/
Eurographics Symposium on Geometry Processing  Alexander Belyaev Michael Garland Editors Eurographics Symposium on Geometry Processing  Alexander Belyaev Michael Garland Editors

Eurographics Symposium on Geometry Processing Alexander Belyaev Michael Garland Editors - PDF document

sherrill-nordquist
sherrill-nordquist . @sherrill-nordquist
Follow
484 views
Uploaded On 2014-12-13

Eurographics Symposium on Geometry Processing Alexander Belyaev Michael Garland Editors - PPT Presentation

Following the obser vations of Joshi et al JMD 07 we show the advantage of having positive coordinates The control points of the deformation are the vertices of a cage enclosing the deformed mesh To de64257ne positive mean value coordinates for a ID: 23319

Following the obser vations

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Eurographics Symposium on Geometry Proce..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Lipman&Kopf&Levin&Cohen-Or/PositiveMeanValueCoordinates Undeformed MVC(13.5sec) PMVC(18.5sec) HC(333.61sec,643voxels) Figure1:ComparisonbetweenMVC,PMVC,andHC.Theweaknessofnegativecordinatesisclearlyevident,whileHCtakesalongtimetocompute.ThePMVC,incontrast,havenonegativecoordinatesandarecomputedalmostasquicklyastheMVC. shownbyJoshietal.[ JMD07 ],themainawofMVCasatoolforsurfacedeformationisthattheyarenotnecessar-ilypositiveonnon-convexdomains.Thisinturnleadstocounter-intuitivedeformationwhenthecontrolmeshisnon-convex.AsillustratedinFigure 1 ,thenegativecoordinatesofaremotebranchofthecagedistortthegeometryinanon-intuitiveunexpectedway.Joshietal.[ JMD07 ]suggestusingharmonicfunctionswithKroneckerDelta-typeboundaryconditionstofurnishthedesiredpositivecoordinates.hereafterwewillrefertothesecoordinateswithHC.Theirsolutionismathematicallyelegantandguaranteepositiveness,however,ratherexpen-siveinpractice;thecoordinatesrequiressolvingtheLaplaceequationonthewholeinteriorofathreedimensionaldomain(theinteriorofthecage).ThesolutionoftheLaplaceequa-tionisanon-localexpensiveprocess.Thesolutionispracti-callycalculatedonagridinsidethecontrolmesh,wherethegridresolutionisdeterminedbyanerrorcriterion.Inthatcaseonehastobalanceaccuracywithstorageandcomputa-tion;increasingthegridresolutionbyoneleveloctuplicates(8X)thestorageandleadstosignicantlyslowercomputa-tion. Inthisworkweintroducepositivemeanvaluecoordinates(PMVC).UnliketheMVC,themodiedcoordinatesareun-conditionallypositive,andrequireonlyalocalcomputation.Wedemonstratetheadvantageofpositivecoordinatesinvar-iousexamplesofsurfacedeformation(e.g.,Figure 1 ).ThePMVCaretooinvolvedtobecomputedanalyticallyfromtheirclosedformformula,instead,weintroduceaGPU-assistedtechniquetocalculatenumericallythecoordinatesofagiveninputmesh.Aswewillshow,thecomputationofnewcoordinates,eitherasaresultofanewcageoranewmesh,requiresfewsecondsonly.2.PositiveMeanValueCoordinatesGivenashapetobedeformed,denotebyCacoarsecontrolmeshenclosingit.WewillrefertoCasa"cage"similartoJoshietal.[ JMD07 ].WedenotebyV=fvigi2IVthever-ticesofthecageC,whereIVisthecorrespondingindexset.Similarlytothecitedpreviousworks,thegoalistodeneasetoffunctionsli(x),i2VsuchthattheoperatorPf(x):=åi2Vli(x)f(vi);(1) c TheEurographicsAssociation2007. Lipman&Kopf&Levin&Cohen-Or/PositiveMeanValueCoordinates andthefunctionsli(x)satisfythefollowingproperties: 1. Afneinvariance:åili(x)=1. 2. Linearreproduction:Pf(x)=f(x)foralllinearfunc-tionsf(x). 3. Interpolation:limx!cPf(x)=f(c)wherec2¶C(theboundaryofC). 4. Smoothness:li(x)aresmooth. 