/
GENERALIZED DISJUNCTIVE PROGRAMMING A FRAMEWORK FOR FO GENERALIZED DISJUNCTIVE PROGRAMMING A FRAMEWORK FOR FO

GENERALIZED DISJUNCTIVE PROGRAMMING A FRAMEWORK FOR FO - PDF document

sherrill-nordquist
sherrill-nordquist . @sherrill-nordquist
Follow
412 views
Uploaded On 2015-06-02

GENERALIZED DISJUNCTIVE PROGRAMMING A FRAMEWORK FOR FO - PPT Presentation

GROSSMANN AND JUAN P RUIZ Abstract Generalized disjunctive programming GDP is an extension of the disjunctive pro gramming paradigm developed by Balas The GDP formulation i nvolves Boolean and continuous variables that are specied in algebraic const ID: 78561

GROSSMANN AND JUAN

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "GENERALIZED DISJUNCTIVE PROGRAMMING A FR..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

GENERALIZEDDISJUNCTIVEPROGRAMMING:AFRAMEWORKFORFORMULATIONANDALTERNATIVEALGORITHMSFORMINLPOPTIMIZATIONIGNACIOE.GROSSMANNANDJUANP.RUIZyAbstract.Generalizeddisjunctiveprogramming(GDP)isanextensionofthedisjunctivepro-grammingparadigmdevelopedbyBalas.TheGDPformulationinvolvesBooleanandcontinuousvariablesthatarespeci edinalgebraicconstraints,disjunctionsandlogicpropositions,whichisanalternativerepresentationtothetraditionalalgebraicmixed-integerprogrammingformulation.AfterprovidingabriefreviewofMINLPoptimiza-tion,wepresentanoverviewofGDPforthecaseofconvexfunctionsemphasizingthequalityofcontinuousrelaxationsofalternativereformulationsthatincludethebig-Mandthehullrelaxation.Wethenreviewdisjunctivebranchandboundaswellaslogic-baseddecompositionmethodsthatcircumventsomeofthelimitationsintraditionalMINLPoptimization.WenextconsiderthecaseoflinearGDPproblemstoshowhowahierarchyofrelaxationscanbedevelopedbyperformingsequentialintersectionofdis-junctions.Finally,forthecasewhentheGDPprobleminvolvesnonconvexfunctions,weproposeaschemefortighteningthelowerboundsforobtainingtheglobaloptimumusingacombineddisjunctiveandspatialbranchandboundsearch.WeillustratetheapplicationofthetheoreticalconceptsandalgorithmsonseveralengineeringandORproblems.Keywords.DisjunctiveProgramming,MixedIntegerNon-LinearProgramming,GlobalOptimizationAMS(MOS)subjectclassi cations.1.Introduction.Mixed-integeroptimizationprovidesaframeworkformathematicallymodelingmanyoptimizationproblemsthatinvolvedis-creteandcontinuousvariables.Overthelastfewyearstherehasbeenapronouncedincreaseinthedevelopmentofthesemodels,particularlyinprocesssystemsengineering(seeGrossmannetal,1999;Kallrath,2000;Mendezetal,2006).Mixed-integerlinearprogramming(MILP)methodsandcodessuchasCPLEX,XPRESSandGUROBIhavemadegreatadvancesandarecur-rentlyappliedtoincreasinglylargerproblems.Mixed-integernonlinearprogramming(MINLP)hasalsomadesigni cantprogressasanumberofcodeshavebeendevelopedoverthelastdecade(e.g.DICOPT,SBB,a-ECP,Bonmin,FilMINT,BARON,etc.).Despitetheseadvances,threebasicquestionsstillremaininthisarea:a)Howtodevelopthe\best"model?,b)Howtoimprovetherelaxationinthesemodels?,c)HowtosolvenonconvexGDPproblemstoglobaloptimality?Motivatedbytheabovequestions,oneofthetrendshasbeentorepresent CarnegieMellonUniversity,5000ForbesAve,Pittsburgh,grossmann@cmu.edu,NSFOCI-0750826y1 2IGNACIOE.GROSSMANNANDJUANP.RUIZdiscrete/continuousoptimizationproblemsbymodelsconsistingofalge-braicconstraints,logicdisjunctionsandlogicrelations(RamanandGross-mann,1994;HookerandOsorio,1999).Thebasicmotivationinusingtheserepresentationsis:a)tofacilitatethemodelingofdiscrete/continuousop-timizationproblems,b)toretainandexploittheinherentlogicstructureofproblemstoreducethecombinatoricsandtoimprovetherelaxations,andc)toimprovetheboundsoftheglobaloptimuminnonconvexproblems.InthispaperweprovideanoverviewofGeneralizedDisjunctiveProgramming(RamanandGrossmann,1994),whichcanberegardedasageneralizationofdisjunctiveprogramming(Balas,1985).Incontrasttothetraditionalalgebraicmixed-integerprogrammingformulations,theGDPformulationinvolvesBooleanandcontinuousvariablesthatarespeci edinalgebraicconstraints,disjunctionsandlogicpropositions.AfterprovidingabriefreviewofMINLPoptimization,weaddressthesolutionofGDPproblemsforthecaseofconvexfunctionsforwhichweconsiderthebig-MandthehullrelaxationMINLPreformulations.Wethenreviewdisjunctivebranchandboundaswellaslogic-baseddecompositionmethodsthatcircumventsomeoftheMINLPreformulations.WenextconsiderthecaseoflinearGDPproblemstoshowhowahierarchyofrelaxationscanbedevelopedbyperformingsequentialintersectionofdisjunctions.Finally,forthecasewhentheGDPprobleminvolvesnonconvexfunctions,wedescribeaschemefortighteningthelowerboundsforobtainingtheglobaloptimumusingacombineddisjunctiveandspatialbranchandboundsearch.Weillustratetheapplicationofthetheoreticalconceptsandalgorithmsonseveralengi-neeringandORproblems.2.ReviewofMINLPMethods.SinceGDPproblemsareoftenreformulatedasalgebraicMINLPproblemsweprovideabriefreviewofthesemethods.ThemostbasicformofanMINLPproblemisasfollowsminZ=f(x;y)s:t:gj(x;y)0j2J(MINLP)x2X;y2YwherefRn!R1;gRn!Rmaredi erentiablefunctions,Jistheindexsetofconstraints,andxandyarethecontinuousanddiscretevariables,respectively.InthegeneralcasetheMINLPproblemwillalsoinvolvenonlinearequations,whichweomithereforconvenienceinthepresen-tation.ThesetXcommonlycorrespondstoaconvexcompactset,e.g.X=fxx2Rn;Dxd;xLxxUg;thediscretesetYcorrespondstoapolyhedralsetofintegerpoints,Y=fyy2Zm;Ayag,whichinmostapplicationsisrestrictedto0-1values,y2f01gm.Inmostapplicationsofinteresttheobjectiveandconstraintfunctionsf(),g()arelineariny(e.g. xedcostchargesandmixed-logicconstraints):f(x;y)=cTy+r(x)g(x;y)=By+h(x)ThederivationofmostmethodsforMINLPassumesthatthefunctionsfandgareconvex. 