columbiaedu Shree K Nayar Columbia University New York NY 10027 nayarcscolumbiaedu Abstract We consider the problem of shape recovery for real world scenes where a variety of global illumination in terre64258ections subsurface scattering etc and illu ID: 25367 Download Pdf
Mohit Gupta and Shree K. Nayar. Computer Science. Columbia University. Supported by. : . NSF. . and ONR. Structured Light 3D Scanning. Defect Inspection. Wafer defect. Gaming. Archiving Heritage. Biometrics.
Tropical Forest responses to climate variability and human land use: From stand dynamics to ecosystem services. 4/06. Dr. Lynne Kiorpes, New York University. Neural mechanisms supporting the development of visual perception.
Abstract Annotation projects dealing with complex semantic or pragmatic phenomena face the dilemma of creating annotation schemes that oversimplify the phenomena, or that capture distinctions conventi
Unit Five. Wars against the Communists:. Taiwan behind the Scenes of the Korean and Vietnamese Wars. Lecturer:. Richard . Rong. -bin Chen, . PhD of Comparative Literature.. Unless noted, the course materials are licensed under Creative Commons .
. Lavaei. Department of Electrical Engineering. Columbia University. Joint work with . Somayeh. . Sojoudi. Convexification of Optimal Power Flow Problem by Means of Phase . Shifters. Power Networks.
200 W. Washington St. Indianapolis, IN 46204-2786 Re: Religious Freedom Restoration Act Dear Representative DeLaney: We write you as legal scholars The Indiana Supreme Court has sought to strike
Pl ease pr int all information 2 Co nt ct the IUDC Coordina WRUV2 ffice at the Home School for instructions on co mpleting administrative matters there FI RS T 3 If necessary co ntact the IUDC Co or GLQDWRUV2 ffice at t he Host School for instructio
Why Columbia University?. #4 . in the U.S.. U.S. News & World . Report. #11. Worldwide. U.S. News & World . Report. Columbia University. Rankings. Member of the Ivy League. 81 . 1754. founded.
University (e-mail: shangjin.wei@columbia.edu). The authors thank Jian Gao, Joy Glazener, seminars and conferences for helpful discussions. The views expressed in this paper are those of York Abstr
Digital Asset Management. Digital Preservation . Digital Publishing. Stephen Davis, October 28, 2010. Introductions. Stephen Paul Davis. Director, Libraries Digital Program,. Columbia University Libraries (2002-present).
Published bysherrill-nordquist
columbiaedu Shree K Nayar Columbia University New York NY 10027 nayarcscolumbiaedu Abstract We consider the problem of shape recovery for real world scenes where a variety of global illumination in terre64258ections subsurface scattering etc and illu
Download Pdf - The PPT/PDF document "Micro Phase Shifting Mohit Gupta Columbi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
MicroPhaseShiftingMohitGuptaColumbiaUniversityNewYork,NY10027mohitg@cs.columbia.eduShreeK.NayarColumbiaUniversityNewYork,NY10027nayar@cs.columbia.eduAbstractWeconsidertheproblemofshaperecoveryforrealworldscenes,whereavarietyofglobalillumination(in-terre\rections,subsurfacescattering,etc.)andillumi-nationdefocuseectsarepresent.Theseeectsin-troducesystematicandoftensignicanterrorsintherecoveredshape.Weintroduceastructuredlighttech-niquecalledMicroPhaseShifting,whichovercomestheseproblems.Thekeyideaistoprojectsinusoidalpatternswithfrequencieslimitedtoanarrow,high-frequencyband.Thesepatternsproduceasetofim-agesoverwhichglobalilluminationanddefocuseectsremainconstantforeachpointinthescene.Thisen-ableshighqualityreconstructionsofsceneswhichhavetraditionallybeenconsideredhard,usingonlyasmallnumberofimages.WealsoderivetheoreticallowerboundsonthenumberofinputimagesneededforphaseshiftingandshowthatMicroPSachievesthebound.1.IntroductionPhaseshiftingisoneofthemostwidelyusedshapemeasurementtechniques[ 