5. Positivity:li(x)0foralli.whereallthesepropertiesshouldholdforallx2C(in-sidethecage).Therstfourpropertieswereformulatedin[ JSW05 ],andthelastpropertyisintroducedin[ JMD07 ].ThePMVCisdenedasfollows:Pf(x)=Rs2Sxf(p(s))w(x;s)ds Rs2Sxw(x;s)ds;(2)whereSxisaunitspherecenteredatx,andp(s)istherstintersectionoftheline`(t):=x+(s�x)tandC,fort0,andw(x;s)=1=kx�p(s)k.NotetheinterestingrelationbetweenMVCandPMVC;inPMVCthesphereisprojectedonthecage,whileintheformerthecageisprojectedontothesphere.Givenf(vi);i2IV,letyi(x)beapiecewise-linearfunc-tionsuchthatyi(vi0)=di;i0,wheredi;i0=1iffi=i0,and0else.Denethepiecewiselinearfunctionåi2Vfiyi(x)ontheboundaryofC,andthentheapproximantis:Pf(x)=åi2VfiRs2Sxyi(p(s))w(x;s)ds Rs2Sxw(x;s)ds:Then,wedeneli(x):=Rs2Sxyi(p(s))w(x;s)ds Rs2Sxw(x;s)ds;(3)andtheinterpolantcanthenbewrittenintheform( 1 ).Theli(x)arecalledcoordinatefunctionsforthePMVCinterpolant.Thecoordinatesareusedfordeningatransfor-mationTfromtheinteriorofthecageCintoRd(d=2;3):T:interior(C)!Rd:ThetransformationTisdenedasfollows:Apointp2interior(C)canbewrittenasthefollowingafnecombina-tionduetothelinearreproductionpropertyp=åi2IVli(p)vi:Then,givenadeformedcage˜Cwithvertices˜V=f˜vigi2iVthetransformedpositionofpisdenedasT(p):=åi2IVli(p)˜vi:Therefore,thepropertiesofthetransformationTarede-rivedfromthepropertiesofthecoordinatefunctionsli(x).Letusprovesomeofthepropertieslistedabove. MVCPMVCFigure2:Acoordinatefunctionli(x)isdrawnforanon-convexpolygon.Thei-thvertexismarkedwithgreenpoint.Theredcolorstandsforpositivevaluesandthebluearenegativevalues. Theinterpolationandlinearreproductionpropertiescanbeunderstoodbytheargumentationof[ JSW05 ],butforthesakeofcompletenesswewilllayitherealso.First,theinter-polationisduetothefactthatw(x;y) Rs2Sxw(x;s)dsisconvergingtotheDeltafunctiononthesphereasx!cforc2¶C.Asforthelinearreproductionpropertyitresultsfromthesymmetryargument:Zs2Sxx�p(s) kx�p(s)kds=0:Andtherefore,x=Rs2Sxp(s)w(x;s)ds Rs2Sxw(x;s)ds:Thatis,thecoordinatefunctionsarereproduced,andfromthelinearityoftheoperator( 1 )andtheafneinvariancethepropertyresults.Astothenon-negativitypropertyoftheco-ordinatefunctions,thisreadilyresultsfromthefactthatthecoordinatesli(x)aredenedviaanintegrationofanon-negativefunctionoverasphereinEq.( 3 ).Forexample,seeFigure 2 forcomparisonwithMVC.SmoothnessOneofthestrongpropertiesoftheMVCisthattheyaresmooth.ThePMVCdenitioninvolvesvisibilityconsiderationwhichincurssingularitiesacrosssupportingplanesofreexvertices.ThesupportingplanespartitionthecageintoregionswithinwhichthePMVCaresmooth,whileacrossthesupportingplanessmoothnessisnotguaranteed.AnexampleofsuchscenarioisshowninFigure 4 ,wherethecoordinatefunctionassociatedwiththe`spike'vertexisnotsmooth.However,asdepictedinthatgure,minorre-nementofthecagealleviatesthisproblem.Inpractice,wefoundthatinmostcasestheresultisplausibleandsmooth.ThiscanbeobservedinFigure 3 ,whereashapeofachecker-boardpatternthatcrossesasupportinglineissmoothlybent.Theexampleshowstheeffectofeditingasinglevertexandconsequentlyofasinglecoordinateli(x). c TheEurographicsAssociation2007. Lipman&Kopf&Levin&Cohen-Or/PositiveMeanValueCoordinates UndeformedMVC(3.70sec)PMVC(3.03sec)HC(66.48sec) UndeformedMVC(5.92sec)PMVC(8.75sec)HC(28.61sec)Figure7:ComparisonbetweenMVC,PMVC,andHCdeformationsoftheArmadilloandHorsemodels.Notethatonmodelslikethese,wherethecagehaswellseperatedlimbs,thedeformationqualityissimilar. TherunningtimesofPMVCaregenerallyinthesameor-derofmagnitudeasMVC,andabout10–100timesfasterthanHC,dependingonmeshandcagecomplexity.Theper-formanceisroughlylinearinthenumberofcubemappix-els.Wefoundthatformostmeshes322cubemapshaveneenoughresolutionsothatnoquantizationartifactsareno-ticeable.Thehandmodel(Figure 