3Methodsthathaveaddressedthesolutionofproblem(MINLP)includethebranchandboundmethod(BB)(GuptaandRavindran,1985;BorchersandMitchell,1994;StubbsandMehrotra,1999;Ley er,2001),GeneralizedBendersDecomposition(GBD)(Geo rion,1972),Outer-Approximation(OA)(DuranandGrossmann,1986;Yuanetal.,1988;FletcherandLeyf-fer,1994),LP/NLPbasedbranchandbound(QuesadaandGrossmann,1992;Bonamietal,2008),andExtendedCuttingPlaneMethod(ECP)(WesterlundandPettersson,1995,andWesterlundandPorn(2002)).AsdiscussedinGrossmann(2002)thesealgorithmscanbeclassi edintermsofthefollowingbasicsubproblemsthatareinvolvedinthesemeth-ods:NLPSubproblems. a)NLPrelaxation minZkLB=f(x;y)s:t:gj(x;y)0j2Jx2X;y2YRyi kii2IkFLyi kii2IkFU(NLP1)whereYRisthecontinuousrelaxationofthesetY,andIkFL;IkFUareindexsubsetsoftheintegervariablesyi;i2I,whicharerestrictedtolowerandupperbounds,atthek'thstepofabranchandboundenumerationproce-dure.IfIkFU=IkFL=;(k=0),(NLP1)correspondstothecontinuousNLPrelaxationof(P1),whoseoptimalobjectivefunctionZ0LBprovidesanabsolutelowerboundto(MINLP)..b)NLPsubproblemfor xedyk minZkU=f(x;yk)s:t:gj(x;yk)0j2Jx2X(NLP2)whichyieldsanupperboundZkUto(MINLP)provided(NLP2)hasafea-siblesolution.Whenthisisnotthecase,weconsiderthenextsubproblem:c)Feasibilitysubproblemfor xedyk :minus:t:gj(x;yk)uj2Jx2X;u2R1(NLPF)whichcanbeinterpretedastheminimizationofthein nity-normmeasureofinfeasibilityofthecorrespondingNLPsubproblem.Notethatforaninfeasiblesubproblemthesolutionof(NLPF)yieldsastrictlypositivevalueofthescalarvariableu.MILPcuttingplane. Theconvexityofthenonlinearfunctionsisexploitedbyreplacingthemwithsupportinghyperplanes,thataregenerally,butnotnecessarily,derived 4IGNACIOE.GROSSMANNANDJUANP.RUIZatthesolutionoftheNLPsubproblems.Inparticular,thenewvaluesyK(or(xK;yK))areobtainedfromacuttingplaneMILPproblemthatisbasedontheKpoints,(xk;yk);k=12:::KgeneratedattheKprevioussteps:minZKL= st f(xk;yk)+rf(xk;yk)Txxkyykgj(xk;yk)+rgj(xk;yk)Txxkyyk0j2Jk9��=��;k=1;::Kx2X;y2Y(M-MIP)whereJKJ.Whenonlyasubsetoflinearizationsisincluded,thesecommonlycorrespondtoviolatedconstraintsinproblem(P1).Alterna-tively,itispossibletoincludealllinearizationsin(M-MIP).Thesolutionof(M-MIP)yieldsavalidlowerboundZKLtoproblem(MINLP),whichisnondecreasingwiththenumberoflinearizationpointsKThedi erentmethodscanbeclassi edaccordingtotheiruseofthesub-problems(NLP1),(NLP2)and(NLPF),andthespeci cspecializationoftheMILPproblem(M-MIP)asseeninFig.1. Fig.1.MajorStepsinthedi erentMINLPAlgorithms 5ThenumberofcomputercodesforsolvingMINLPproblemshasincreasedinthelastdecade.TheprogramDICOPT(ViswanathanandGrossmann,1990)isanMINLPsolverthatisavailableinthemodelingsystemGAMS(Brookeetal.,1998),andisbasedontheouter-approximationmethod.Forhandlingnonconvexities,slackvariablesareintroducedinthemasterprob-lem.Sincetheboundingpropertiescannotbeguaranteedforthisextension,thesearchfornonconvexproblemsisterminatedwhenthereisnofurtherimprovementintheobjectiveofthefeasibleNLPsubproblems,whichisaheuristicthatworksreasonablywell.AsimilarcodetoDICOPT,AAOA,isavailableinAIMMS.Codesthatimplementthebranch-and-boundmethodusingsubproblems(NLP1)includethecodeMINLP BBthatisbasedonanSQPalgorithm(Ley er,2001)andisavailableinAMPL,andthecodeSBBwhichisavailableinGAMS(Brookeetal,1998).Bothcodesas-sumethattheboundsarevalidevernthoughtheoriginalproblemmaybenonconvex.Thecode {ECPthatisavailableinGAMSimplementstheextendedcuttingplanemethodbyWesterlundandPettersson(1995),in-cludingtheextensionbyWesterlundandPrn(2002).ThecodeMINOPT(SchweigerandFloudas,1998)alsoimplementstheOAandGBDmethods,andappliesthemtomixed-integerdynamicoptimizationproblems.TheopensourcecodeBonmin(Bonamietal,2008)implementsthebranchandboundmethod,theouter-approximationandanextensionoftheLP/NLPbasedbranchandboundmethodinonesingleframework.FilMINT(Ab-hishek,LinderothandLey er,2006)alsoimplementsavariantofthetheLP/NLPbasedbranchandboundmethod.Codesfortheglobaloptimiza-tionthatimplementthespatialbranchandboundmethodincludeBARON(Sahinidis,1996),LINDOGlobal(LindoSystems,Inc.),andCouenne(Be-lotti,2009).3.NonlinearGeneralizedDisjunctiveProgramming.Analter-nativeapproachforrepresentingdiscrete/continuousoptimizationprob-lemsisbyusingmodelsconsistingofalgebraicconstraints,logicdisjunc-tionsandlogicpropositions(Beaumont,1991;RamanandGrossmann,1994;TurkayandGrossmann,1996;HookerandOsorio,1999;Hooker,2000;LeeandGrossmann,2000).Thisapproachnotonlyfacilitatesthedevelop-mentofthemodelsbymakingtheformulationprocessintuitive,butitalsokeepsinthemodeltheunderlyinglogicstructureoftheproblemthatcanbeexploitedto ndthesolutionmoreeciently.Aparticularcaseofthesemodelsisgeneralizeddisjunctiveprogramming(GDP)(RamanandGross-mann,1994)themainfocusofthispaper,andwhichcanberegardedasageneralizationofdisjunctiveprogramming(Balas,1985).ProcessDesignandPlanningandSchedulingaresomeoftheareaswhereGDPformula-tionshaveshowntobesuccessful. 