresultappliestoasinglephoton.Abeamoflightofunitamplitudeisincidentontheinterferometerfromtheupperleft.There”ectedandtransmittedamplitudesareand,wheremagnitudesandarerealnumbers.Theconditionofalosslessbeamsplitteristhat,(22)There”ectedandtransmittedbeamsarere”ectedomirrorsandrecombinedinasecondlosslessbeamsplitter,identicaltothe“rst. Then,theamplitudefortransmissionatthe“rstbeamsplitter,followedbyre”ectionatthesecond,istr,eHence,therecombinedbeamthatmovestotherighthasamplitude,rte(23)whiletherecombinedbeamthatmovesdownwardshasamplitude,(24)Theintensityofthe“rstoutputbeamis,(25)andthatofthesecondoutputbeamis,cos2((26)Forlosslesssplitters,thetotaloutputintensitymustbeunity,=1=([1+cos2((27)Recallingeq.(22),wemusthave,(28)foranyvalueofthesplittingratioTheprecedingargumentdoesnotclarifywherethatphasedierence(28)is90butmoredetailedarguments[2]showthephasedierencetobe.Thatis,+90(29)Furthermore,ifthebeamsplitteristhincomparedtoawavelength,then0andReferences[1]P.A.M.Dirac,ThePrinciplesofQuantumMechanicsed.(ClarendonPress,1958),p.9,http://kirkmcd.princeton.edu/examples/QM/dirac_qm_58.pdf[2]See,forexample,Problem4ofthePrincetonPh501problemset6athttp://kirkmcd.princeton.edu/examples/ph501set6.pdfAnargumentverysimilartothatintheAppendixisgivenbyV.Degiorgio,Phaseshiftbetweenthere”ectedandtransmittedoptical“eldsofasemire”ectinglosslessmirroris2,Am.J.Phys.,81(1980),http://kirkmcd.princeton.edu/examples/optics/degiorgio_ajp_48_81_80.pdfandalsobyZ.Y.OuandL.Mandel,Derivationofreciprocityrelationsforabeamsplit-terfromenergybalance,Am.J.Phys.,66(1989),http://kirkmcd.princeton.edu/examples/optics/ou_ajp_57_66_89.pdf EarlydiscussionsofphaseshiftsinbeamsplittersincludeG.B.Airy,OnthePhe-nomenonofNewtonsRingswhenformedbetweentwotransparentSubstancesofdif-ferentrefactivePowers,Phil.Mag.,20(1833),http://kirkmcd.princeton.edu/examples/optics/airy_pm_2_30_33.pdfG.G.Stokes,OnthePerfectBlacknessoftheCentralSpotinNewtonsRings,andontheVeri“cationofFresnelsFormulæfortheIntensitiesofRe”ectedandRefractedRaysCamb.andDublinMath.J.,1(1849),http://kirkmcd.princeton.edu/examples/optics/stokes_cdmj_4_1_49.pdfreprintedinMathematicalandPhysicalPapersofG.G.Stokes,V.2(CambridgeU.Press,1883),pp.89-103,Seealsosec.1.6.4ofM.BornandE.Wolf,PrinciplesofOpticsed.(CambridgeU.Press,1999),http://kirkmcd.princeton.edu/examples/EM/born_wolf_7ed.pdf[3]R.A.Campos,B.E.A.SalehandM.C.Teich,Quantum-mechanicallosslessbeamsplit-ter:SU(2)symmetryandphotonstatistics,Phys.Rev.A,1371(1989),http://kirkmcd.princeton.edu/examples/QM/campos_pra_40_1371_89.pdf[4]M.G.A.Paris,HomodynePhotocurrent,SymmetriesinPhotonMixingandNumberStateSynthesis,Int.J.Mod.Phys.B,1913(1997),http://kirkmcd.princeton.edu/examples/optics/paris_ijmp_b11_1913_97.pdf[5]R.P.Feynman,R.B.LeightonandM.Sands,TheFeynmanLecturesonPhysics(Addi-sonWesley,1965),Vol.I,sec.33-6,https://www.feynmanlectures.caltech.edu/I_33.html[6]C.K.Hong,Z.Y.OuandL.Mandel,MeasurementofSubpicosecondTimeIntervalsbetweenTwoPhotonsbyInterference,Phys.Rev.Lett.,2044(1987),http://kirkmcd.princeton.edu/examples/optics/hong_prl_59_2044_87.pdf[7]Z.Y.Ou,J.-K.RheeandL.J.Wang,ObservationofFour-PhotonInterferencewithaBeamSplitterbyPulsedParametricDown-Conversion,Phys.Rev.Lett.,959(1999),http://kirkmcd.princeton.edu/examples/optics/ou_prl_83_959_99.pdfPhotonbunchingandmultiphotoninterferenceinparametricdown-conversion,Phys.Rev.A,593(1999),http://kirkmcd.princeton.edu/examples/optics/ou_pra_60_593_99.pdf[8]R.J.Glauber,PhotonCorrelationshttp://kirkmcd.princeton.edu/examples/QM/glauber_prl_10_84_63.pdfTheQuantumTheoryofOpticalCoherence,Phys.Rev.,2529(1963),http://kirkmcd.princeton.edu/examples/QM/glauber_pr_130_2529_63.pdfCoherentandIncoherentStatesoftheRadiationFieldhttp://kirkmcd.princeton.edu/examples/QM/glauber_pr_131_2766_63.pdf