16 ].Becauseofitsprecisionandlowcost,itisappliedinsurgery,factoryautoma-tionanddigitizationofculturalheritage.Likeallactivescenerecoverytechniques,phaseshiftingassumesthatscenepointsareonlydirectlyilluminatedbythelightsource.Asaresult,itrecoverserroneousshapesforscenesthathaveglobalilluminationduetointerre\rec-tionsandsubsurfacescattering.Furthermore,conven-tionalphaseshiftingalgorithmsassumethatillumina-tioncomesfromaperfectpointsourcewithinnitedepthofeld.Inpractice,allsourceshavealimiteddepthofeld,resultingindefocus.Inordertoaccountfordefocus,existingtechniquesneedtocapturealargenumberofinputimages.Itisworthnotingthatglobalilluminationanddefocuseectsareubiquitous-theyariseinvirtuallyanyrealworldscene.Inthispaper,weintroduceashaperecoverytech-niquecalledMicroPhaseShifting(MicroPS)whichaddressestheproblemsofglobalilluminationandillu-minationdefocus 1 .Whiletheseproblemshaveseena 1Wedonotconsidertheeectsofcameradefocus.Cameradefocusresultsinblurringofcapturedimages,resultinginincor-rectdepths,speciallyatdepthedges.lotofresearchactivityinthelastfewyears[ 7 , 4 , 8 , 19 , 5 ],forthersttime,wepresentatechniquewhichisfast,accurateandwidelyapplicable.Thekeyideaistoprojectsinusoidalpatternswithspatialfrequencieslimitedtoanarrowhigh-frequencyband.ThewordMicroreferstothesmallvaluesforboththebandwidthandperiodsofthepatterns.Thebandwidthaswellastheperiodsarechosentobesmallenoughsothatforeachscenepoint,bothglobalilluminationanddefocuseectsremainconstantoveralltheinputimages.Incontrast,conventionalphaseshiftinghaspatternswithabroadrangeofspatialfrequencies.Figure 1 showscomparisonsbetweenconventionalandMicroPS.Gettingaroundglobalillumination:Nayaretal.showedthathigh-frequencypatternscanbeusedtoseparateglobalilluminationfromthedirectcom-ponent[ 14 ].Severalsubsequentphaseshiftingtech-niques[ 4 , 7 ]havebuiltuponthismethod.Thesetech-niquesmodulatethelowfrequencypatternswithhigh-frequencysinusoidstoremovetheglobalilluminationcomponent.Incontrast,MicroPSavoidstheproblemofglobalillumination.Sinceallthepatternsarehighfrequencysinusoids,globalilluminationforanygivenscenepointremainsconstantoverallthecapturedim-agesandhencedirect-globalseparationisnotrequired.Asweshowinourresults,thissignicantlyimprovesthereconstructionquality.Invariancetodefocus:Illuminationdefocusmani-festsasalow-passlterontheprojectedimages.Iftheimagesaresinusoids,asinphaseshifting,defocusreducestheiramplitude.Theamplitudevariessignif-icantlywiththesinusoidfrequency,aswellasacrossthesceneduetovaryingamountofdefocus,asshowninthesecondrowofFigure 1 .InconventionalPS,theamplitudesfordierentfrequenciesneedtobetreatedasseparateunknowns.InMicroPS,sinceallthefre-quenciesareinanarrowband,theamplitudesforallthefrequenciesareapproximatelythesame,andcanbetreatedasasingleunknown.Asaresult,thenumberofinputimagesrequiredforMicroPSisconsiderablyreduced.Wederivealowerboundonthenumberofinputimagesrequiredforphase-shiftingandshowthatMicroPSachievesthisbound.Resolvingdepthambiguities:InconventionalPS,highfrequencysinusoidsprovidehigh-resolutionphase(depth)information,albeitinasmalldepthrange. ConventionalPhaseShiftingMicroPhaseShifting