6IGNACIOE.GROSSMANNANDJUANP.RUIZ3.1.Formulation.ThegeneralstructureofaGDPcanberepre-sentedasfollows(Raman&Grossmann,1994):MinZ=f(x)+Pk2Kcks.t.g(x)0_i2Dk24Yikrik(x)0ck=\rik35k2K(GDP)\n(Y)=Truexloxxupx2Rn;ck2R1;Yik2fTrue;FalsegwherefRn!R1isafunctionofthecontinuousvariablesxintheobjectivefunction,gRn!Rlbelongstothesetofglobalconstraints,thedisjunctionsk2K,arecomposedofanumberoftermsi2Dk,thatareconnectedbytheORoperator.IneachtermthereisaBooleanvari-ableYik,asetofinequalitiesrik(x)0,rikRn!Rj,andacostvariableck.IfYikistrue,thenrik(x)0andck=\rikareenforced;otherwisetheyareignored.Also,\n(Y)=TruearelogicpropositionsfortheBooleanvariablesexpressedintheconjunctivenormalform\n(Y)=^t=1;2;::T_Yjk2Rt(Yjk)_Yjk2Qt(:Yjk)whereforeachclauset,t=1,2....T,RtisthesubsetofBooleanvariablesthatarenon-negated,andQtisthesubsetofBooleanvariablesthatarenegated.AsindicatedinSawaya&Gross-mann(2008),weassumethatthelogicconstraints_ j2JYikarecontainedin\n(Y)=TrueTherearethreemajorcasesthatariseinproblem(GDP):a)linearfunc-tionsf,gandrb)convexnonlinearfunctionsf,gandrc)nonconvexfunctionsf,gandr.Eachofthesecasesrequiredi erentsolutionmethods.3.2.IllustrativeExample.Thefollowingexampleaimsatillustrat-inghowtheGDPframeworkcanbeusedtomodeltheoptimizationofasimpleprocessnetworkshowninFig2thatproducesaproductBbycon-sumingarawmaterialA.ThevariablesFrepresentmaterial\rows.Theproblemistodeterminetheamountofproducttoproduce(F8)withasellingpriceP1,theamountofrawmaterialtobuy(F1)withacostP2andthesetofunitoperationstouse(i.e.HX1,R1,R2,DC1)withacostckk2fHX1;R1;R2;DC1g,inordertomaximizethepro t. 7 Fig.2.ProcessnetworkexampleThegeneralizeddisjunctiveprogramthatrepresentstheproblemcanbeformulatedasfollows:MaxZ=P1F8P2F1Pk2Kcks.t.F1=F3+F2(1)F8=F7+F5(2)24YHX1F4=F3cHX1=\rHX135_24:YHX1F4=F3=0cHX1=035(3)24YR2F5= 1F4cR2=\rR235_24:YR2F5=F4=0cR2=035(4)24YR1F6= 2F2cR1=\rR135_24:YR1F6=F2=0cR1=035(5)24YDC1F7= 3F6cDC1=\rDC135_24:YDC1F7=F6=0cDC1=035(6)YR2,YHX1(7)YR1,YDC1(8)Fi2R;ck2R1;Yk2fTrue;Falsegi2f12345678gk2fHX1;R1;R2;DC1g 8IGNACIOE.GROSSMANNANDJUANP.RUIZwhere(1)representstheobjectivefunction,(2)and(3)aretheglobalconstraintsrepresentingthemassbalancesaroundthesplitterandmixerrespectively,thedisjunctions(4),(5),(6)and(7)representtheexistenceornon-existenceoftheunitoperationk,k2fHX1;R1;R2;DC1gwiththeirrespectivecharacteristicequationsand(8)and(9)thelogicpropositionswhichenforcetheselectionofDC1ifandonlyifR1ischosenandHX1ifandonlyifR2ischosen.Forthesakeofsimplicitywehavepresentedhereasimplelinearmodel.Intheactualapplicationtoaprocessproblemtherewouldbethousandsofnonlinearequations.3.3.SolutionMethods.InordertotakeadvantageoftheexistingMINLPsolvers,GDPsareoftenreformulatedasanMINLPbyusingeithertheBig-M(BM)(Nemhauser&Wolsey(1988)),ortheConvexHull(CH)(Lee&Grossmann(2000))reformulation.Theformeryields:MinZ=f(x)+Pi2DkPk2K\rikyiks.t.g(x)0rik(x)M(1yik)k2K;i2Dk(BM)Pi2Dkyik=1k2KAyax2Rn;yik2f01gk2K;i2DkwherethevariableyikhasaonetoonecorrespondencewiththeBooleanvariableYikNotethatwhenyik=0andtheparameterMislargeenough,theassociatedconstraintbecomesredundant;otherwise,itisenforced.Also,Ay=aisthereformulationofthelogicconstraintsinthediscretespace,whichcanbeeasilyaccomplishedasdescribedinWilliams(1985)anddiscussedinRamanandGrossmann(1991).TheconvexhullreformulationyieldsMinZ=f(x)+Pi2DkPk2K\rikyiks.t.x=Pi2DKvikk2Kg(x)0yikrik(ik=yik)0k2K;i2Dk(CH)0ikyikUvk2K;i2DkPi2Dkyik=1k2KAyax2Rn;vik2R1;ck2R1;yik2f01gk2K;i2Dk 9Asitcanbeseen,theCHreformulationislessintuitivethantheBM.However,thereisalsoaonetoonecorrespondencebetween(GDP)and(CH).Notethatthesizeoftheproblemisincreasedbyintroducinganewsetofdisaggregatedvariablesikandnewconstraints.Ontheotherhand,asprovedinGrossmannandLee(2003)anddiscussedbyVecchietti,Lee,Grossmann(2003),theCHformulationisatleastastightandgenerallytighterthantheBMwhenthediscretedomainisrelaxed(i.e.0yik1;k2K;i2Dk).ThisisofgreatimportanceconsideringthattheeciencyoftheMINLPsolversheavilyrelyonthequalityoftheserelax-ations.Itisimportanttonotethatontheonehandthetermyikrik(ik=yik)isconvexifrik(x)isaconvexfunction.Ontheotherhandthetermrequirestheuseofasuitableapproximationtoavoidsingularities.Sawaya&Gross-mann(2007)proposedthefollowingreformulationwhichyieldsanexactapproximationatyik=0andyik=1foranyvalueofintheinterval(0,1),andthefeasibilityandconvexityoftheapproximatingproblemaremaintained.yikrik(ik=yik)((1")yik+")rik(ik=((1")yik+"))"rik(0)(1yik)Notethatthisapproximationassumesthatrik(x)isde