1 )wascreatedwith642cubemaps.Table 1 providesdetailedtimingsforvariousex-amplesshowninthispaper.TheperformanceofPMVCisonlylooselyconnectedtocagecomplexity.Table 2 showstimingsforasingleobjectwithincreasinglymorecomplexcages.Astomemoryusage,itshouldbenotedthatPMVC,sim-ilartoMVC,computesthecoordinatesofeachembeddedshapepointdirectlyon-the-yduringsetup.5.ConclusionsWepresentedmeanvaluecoordinatesthatconsideronlythevisibleportionofthecagetoguarantee,likeharmoniccoor-dinates,thatthecoordinatevaluesarealwayspositive.ThekeypointisthatthepositivemeanvaluecoordinatescanbecomputedfastbyexploitingthereadilyavailablevisibilitycomputationoftheGPU.Furthermore,asweshowed,theGPUspeedturnsthecomputationpracticallyinsensitiveto thecageresolution.Thisallowsustorenethecageandimprovethequalityoftheinterpolationwithoutsignicantcost.Ourmethodsuccessfullybringstheideaofpositiveco-ordinatestothepointwhereitistrulyapracticalandusefultoolformeshdeformation.WebelievethatmoreresearchcanleadtoevenfastermethodstocomputelocalcoordinateswithassistanceoftheGPU.AcknowledgementsWethankScottSchaefferforprovidinguswiththecagesandmodelsoftheArmadilloandhorse,andHongboFuandKunZhouforthehandmodel.WealsothankTaoJuforhelpfulandinsightfulcomments.ThisworkwassupportedinpartbytheIsraelScienceFoundation.References [Coq90] COQUILLARTS.:Extendedfree-formdeformation:asculpturingtoolfor3dgeometricmodeling.ProceedingsofSIG-GRAPH'90(1990),187–196. [FKR05] FLOATERM.S.,KOSG.,REIMERSM.:Meanvaluecoordinatesin3d.ComputerAidedGeometricDesign22,7(2005),623–631. [Flo03] FLOATERM.S.:Meanvaluecoordinates.ComputerAidedGeometricDesign20,1(2003),19–27. c TheEurographicsAssociation2007. Lipman&Kopf&Levin&Cohen-Or/PositiveMeanValueCoordinates // Initializationsetalllv;i=0setallwsumv=0 // Renderingandintegrationforeachvertexvdo foreachcubemapfacefdo renderftorenderbuffersifrenderbufferfullorlastvertex-facepairthen // Integrationforeachrenderbufferpixel(x;y)do tri=getValue(x;y;3)w=getWeight(x;y)forc=0to2do i=vertexList[tri3+c]lv;i+=getValue(x;y;c)wendwsumv+=wendclearrenderbuffersendendend // Normalizationforeachvertexvdo foreachcubemapfacefdo lv;i==wsumvendend Algorithm1:OuralgorithmtocomputethePMVCco-ordinates. [HF06] HORMANNK.,FLOATERM.S.:Meanvaluecoordinatesforarbitraryplanarpolygons.ACMTransactionsonGraphics25,4(2006),1424–1441. [JMD07] JOSHIP.,MEYERM.,DEROSET.,GREENB.,SANOCKIT.:Harmoniccoordinatesforcharacterarticulation.TransactionsonGraphics26,3(Proc.SIGGRAPH)(2007). [JSW05] JUT.,SCHAEFERS.,WARRENJ.:Meanvalueco-ordinatesforclosedtriangularmeshes.vol.24,3(Proc.SIG-GRAPH),pp.561–566. [SP86] SEDERBERGT.W.,PARRYS.R.:Free-formdeforma-tionofsolidgeometricmodels.ProceedingsofSIGGRAPH'86(1986),151–160. Armadillo Horse Hand MeshVertices 15,002 48,485 24,795 CageVertices 110 51 252 MVC 3.70s 5.92s 13.50s PMVC322 3.03s 8.75s 6.64s PMVC642 9.82s 30.64s 18.50s HC643 66.48s 28.61s 333.61s HC1283 770.00s 305.93s 4413.66s Table1:Performancecomparison. CageVertices CageTriangles PMVCtiming 51 98 16.07s 102 200 16.32s 198 392 16.73s 402 800 17.44s 843 1682 18.70s 1523 3042 20.41s Table2:TheperformanceofPMVCisonlylooselycon-nectedtothecagecomplexity.Thetableshowstimingsforthehandmodel(24,795vertices)andsphericalcage.Thecagewassubdividedintoincreasingnumbersoftriangles. c TheEurographicsAssociation2007.