Projectedimages !1!2!3!1!2!3Spatialfrequencies:Broadband.Spatialfrequencies:Narrowhigh-freq.band.Numberofimages:3F(forFfrequencies)Numberofimages:F+2(forFfrequencies) Eectofprojectordefocus 0 1 2 3 4 0 0.5 1 TimeIntensity w1 w2 w3 AmplitudeVariation 0 1 2 3 4 0 0.5 1 TimeIntensity w1 w2 w3 LargedepthsceneScenePointPLargedepthsceneScenePointPAmplitudes:Dierentacrossfrequencies.Amplitudes:Sameforallfrequencies. Eectofglobalillumination 0 1 2 3 4 0 0.5 1 TimeIntensity Measured Ground Truth Phase Error 0 1 2 3 4 0 0.5 1 TimeIntensity Measured Ground Truth V-groove!3(Lowfreq.)V-groove!3(Highfreq.)Phaseerrorduetoglobalillumination.Resistanttoerrorsduetoglobalillumination. Figure1.ConventionalversusMicrophaseshifting.Thetoprowshowsprojectedimages.Thesecondrowshowstheeectofprojector(source)defocus.ScenepointPreceivesdefocusedilluminationduetothelargedepthofthescene.TheplotsshowthetemporalintensityprolesatPastheprojectedpatternsareshifted.ForconventionalPS,theproleshavedierentamplitudesfordierentfrequencies.ForMicroPS,sinceallthefrequenciesareinanarrowband,alltheamplitudesaresimilar.Thethirdrowshowstheeectofglobalillumination.ThesceneconsistsofaV-groove.Preceivesglobalilluminationduetointerre\rections.InconventionalPS,interre\rectionsresultinalargephaseerrorforlow-frequencysinusoids.MicroPSisresistanttosucherrorssinceallthefrequenciesarehigh.Thelow-frequencysinusoidsareusedtodisambiguatethephaseinformationoveralargerrange.Thispro-cessiscalledphaseunwrapping[ 20 ].Onemightwon-der:HowcanweperformphaseunwrappingwithMi-croPS,whereonlyhighfrequenciesareused?For-tunately,itispossibletoemulatealow-frequencysi-nusoidwithaperiodequaltotheproductofthepe-riodsofseveralhigh-frequencysinusoids.Therearealgorithmsininterferometryliteraturewhichcombineseveralhigh-frequencyphasevaluesintoasingle,un-ambiguousphase[ 10 , 17 ].Whileoriginallyproposedforinterferometry,thesealgorithmsareeasilyadoptedforphaseshifting.AnexampleisshowninFigure 2 Practicalimplications:WithMicroPS,itisnowpossibletoachievehighqualityreconstructionsofsceneswhichhavetraditionallybeenconsideredhard,whilerequiringonlyasmallnumberofinputimages.Forexample,scenesexhibitingavarietyofglobalillu-minationeects(scattering,interre\rections),orcombi-nationsofmultipleeects-canbehandled.MicroPSdiersfromexistingtechniquesinonlytheprojectedpatterns.Asaresult,itcanbereadilyintegratedwithexistingstructuredlightsystems.1.1.RelatedWorkIn1991,Nayaretal.[ 13 ]addressedtheproblemofinterre\rectionsinthecontextofshaperecovery.Theproblemhasgainedrenewedinterestinthelast fewyears.Severalmethodshavebeenproposedforhandlingdefocusandglobalilluminationeects,e.g.,Chandrakeretal.[ 2 ]andLiaoetal.[ 12 ]forphotomet-ricstereo,andGuptaetal.[ 9 ]forshapefromillumi-nationdefocus.Forstructuredlighttriangulation,techniquesforhandlingglobalilluminationhavebeenproposedtoo.However,mostcurrentmethodsrequireseveraltensorhundredsofimages[ 8 , 6 , 19 , 4 ],requiremovingcam-erasorlightsources[ 11 , 5 , 15 ],andareoftenlimitedtoscenarioswhereonlyoneglobalilluminationeectisdominant[ 8 , 19 ].Chenetal.