nedatx=0InordertofullyexploitthelogicstructureofGDPproblems,twoothersolutionmethodshavebeenproposedforthecaseofconvexnonlinearGDP,namely,theBranchandBoundmethod(Lee&Grossmann,2000),whichbuildsontheconceptofdisjunctiveBranchandBoundmethodbyBeaumont(1991)andtheLogicBasedOuterApproximationmethod(TurkayandGrossmann,1996).ThebasicideaintheB&Bmethodistodirectlybranchontheconstraintscorrespondingtoparticulartermsinthedisjunctions,whileconsideringtheconvexhulloftheremainingdisjunctions.AlthoughthetightnessoftherelaxationateachnodeiscomparablewiththeoneobtainedwhensolvingtheCHreformulationwithaMINLPsolver(asdescribedinsection2),thesizeoftheproblemssolvedaresmallerandthenumericalrobustnessisimproved.ForthecaseofLogicBasedOuterApproximationmethods,similartothecaseofOAforMINLP,themainideaistosolveiterativelyaMasterproblemgivenbyaLinearGDP,whichwillgivealowerboundofthesolu-tionandanNLPsubproblemthatwillgiveanupperbound.AsdescribedinTurkayandGrossmann(1996),for xedvaluesoftheBooleanVariables,Y^ik=trueYik=falsewith^i=i,thecorrespondingNLPsubproblem(SNLP)isasfollows:MinZ=f(x)+Pk2Kcks.t.g(x)0rik(x)0ck=\rikforYik=truei2Dk;k2K(SNLP) 10IGNACIOE.GROSSMANNANDJUANP.RUIZxloxxupx2Rn;ck2R1;Yik2fTrue;FalsegItisimportanttonotethatonlytheconstraintsthatbelongtotheactivetermsinthedisjunction(i.e.associatedBooleanvariableYik=True)areimposed.ThisleadstoasubstantialreductioninthesizeoftheproblemcomparedtothedirectapplicationofthetraditionalAOmethodontheMINLPreformulation(asdescribedinsection2).AssumingthatLsub-problemsaresolvedinwhichsetsoflinearizations`=12::::LaregeneratedforsubsetsofdisjunctiontermsLik=f`Y`ik=Trueg,onecande nethefollowingdisjunctiveOAmasterproblem(MLGDP):MinZ= +Pk2Kcks.t. f(x`)+rf(x`)T(xx`)g(x`)+rg(x`)T(xx`)0`=12:::::;L_i2Dk24Yikrik(x`)+rrik(x`)(xx`)0`2Likck=\rik35k2K(MLGDP)\n(Y)=Truexloxxup 2R1;x2Rn;ck2R1;Yik2fTrue;FalsegItshouldbenotedthatbeforeapplyingtheabovemasterproblemisneces-sarytosolvevarioussubproblems(SNLP)fordi erentvaluesoftheBooleanVariablesYiksoastoproduceonelinearapproximationofeachofthetermsi2Dkinthedisjunctionsk2K.AsshownbyTurkayandGrossmann(1996)selectingthesmallestnumberofsubproblemsamountstosolvingasetcoveringproblem,whichisofsmallsizeandeasytosolve.Itisimpor-tanttonotethatthenumberofsubproblemssolvedintheinitializationisoftensmallsincethecombinatorialexplosionthatonemightexpectisingenerallimitedbythepropositionallogic.Moreover,termsinthedisjunc-tionsthatcontainonlylinearfunctionsarenotnecessarytobeconsideredforgeneratingthesubproblems.ThisfrequentlyarisesinProcessNetworkssincetheyareoftenmodeledbyusingtwotermsdisjunctionswhereoneofthetermsisalwayslinear(seeremarkbelow).Also,itshouldbenotedthatthemasterproblemcanbereformulatedasanMILPbyusingthebig-MorConvexHullreformulation,orelsesolveddirectlywithadisjunctivebranchandboundmethod.RemarkInthecontextofprocessnetworksthedisjunctionsin(GDP)typicallyariseforeachunitiinthefollowingform: 1124Yiri(x)0ci=\ri35_24:YiBix=0ci=035i2Iinwhichtheinequalitiesriapplyanda xedcostgiisincurrediftheunitisselected(Yi);otherwise(:Yi)thereisno xedcostandasubsetofthexvariablesissettozero.3.3.1.Example.WepresentherenumericalresultsonanexampleproblemdealingwiththesynthesisofaprocessnetworkthatwasoriginallyformulatedbyDuranandGrossmann(1986)asanMINLPproblem,andlaterbyTurkayandGrossmann(1986)asaGDPproblem.Fig.3showsthesuperstructurethatinvolvesthepossibleselectionof8processes.TheBooleanvariablesYjdenotetheexistenceornon-existenceofprocesses1-8.TheglobaloptimalsolutionisZ*=68.01,consistsoftheselectionofprocesses2,4,6and8 Fig.3.SuperstructureforProcessNetworkThemodelintheformoftheGDPprobleminvolvesdisjunctionsfortheselectionofunits,andpropositionallogicfortherelationshipoftheseunits.Eachdisjunctioncontainstheequationforeachunit(theserelaxasconvexinequalities).Themodelisasfollows:Objectivefunction:MinZ=c1+c2+c3+c4+c5+c6+c7+c8+x210x3+x415x540x9+15x10+15x14+80x1765x18+25x965x18+25x1960x20+35x2180x2235x25+122 12IGNACIOE.GROSSMANNANDJUANP.RUIZMaterialbalancesatmixing/splittingpoints:x3+x5x6x11=0x13x19x21=0x17x9x16x25=0x11x12x15=0x6x7x8=0x23x20x22=0x23x14x24=0Speci cationsonthe\rows:x1008x170x1004x170x125x140x122x140Disjunctions:Unit1:24Y1ex31x20c1=535_24:Y1x2=x3=0c1=035Unit2:24Y2ex51:21x40c2=835_24:Y2x4=x5=0c2=035Unit3:24Y315x9x8+x100c3=635_24:Y3x8=x9=x10=0c3=035Unit4:24Y415(x12+x14)x13=0c4=1035_24:Y4x12=x13=x14=0c4=035Unit5:24Y5x152x16=0c5=635_24:Y5x15=x16=0c5=035Unit6:24Y6ex201:51x19=0c6=735_24:Y6x19=x20=0c6=035Unit7:24Y7ex221x21=0c7=435_24:Y7x21=x22=0c7=035Unit8:24Y8ex181x10x17=0c8=535_24:Y8x10=x17=x18=0c8=035 13PropositionalLogicY1)Y3_Y4_Y5Y2)Y3_Y4_Y5Y3)Y1_Y2Y3)Y8Y4)Y1_Y2Y4)Y6_Y7Y5)Y1_Y2Y5)Y8Y6)Y4Y7)Y4Y5)Y8Y6)Y4Y7)Y4Y8)Y3_Y5_(:Y3^:Y5)Speci cationsY1_ Y2Y4_ Y5Y6_ Y7Variablesxj;ci0;Yi=fTrue;Falsegi=128;j=1225ThefollowingTable1showsacomparisonbetweenthethreesolu-tionapproachespresentedbefore.MasterandNLPrepresentthenumberofmasterproblemsandNLPsubproblemssolvedto ndthesolution.ItshouldbenotedthattheLogic-BasedOuter-Approximationmethodre-quiredsolvingonly3NLPsubproblemstoinitializethemasterproblem(MGDLP),whichwasreformulatedasanMILPusingtheconvexhullre-formulation.Table1:GDPSolutionMethodsResults OuterApproximation*B&BLogicBasedOA** NLP254 Master201 *SolvedwithDICOPTthroughEMP(GAMS)**SolvedwithLOGMIP(GAMS)3.4.LinearGeneralizedDisjunctiveProgramming.Aparticu-larclassofGDPproblemsariseswhenthefunctionsintheobjectiveandconstraintsarelinear.ThegeneralformulationofaLinearGDPasde-scribedbyRamanandGrossmann(1994)isasfollows:MinZ=dTx+Pkcks.t.Bxb_i2Dk24YikAikxaikck=\rik35k2K(LGDP)\n(Y)=Truexloxxup 14IGNACIOE.GROSSMANNANDJUANP.RUIZx2Rn;ck2R1;Yik2fTrue;Falseg;k2K;i2DkThebig-Mformulationreads:MinZ=dTx+Pi2DkPk2K\rijyiks.t.BxbAikxaik+M(1yik)k2K;i2Dk(LBM)Pi2Dkyik=1k2KAyax2Rn;yik2f01gk2K;i2DkwhiletheCHformulationreads:MinZ=dTx+Pi2DkPk2K\rijyiks.t.x=Pi2DKvikk2KBxbAikikaikyikk2K;i2Dk(LCH)0ikyikUvk2K;i2DkPi2Dkyik=1k2KAyax2Rn;vik2R1;ck2R1;yik2f01gk2K;i2DkAsaparticularcaseofaGDP,LGDPscanbesolvedusingMIPsolversappliedontheLBMorLCHreformulations.However,asdescribedintheworkofSawayaandGrossmann(2007)twoissuesmayarise.Firstly,thecontinuousrelaxationofLBMisoftenweak,leadingtoahighnumberofnodesenumeratedinthebranchandboundprocedure.Secondly,theincreaseinthesizeofLCHduetothedisaggregatedvariablesandnewcon-straintsmaynotcompensatethestrengtheningobtainedintherelaxation,resultinginahighcomputationale ort.Inordertoovercometheseissues,SawayaandGrossmann(2007)proposedacuttingplanemethodologythatconsistsinthegenerationofcuttingplanesobtainedfromtheLCHandusedtostrengthentherelaxationofLBM.Itisimportanttonote,how-ever,thatinthelastfewyears,MIPsolvershaveimprovedsigni cantlyintheuseoftheproblemstructuretoreduceautomaticallythesizeoftheformulation.Asaresulttheemphasisshouldbeplacedonthestrengthoftherelaxationsratherthanonthesizeofformulations.Withthisinmind,wepresentnextthelastdevelopmentsinLinearGDPs.Sawaya&Grossmann(2008)provedthatanyLinearGeneralizedDisjunc-tiveProgram(LGDP)thatinvolvesBooleanandcontinuousvariablescan 15beequivalentlyformulatedasaDisjunctiveProgram(DP),thatonlyin-volvescontinuousvariables.ThismeansthatweareabletoexploitthewealthoftheorybehindDPfromBalas(1979,1985)inordertosolveLGDPmoreeciently.Oneofthepropertiesofdisjunctivesetsisthattheycanbeexpressedinmanydi erentequivalentforms.Amongtheseforms,twoextremeonesaretheConjunctiveNormalForm(CNF),whichisexpressedasthein-tersectionofelementarysets(i.e.setsthataretheunionofhalfspaces),andtheDisjunctiveNormalForm(DNF),whichisexpressedastheunionofpolyhedra.OneimportantresultinDisjunctiveProgrammingTheory,aspresentedintheworkofBalas(1985),isthatwecansystematicallygenerateasetofequivalentDPformulationsgoingfromtheCNFtotheDNFbyusinganoperationcalledbasicstep(Theorem2.1,Balas(1985)),whichpreservesregularity.Abasicstepisde nedasfollows.LetFbethedisjunctivesetinRFgivenbyF=Tj2TSjwhereSj=Si2QjPi,Piapolyhe-dron,i2Qj.Fork;l2T;k=l,abasicstepconsistsinreplacingSkTSlwithSkl=Si2Qkj2Ql(PiTPj).NotethatabasicstepinvolvesintersectingagivenpairofdisjunctionsSkandSlAlthoughtheformulationsobtainedaftertheapplicationofbasicstepsonthedisjunctivesetsareequivalent,theircontinuousrelaxationsarenot.WedenotethecontinuousrelaxationofadisjunctivesetF=Tj2TSjinregularformwhereeachSjisaunionofpolyhedra,asthehull-relaxationofF(orh-relF).HerehrelF:=Tj2TclconvSjandclconvSjdenotestheclosureoftheconvexhullofSj.Thatis,ifSj=Si2QjPiPi=fx2Rn;Aixbig,thenclconvSjisgivenby,x=Pi2Qjvi;i0Pi2Qji=1;Aivibiii2Qj.NotethattheconvexhullofFisingeneraldi erentfromitshull-relaxation.AsdescribedbyBalas(Theorem4.3.,Balas(1985)),theapplicationofabasicsteponadisjunctivesetleadstoanewdisjunctivesetwhosere-laxationisatleastastight,ifnottighter,astheformer.Thatis,fori=0,1,....,tletFi=Tj2TiSjbeasequenceofregularformsofadisjunc-tiveset,suchthat:i)F0isinCNF,withP0=Tj2T0Sj,ii)FtisinDNF,iii)fori=1,....,t,FiisobtainedfromFi-1byabasicstep.ThenhrelF0hrelF1hrelFt.AsshownbySawayaandGross-mann(2008),thisleadstoaprocedureto ndMIPreformulationsthatareoftentighterthanthetraditionalLCH.3.4.1.Illustration.Letusconsiderthefollowingexample: 16IGNACIOE.GROSSMANNANDJUANP.RUIZMinZ=x2s.t.05x1+x2124Y1x1=0x2=035_24:Y1x1=10x2135(LGDP1)0x1;21x1;22R;Y12fTrue;FalsegAnequivalentformulationcanbeobtainedbytheapplicationofabasicstepbetweentheglobalconstraint(oronetermdisjunction)05x1+x21andthetwotermsdisjunction.MinZ=x2s.t.2664Y1x1=0x2=005x1+x213775_2664:Y1x1=10x2105x1+x213775(LGDP2)0x1;21x1;22R;Y12fTrue;FalsegAsitcanbeseenintheFig.4,thehullrelaxationofthelaterformulationistighterthantheoriginalleadingtoastrongerlowerbound. Fig.4.a-ProjectedfeasibleregionofLGDP1,b-ProjectedfeasibleregionofrelaxedLGDP1,c-ProjectedfeasibleregionofrelaxedLGDP23.4.2.Example.StripPackingProblem(Hi ,1998).Weap-plythenewapproachtoobtainstrongerrelaxationsonasetofinstancesfortheStripPackingProblem.GivenasetofsmallrectangleswithwidthHandlengthLiandalargerectangularstripof xedwidthWandunknownlengthL.Theproblemisto tthesmallrectangulesonthestrip(withoutrotationandoverlap)inordertominimizethelengthLofthestrip 17TheLGDPforthisproblemispresentedbelow(Sawaya&Grossmann,2006).MinZ=lts.t.ltxi+Li8i2NY1ijxi+Lixj_Y1ijxi+Lixj_Y1ijxi+Lixj_Y1ijxi+LixjxiUBiLi8i2NHiyiW8i2Nlt;xi;yi2R1+;Y1;2;3;4ij2fTrue;Falseg8i;j2N;ijInTable2,theapproachusingbasicstepstoobtainstrongerrelaxationsiscomparedwiththeoriginalformulation.Table2:ComparisonofsizesandlowerboundsbetweenoriginalandnewMIPreformulations ConvexHullFormulation Fromulationw.BasicSteps Instance Vars0-1Constr.LB Vars0-1Constr.LB 4Rectang. 