[ 3 ]usepolarizerstoremovesubsurfacescattering.Thismethoddoesnotaddresstheproblemofinterre\rections.Incomparison,MicroPSrequiresasmallnumber(5 7)ofinputim-ages,doesnotrequireanymovingpartsandcanhandlesceneswheremultipleglobalilluminationanddefocuseectsarepresentatthesametime.1.2.BackgroundPhaseshiftingbelongstotheclassofactivestereotriangulationtechniques.Thesimplestsetupforthesetechniquesconsistsofaprojectorandacamera.Depthofascenepointiscomputedbyintersectingraysfromthecorrespondingprojectorandcamerapixels.Apro-jectorandacamerapixelcorrespondiftheprojectorpixeldirectlyilluminatesthescenepointimagedatthecamerapixel.Correspondencesbetweencameraandprojectorpixelsareestablishedbyprojectingcodedin-tensitypatternsonthescene.Inphase-shifting,theprojectedpatternsarespatialsinusoidswithdierentfrequenciesf!1;!2;:::;!f;:::;!Fg 23 .Foreachfre-quency,thesinusoidisspatiallyshiftedN(N3)times,andanimageiscapturedforeachshift.Consideranidealizedmodelofimageformation,i.e.,scenepointsreceiveperfectlyfocusedilluminationandtherearenoglobalilluminationeects.Then,Rnf(c),theintensityatacamerapixelcforthenthshiftoffrequency!fisgivenas:Rnf(c)=Of(c)+Af(c)cosf(p)+2n N(1)wherepistheprojectorpixelthatilluminatesthescenepointimagedatc.Foreachfrequency!f,thesetofintensitiesRnf(c)formasinusoidasafunctionofthetimeinstantn.Thesinusoidhasthreeunknownpa-rameters-theosetOf(c),theamplitudeAf(c)andthephasef(p).TheamplitudeAf(c)encapsulatestheBRDFofthescenepoint,theintensityfall-ofromtheprojector,foreshorteningandthecameraintensityresponse.TheosetOf(c)includesthecontribution 2ThenumberoffrequenciesFisdeterminedbythedesiredaccuracyandacquisitionspeed.Morethefrequenciesused(moreinputimages),higherthereconstructionquality.3Inthispaper,frequenciesarerepresentedbytheperiodofthesinusoid,inprojectorpixelunits.ofambientilluminationduetoother(temporallysta-ble)lightsourcesilluminatingthescene.Thephaseprovidesthecorrespondenceinformation.Thus,thegoalistorecoverthephasesf1;2;:::;f;:::;FgTherecoveredphasesarethencombinedintoasingleunambiguousphaseusingtemporalphaseunwrap-ping[ 20 ].Equation 1 canbewrittenasasystemoflinearequations:Rf=MUf(2)whereRfisthevectorofrecordedintensitiesforthefrequency!fMisanN3matrix,thenthrowofwhichisgivenas[1cos(2n N) sin(2n N)].Theun-knownvectorUf=[Of(c)Af(c)cos(f(p))Af(c)sin(f(p))]issolvedusinglinearleast-squares.Thephaseinformationfisobtainedas:Af(c)=p Uf(2)2+Uf(3)2(3)f(p)=acosUf(2) Af(c)(4)2.GlobalilluminationandDefocusInthissection,weanalyzetheeectsofglobalil-luminationandilluminationdefocusonphaseshifting.Theintensityatcamerapixelcinthepresenceofglobalilluminationcanbewrittenas:Rn(c)=XqqcO(c)+A(c)cos(q)+2n N(5)whereqcisthelighttransportcoecientbetweenpro-jectorpixelqandcamerapixelc.Forbrevity,wedropthesubscriptf.Intuitively,becauseofglobalillumina-tion,thescenepointimagedatcreceivesilluminationoriginatingfrommultipleprojectorpixels.Aftersim-plication,weget:Rn(c)=O0(c)+A0(c)cos0(c)+2n Nwhere(6)O0(c)=XqqcO(c)(7)A0(c)=A(c)p P(c)2+Q(c)2(8)0(c)=atanQ(c) P(c)(9)P(c)=Xqqccos((q))(10)Q(c)=Xqqcsin((q))(11)Notethattheabovemodelisvalidforallformsofgloballighttransport-multi-bounceinterre\rections,subsurfacescattering,etc.Duetoglobalillumination,thephase0(c)ofthesinusoid(Eq. 9 )ischanged.Thephaseerrorr=(p) 0(c)resultsinsystematicerrorsintherecoveredshape[ 8 , 7 ].AnexampleisshowninFigures 2 (d,f). (a)V-groove(b)Recoveredphasemapsfor3(outof5)frequencies(c)Unwrappedphase 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 PixelsDepth (mm) Conventional PS Multiplexed Modulated PS Micro PS 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 PixelsDepth (mm) Conventional PS Multiplexed Modulated PS Micro PS 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 PixelsDepth (mm) Micro PS: Frequency Set 1 Micro PS: Frequency Set 2 Micro PS: Frequency Set 3 [Optimized] (d)7inputimages(e)10inputimages(f)7inputimagesFigure2.MicroPhaseShiftinginthepresenceofinterre\rections.