102241434 170243478 25Rectang. 4940111275269 57831112823227 31Rectang. 971622561491110.64 1145222561562433 ItisimportanttonotethatalthoughthesizeofthereformulatedMIPissigni cantlyincreasedwhenapplyingbasicsteps,theLBisgreatlyim-proved.3.5.NonconvexGeneralizedDisjunctivePrograms.Ingeneral,someofthefunctionsfrikorgmightbenonconvex,givingrisetoanon-convexGDPproblem.ThedirectapplicationoftraditionalalgorithmstosolvethereformulatedMINLPinthiscase,suchasGeneralizedBendersDecomposition(GBD)(Benders,1962andGeo rion,1972)orOuterAp-proximation(AO)(Viswanathan&Grossmann,1990)mayfailto ndtheglobaloptimumsincethesolutionoftheNLPsubproblemmaycorrespondtoalocaloptimumandthecutsinthemasterproblemmaynotbevalid.Therefore,specializedalgorithmsshouldbeusedinorderto ndtheglobaloptimum(Horst&Tuy,1996andTawarmalani&Sahinidis,2002).Withthisaiminmind,Lee&Grossmann(2003)proposedthefollowingtwo-levelbranchandboundalgorithm.The rststepinthisapproachistointroduceconvexunderestimatorsofthenonconvexfunctionsintheoriginalnonconvexGDP.Thisleadsto: 18IGNACIOE.GROSSMANNANDJUANP.RUIZMinZ=f(x)+Pi2DkPk2K\rijyiks.t.g(x)0_i2Dk24Yikrik(x)0ck=\rik35k2K(RGDPNC)\n(Y)=Truexloxxupx2Rn;ck2R1;Yik2fTrue;Falsegwheref;rikgareconvexandthefollowinginequalitiesaresatis edf(x)f(x)rik(x)rik(x)g(x)g(x).Notethatsuitableconvexun-derestimatorsforthesefunctionscanbefoundinTawarmalani&Sahinidis(2002)Thefeasibleregionof(RGDPNC)canberelaxedbyreplacingeachdis-junctionbyitsconvexhull.ThisrelaxationyieldsthefollowingconvexNLPMinZ=f(x)+Pi2DkPk2K\rijyiks.t.x=Pi2DKvikk2Kg(x)0yikrik(ik=yik)0k2K;i2Dk(RGDPRNC)0ikyikUvk2K;i2DkPi2Dkyik=1k2KAyax2Rn;vik2R1;ck2R1;yik2[01]k2K;i2DkAsproveninLee&Grossmann(2003)thesolutionofthisNLPformulationleadstoalowerboundoftheglobaloptimum.Thesecondstepconsistsinusingtheaboverelaxationtopredictlowerboundswithinaspatialbranchandboundframework.ThemainstepsinthisimplementationaredescribedinFig.5.ThealgorithmstartsbyobtainingalocalsolutionofthenonconvexGDPproblembysolvingtheMINLPreformulationwithalocaloptimizer(e.g.DICOPT),whichwillgiveanupperboundofthesolution(ZU).Then,aboundcontractionprocedureisperformedasdescribedbyZamoraandGrossmann(1999).Finally,apartialbranchandboundmethodisusedonRGDPNCasde-scribedinLee&Grossmann(2003)thatconsistsinonlybranchingontheBooleanvariablesuntilanodewithalltheBooleanvariables xedisreached.AtthispointaspatialbranchandboundprocedureisperformedasdescribedinQuesadaandGrossmann(1995). 19 Fig.5.StepsinGlobalOptimizationAlgorithmWhilethemethodprovedtobee ectiveinsolvingseveralproblems,ama-jorquestioniswhetheronemightbeabletoobtainstrongerlowerboundstoimprovethecomputationaleciency.Recently,Ruiz&Grossmann(2009)proposedanenhancedmethodologythatbuildsontheworkofSawaya&Grossmann(2008)toobtainstrongerrelaxations.ThebasicideaconsistsinrelaxingthenonconvextermsintheGDPusingvalidlinearover,underestimatorsprevioustotheapplicationofbasicsteps.ThisleadstoanewLinearGDPwhosecontinuousrelaxationistighterandvalidfortheoriginalnonconvexGDPproblem.Theimple-mentationofbasicstepsisnottrivial,Ruiz&Grossmann(2009)proposedasetofrulesthataimatkeepingtheformulationsmallwhileimprovingtherelaxation.Amongothers,itwasshownthatintersectingtheglobalcon-straintswiththedisjunctionsleadtoaLinearGDPwiththesamenumberofdisjunctsbutastrongerrelaxation.ThefollowingexampleillustratestheideabehindthisapproachtoobtainastrongerrelaxationinasimplenonconvexGDP.Fig.6showsasmallsuperstructureconsistingoftworeactors,eachcharacterizedbya\row-conversioncurve,aconversionrangeforwhichitcanbedesigned,anditscorrespondingcostascanbeseeninTable3.Theproblemconsistsinchoosingthereactorandconversionthatmaximizethepro tfromsalesoftheproductconsideringthatthereisalimitonthedemand. 20IGNACIOE.GROSSMANNANDJUANP.RUIZ Fig.6.TworeactornetworkTable3:Dataforthereactors Reactor Curve* Range Cost a b Xlo Xup Cp I -8 9 0.2 0.95 2.5 II -10 15 0.7 0.99 1.5 Thecharacteristiccurveisde nedasF=aX+bintherangeofconversions[Xlo;Xup]whereFandXarethe\rowofrawmaterialandconversionrespec-tively.ThebilinearGDPmodel,whichmaximizesthepro t,canbestatedasfollows:MaxZ=FX\rFCPs:t:FXd2664Y11F= 1X+ 1Xlo1XXup1CP=Cp13775_2664Y21F= 2X+ 2Xlo2XXup2CP=Cp23775(GDP1NC)Y11_ Y11=TrueX;F;CP2R1;FloFFup;Y11;Y212fTrue;FalsegTheassociatedLinearGDPrelaxationisobtainedbyreplacingthebilinearterm,FX,usingtheMcCormickconvexenvelopes:MaxZ=P\rFCPs:t:PdPFXlo+FupXFupXloPFXup+FloXFloXupPFXlo+FloXFloXloPFXup+FupXFupXup2664Y11F= 1X+ 1Xlo1XXup1CP=Cp13775_2664Y21F= 2X+ 2Xlo2XXup2CP=Cp23775(GDP1RLP0) 21Y11_ Y11=TrueX;F;CP2R1;FloFFup;Y11;Y212fTrue;FalsegIntersectingtheimproperdisjunctionsgivenbytheinequalitiesofthere-laxedbilineartermwiththeonlyproperdisjunction(i.e.byapplying vebasicsteps),weobtainthefollowingGDPformulation,MaxZ=P\rFCP(GDP1RLP1)s:t:26666666666664Y11PdPFXup+FloXFloXupPFXlo+FupXFupXloPFXlo+FloXFloXloPFXup+FupXFupXupF= 