(a)V-groovescene.(b)Recoveredphasemapsfor3outof5frequencies.Sinceallthefrequenciesbelongtoanarrowhigh-frequencyband,thephasemapshaveambiguities.(c)AsingleunambiguousphasemapiscomputedusingtheG-Salgorithm[ 10 ].Depthcomparisonsfordierentschemesusing(d)7imagesand(e)10images,alongtheredlinein(a).ConventionalPSresultsinlargesystematicerrors.ModulatedPSreducesthesystematicbiasduetointerre\rections,butsuersfromlowSNR.DepthusingMicroPSisnearlyerrorfree.(f)ComparisonsfordierentfrequencysetsforMicroPS.Thefrequencyselectionprocedure(Section 3.2 )isusedtodeterminetheoptimalfrequencyset.Illuminationdefocusmanifestsasalocalblurontheprojected,andhence,observedsinusoids,thusloweringtheiramplitude.Thereducedamplitudeisafunctionofboththefrequencyofthesinusoidandtheamountofdefocus.Asaresult,theobservedamplitudesaredif-ferentfordierentscenepoints.AnexampleisshowninFigure 3 (b).Pointsreceivingglobalanddefocusedilluminationshowlargervariationsintheamplitudewithrespecttotheprojectedfrequency.Becauseofthis,inconventionalphaseshifting,theamplitudesfordierentfrequenciesneedtobetreatedasseparateun-knowns.Theosetsateachscenepoint(Eq. 7 )areindependentofthefrequency,andcanbetreatedasasingleunknown,asshowninFigure 3 (c).3.MicroPhaseShiftingWenowpresentourtechnique,whichaddressestheproblemsofglobalilluminationanddefocus.Thekeyideaissimple-usepatternssothatallthespatialfrequenciesarewithinanarrowhigh-frequencyband.Letthefrequencybandbecharacterizedbythemeanfrequency!m,andthewidthoftheband.Allthefrequencies\n=f!1;:::;!Fgliewithintheband!m 2;!+ 2.ForMicroPS,thefrequencyset\nmustmeetthefollowingtwoconditions:(a)!missu-cientlyhigh(periodissmall)sothatglobalilluminationdoesnotintroduceerrorsintherecoveredphase,and(b)thebandwidthissucientlysmallsothattheam-plitudesforallthefrequenciesareapproximatelythesame,i.e.,A1A2:::AFAThereisatradeowhileselectingthemeanfre-quency!m.Theoretically,thehigher!mis,themoreresistantitistoglobalillumination.However,duetoopticalaberrations,projectorscannotprojectarbitrar-ilyhighfrequenciesreliably.Fortypicalcurrentlyavail-ableprojectorswitharesolutionof1024768pixels,wefoundthatthemeanfrequency!m=16pixelsperiodissucientlyhightopreventglobalilluminationerrorsforalargecollectionofscenes.Similarfrequencieswerechosenin[ 14 ]toseparatethedirectandglobalcompo-nentsofanimage.Whenprojectorswithsmallopticalaberrationsareavailable,patternswithhigherfrequen-ciescanbeused.Forananalyticalexpressionforthesinusoidfrequenciesforwhichglobalilluminationdoesnotin\ruencethephase,pleaseseethetechnicalreportavailableatthefollowinglocation[ 1 Similarly,thereisatradeowhileselectingthebandwidth.Theoretically,thenarrowertheband-width,thefewertheunknowns(duetoinvariancetodefocus).However,duetonitespatialresolutionoftheprojectorsandniteintensityresolutionofthepro-jectorsandcameras,twofrequenciesthatareveryclosecannotbedistinguishedreliably.Thisimposesalower-boundon.Ifistheminimumdierencebetweentwofrequenciessothattheycanbedistinguishedreliably,(F 