1X+ 1Xlo1XXup1CP=Cp137777777777775_26666666666664Y21PdPFXup+FloXFloXupPFXlo+FupXFupXloPFXlo+FloXFloXloPFXup+FupXFupXupF= 2X+ 2Xlo2XXup2CP=Cp237777777777775Y11_ Y11=TrueX;F;CP2R1;FloFFup;Y11;Y212fTrue;FalsegFig.7showstheactualfeasibleregionof(GDP1NC)andtheprojectionontheF-Xspaceofthehullrelaxationsof(GDP1RLP0)and(GDP1RLP1),whereclearlythefeasiblespacein(GDP1RLP1)istighterthanin(GDP1RLP0).NoticethatinthiscasethechoiceofreactorIIisinfeasible. Fig.7.a-ProjectedfeasibleregionofGDP1NC,b-ProjectedfeasibleregionofrelaxedGDP1RLP0,c-ProjectedfeasibleregionofrelaxedGDP1RLP1 22IGNACIOE.GROSSMANNANDJUANP.RUIZ3.5.1.Example.WaterTreatmentNetwork(GalanandGross-mann,1998).Thisexamplecorrespondstoasynthesisproblemofadis-tributedwastewatermulticomponentnetwork(SeeFig8),whichistakenfromGalanandGrossmann(1998).Givenasetofprocessliquidstreamswithknowncomposition,asetoftechnologiesfortheremovalofpollutants,andasetofmixersandsplitters,theobjectiveisto ndtheinterconnec-tionsofthetechnologiesandtheir\rowratestomeetthespeci eddischargecompositionofpollutantatminimumtotalcost.Discretechoicesinvolvedecidingwhatequipmenttouseforeachtreatmentunit. Fig.8.WatertreatmentsuperstructureLeeandGrossmann(2003)formulatedthisproblemasthefollowingnon-convexGDPproblem:MinZ=Pk2PUCPkfjk=Pi2Mkfji8jk2MUPi2Skfji=fjk8jk2SUPi2Skki=1k2SUfji=kifjk8ji2Skk2SU_h2Dk2664YPhkfji= jhkfji0;i2OPUk;i02IPUk8jFk=Pjfji;i2OPUkCPk=ikFk3775k2PU0ki18j;k0fji;fjk8i;j;k0CPk8kYPhk2ftrue;falseg8h2Dk8k2PU 23Theprobleminvolves9discretevariablesand114continuousvariableswith36bilinearterms.Table4showsthecomputationalperformancewhentheLeeandGrossmann(2003)relaxationisusedwithinaspatialbranchandboundframeworkwiththeoneproposedinRuiz&Grossmann(2009)work.Table4Lowerboundsofproposedframework GlobalOp-timum LowerBound(Lee&GrossmannRe-laxation) LowerBound(Ruiz&Gross-mannRelaxation) BestLowerBound 1214.87 400.66 431.9 431.9 Asitcanbeseen,animprovedlowerboundwasobtained(i.e.431.9vs400.66)whichisadirectindicationofthereductionoftherelaxedfeasibleregion.Thecolumn\BestLowerBound",canbeusedasanindicatoroftheperformanceoftheproposedsetofrulestoapplybasicsteps.NotethatthelowerboundobtainedinthisnewapproachisthesameastheoneobtainedbysolvingtherelaxedDNF,whichisquiteremarkable.AfurtherindicationoftighteningisshowninTable5wherenumericalresultsofthebranchandboundalgorithmproposedinsection6arepresented.Asitcanbeseenthenumberofnodesthatthespatialbranchandboundalgorithmrequiresbefore ndingtheglobalsolutionissigni cantlyreduced.Table5PerformanceofproposedmethodologywithspatialB&B. GlobalOptimizationTech-niqueusingLee&Gross-mannRelaxation GlobalOptimizationTech-niqueusingRuiz&Gross-mannRelaxation GlobalOpti-mum Nodes Boundcontract.(%Avg) CPUTime(sec) Nodes Boundcontract.(%Avg) CPUTime(sec) 1214.87 408 8 176 130 16 115 Table6showsthesizeoftheLPrelaxationobtainedineachmethodol-ogy.Notethatalthoughtheproposedmethodologyleadstoasigni cantincreaseinthesizeoftheformulation,thisisnottranslatedproportionallytothesolutiontimeoftheresultingLP.Thisbehaviorcanbeunderstoodbyconsideringthatingeneral,theLPpre-solverwilltakeadvantageoftheparticularstructuresoftheseLPs.Table6SizeoftheLPrelaxationforexampleproblems SizeoftheLPRelaxation Lee&Grossmann Ruiz&Grossmann Constraints Variables Constraints Variables 544 346 3424 1210 AknowledgmentsTheauthorswouldliketoacknowledge nancialsupportfromtheNationalScienceFoundationunderGrantOCI-0750826. 24IGNACIOE.GROSSMANNANDJUANP.RUIZREFERENCES[1]Abhishek,K.,S.Leyffer,andJ.T.Linderoth,FilMINT:AnOuter-Approximation-BasedSolverforNonlinearMixedIntegerPrograms,ANL/MCS-P1374-0906,ArgonneNationalLaboratory,2006[2]Balas,E.,DisjunctiveProgramming,vol5,1979,pp3-51[3]Balas,E.,DisjunctiveProgrammingandahierarchyofrelaxationsfordiscreteoptimizationproblems,vol6,1985,SIAMJ.Alg.Disc.Meth.,pp466-486[4]Beaumont,N.,AnAlgorithmforDisjunctivePrograms,vol48,1991,EuropeanJournalofOperationsResearch,pp362-371[5]Belotti,P.,CouenneUser'sManual,2008,https://projects.coin-or.org/Couenne/browser/trunk/Couenne/doc/couenne-user-manual.pdf[6]BendersJ.F.,Partitioningproceduresforsolvingmixed-variablesprogrammingproblems,vol4,1962,Numer.Math.,pp238-252[7]Borchers,B.andJ.E.Mitchell,AnImprovedBranchandBoundAlgorithmforMixedIntegerNonlinearProgramming,vol21,1994,ComputersandOpera-tionsResearch,pp359-367[8]Bonami,P.,L.T.Biegler,A.R.Conn,G.Cornuejols,I.E.Grossmann,C.D.Laird,J.Lee,A.Lodi,F.Margot,N.Sawaya,A.Wchter,Analgorithmicframeworkforconvexmixedintegernonlinearprograms,vol5,2008,DiscreteOptimization,pp186-204[9]BrookeA.,KendrickD.,MeerausA.,RamanR,GAMS,aUser'sGuide,1998,GAMSDevelopmentCorporation,Washington[10]Duran,M.A.andI.E.Grossmann,AnOuter-ApproximationAlgorithmforaClassofMixed-integerNonlinearPrograms,vol36,1986,MathProgramming,pp307[11]Fletcher,R.andS.Leyffer,SolvingMixedIntegerNonlinearProgramsbyOuterApproximation,vol66,1994,MathProgramming,pp327[12]Galan,B.Grossmann,I.E.,OptimalDesignofDistributedWastewaterTreat-mentNetworks,vol37,1998,Ind.Eng.Chem.Res.,pp4036-4048[13]GeoffrionA.M.,GeneralizedBendersdecomposition,vol10,1972,JOTA,pp237-260[14]Grossmann,I.E.,ReviewofNon-LinearMixedIntegerandDisjunctiveProgram-mingTechiquesforProcessSystemsEngineering,vol3,2002,OptimizationandEngineering,pp227-252[15]Grossmann,I.E.,J.A.CaballeroandH.Yeomans,AdvancesinMathematicalProgrammingforAutomatedDesign,IntegrationandOperationofChemicalProcesses,vol16,1999,KoreanJ.Chem.Eng.,pp407-426[16]Grossmann,I.E.andLee,S.,GeneralizedConvexDisjunctiveProgramming:NonlinearConvexHullRelaxation,vol26,2003,ComputationalOptimizationandApplications,pp83-100[17]Gupta,O.K.andRavindran,V.,BranchandBoundExperimentsinConvexNonlinearIntegerProgramming,vol31(12),1985,ManagementScience,pp1533-1546[18]Hooker,J.N.andM.A.Osorio,Mixedlogical.linearprogramming,vol96-97,1999,DiscreteAppliedMathematics,pp395-442[19]Hooker,J.N.,Logic-BasedMethodsforOptimization:CombiningOptimizationandConstraintSatisfaction,2000,Wiley[20]Horst,R.Tuy,H.,GlobalOptimizationdeterministicapproaches,3rdEd,Springer-Verlag,1996[21]Kallrath,J.,MixedIntegerOptimizationintheChemicalProcessIndustry:Ex-perience,PotentialandFuture,vol78,2000,Trans.I.ChemE.,pp809-822[22]Lee,S.andI.E.Grossmann,NewAlgorithmsforNonlinearGeneralizedDis-junctiveProgramming,vol24,2000,ComputersandChemicalEngineering,pp2125-2141[23]Lee,S.GrossmannI.E.,Globaloptimizationofnonlineargeneralizeddisjunc- 25tiveprogrammingwithbilinearinequalityconstraints:applicationtoprocessnetworks,vol27,2003,ComputersandChemicalEngineering,pp1557-1575[24]Leyffer,S.,IntegratingSQPandBranchandBoundforMixedIntegerNonlinearProgramming,vol18,2001,ComputationalOptimizationandApplications,pp295-309[25]LindoSystemsInc,LindoGLOBALSolver[26]Mndez,C.A.,Cerd,J.,Grossmann,I.E.,Harjunkoski,I.,Fahl,M.,State-of-the-artReviewofOptimizationMethodsforShort-TermSchedulingofBatchProcesses,vol30,2006,Comput.Chem.Eng.,pp913.[27]Nemhauser,G.L.andWolsey,L.A.,IntegerandCombinatorialOptimization,1988,Wiley-Interscience[28]Quesada,I.andI.E.Grossmann,AnLP/NLPBasedBranchandBoundAl-gorithmforConvexMINLPOptimizationProblems,vol16,1992,ComputersandChemicalEngineering,pp937-947[29]Quesada,I.GrossmannI.E.,Globaloptimizationofbilinearprocessnetworkswithmulticomponent\rows,vol19(12),1995,ComputersandChemicalEngi-neering,pp1219-1242[30]Raman,R.andI.E.Grossmann,RelationBetweenMILPModellingandLogicalInferenceforChemicalProcessSynthesis,vol15,1991,ComputersandChem-icalEngineering,pp73[31]Raman,R.andI.E.Grossmann,ModellingandComputationalTechniquesforLogicBasedIntegerProgramming,vol18,1994,ComputersandChemicalEn-gineering,pp563[32]Ruiz,J.P.andGrossmannI.E.,StrengtheningthelowerboundsforbilinearandconcaveGDPproblems,Submittedforpublication(2009)[33]Sahinidis,N.V.,BARON:AGeneralPurposeGlobalOptimizationSoftwarePack-age,vol8(2),1996,JournalofGlobalOptimization,201-205[34]SawayaandGrossmann,Thesis:Reformulations,relaxationsandcuttingplanesforgeneralizeddisjunctiveprogramming,2006,CarnegieMellonUniversity[35]SawayaN.,GrossmannI.E.andFurmanK.,ComputationalImplementationofNon-LinearConvexHullReformulation.Submittedforpublication(2007)[36]SawayaN.andGrossmannI.E.,Reformulations,RelaxationsandCuttingPlanesforLinearGeneralizedDisjunctiveProgramming.Submittedforpublication(2008)[37]SchweigerC.A.andC.A.Floudas,ProcessSynthesis,DesignandControl:AMixedIntegerOptimalControlFramework,1998,ProceedingsofDYCOPS-5onDynamicsandControlofProcessSystems,pp.189-194[38]StubbsR.andS.Mehrotra,ABranch-and-CutMethodfor0-1MixedConvexProgramming,vol86(3),1999,MathematicalProgramming,pp515-532[39]Tawarmalani,M.andSahinidis,N.,Convexi cationandGlobalOptimizationinContinuousandMixed-IntegerNonlinearProgramming,2002,KluwerAca-demicPublishers[40]Trkay,M.andI.E.Grossmann,ALogicBasedOuter-ApproximationAlgorithmforMINLPOptimizationofProcessFlowsheets,vol20,1996,ComputersandChemicalEnginering,959-978[41]Vecchietti,A.,Lee,S.,Grossmann,I.E.,Modelingofdiscrete/continuousoptimizationproblems:characterizationandformulationofdisjunctionsandtheirrelaxations,vol27,2003,ComputersandChemicalEngineering,pp433-448[42]Vecchietti,A.andGrossmann,I.E.,LOGMIP:ADiscreteContinuousNonlinearOptimizer,vol23,2003,ComputersandChemicalEngineering,pp555-565[43]ViswanathanGrossmannI.E.,Acombinedpenaltyfunctionandouter-approximationmethodforMINLPoptimization,vol14,1990,ComputersandChemicalEngineering,pp769-782[44]Westerlund,T.andF.Pettersson,ACuttingPlaneMethodforSolvingCon-vexMINLPProblems,vol19,1995,ComputersandChemicalEngineering, 26IGNACIOE.GROSSMANNANDJUANP.RUIZS131-S136[45]WesterlundT.andPornR.,SolvingPseudo-ConvexMixedIntegerOptimiza-tionProblemsbyCuttingPlaneTechniques,vol3,2002,OptimizationandEngineering,3,253-280.[46]Williams,H.P.,MathematicalBuildinginMathematicalProgramming,1985,JohnWiley[47]Yuan,X.,S.Zhang,L.PiboleauandS.Domenech,UneMethoded'optimisationNonlineareenVariablesMixtespourlaConceptiondePro-cedes,vol22,1988,RAIRO,pp331[48]Zamora,J.M.,Grossmann,I.E.,Abranchandboundalgorithmforproblemswithconcaveunivariate,bilinearandlinearfractionalterms,vol14(3),1999,JournalofGlobalOptimization,217-249