1)Wecomputeempiricallybymeasuringtheampli-tudesfordierentfrequenciesaroundthemeanfre- quency!m.Theamplitudesareaveragedoverseveralscenepointsreceivingdierentamountsofglobalil-luminationanddefocus.Then,ischosentobethelargestvaluesothattheamplitudesforallthefrequen-ciesintheresultingfrequencybandareapproximatelythesame(themaximumdierenceintheamplitudesbetweenanypairoffrequenciesinthebandislessthan1%).Forourprojectorwitharesolutionof1024768pixels,wascomputedtobeapproximately3pixelsfor!m=16pixels.Theresultingfrequencybandis[145175]pixels.Algorithm:Usingtheseproperties,wedesignaphaserecoveryalgorithmwhichrequirescapturingonlyF+2imagesforFfrequencies.Threeimagesarecapturedfortherstfrequency.Subsequently,oneimageiscap-turedforeachoftheremainingF 1frequencies:Rn(c)=8-3.3;〱-3.3;〱-3.3;〱-3.3;〱-3.3;〱:O(c)+A(c)cos 1(p)+(n 1)2 3if1n3O(c)+A(c)cos(n 2(p))if4nF+2(12)Theabovesystemofequationscanbesolvedjointlyasasinglelinearsystem:Rmicro=MmicroUmicro(13)whereRmicroisthevectorofrecordedintensities.MmicroisasquarematrixofsizeF+2,andisgivenasMmicro=2666666641a100:::01a1cos(2 3) a1sin(2 3)0:::01a1cos(4 3) a1sin(4 3)0:::0100IF 1100377777775(14)whereIF 1isanidentitymatrixofsizeF 1F 1.Theunknownvector,Ufact=26666664O(c)A(c)cos(1(p))A(c)sin(1(p))A(c)cos(2(p))A(c)cos(F(p))37777775(15)iscomputedbysolvingthelinearsystemgiveninEq. 13 .Theindividualphasesarecomputedby:A(c)=p Ufact(2)2+Ufact(3)2(16)f(p)=8:acosUfact(f+1) A(c)iff=1acosUfact(f+2) A(c)if2fF:(17) (a)Scenewithglobalilluminationanddefocus 102 103 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Periodf (1/wf) [pixels]Amplitude [0-1] 102 103 0.1 0.2 0.3 0.4 0.5 0.6 Periodf (1/wf) [pixels]Offset [0-1] (b)Normalizedamplitudes(c)OsetsFigure3.Variationinamplitudewithsinusoidfre-quency(period).(a)Scenewithglobalillumination(sub-surfacescattering,diusion)anddefocus.(b)Amplitudesforpointsmarkedin(a).Becauseofglobalilluminationanddefocus,thevariationinamplitudesisdierentfordierentscenepoints.(c)Theosetsareinvariantacrossfrequen-cies,andcanbetreatedasasingleunknown.3.1.PhaseunwrappingThesetoffrequenciesusedinMicroPSbelongtoanarrowhigh-frequencyband.Thereisnounitfre-quency,whichisconventionallyusedfordisambiguat-ingthehigh-frequencyphases.Thus,conventionalphaseunwrappingalgorithmsarenotapplicablehere.Theproblemofdisambiguatingthephaseswithouttheunitfrequencyhasbeenstudiedintheeldofinter-ferometry[ 10 , 17 ].WiththeGushov-Solodkin(G-S)algorithm[ 10 ],itispossibletocombineseveralhigh-frequencyphasesintoasinglelow-frequencyphase.Iftheperiodsofthehigh-frequencysinusoidsarepairwiseco-prime(nocommonfactors),thenalow-frequencysi-nusoidwithaperiodequaltotheproductoftheperiodsofallthehigh-frequencysinusoidscanbeemulated.ThedetailsrequiredforimplementingthealgorithmandtheMATLABcodearegivenon[ 1 ].Figure 2 showsanexamplewiththewrappedhigh-frequencyphasesandthenalunwrappedphase.3.2.FrequencySelectionforMicroPhaseShiftingHowshouldthespatialfrequenciesoftheprojectedpatternsbeselectedforMicroPS? 4 .Inthissection,weoutlineourfrequencyselectionalgorithmforMicroPS.See[ 1 ]formoredetailsandanalysis.Thefrequenciesshouldbechosensothatdepther-rorsduetoincorrectphasecomputations(resulting 4TheoptimalsetofspatialfrequenciesforconventionalPSformageometricseries,withthesmallestfrequency(largestpe-riod)beingtheunitfrequency[ 18 ]. fromnoiseandglobalillumination)areminimized.Foracamerapixel,supposethecorrectcorrespondenceisprojectorcolumnp,butthecomputedcorrespondenceiscolumnq.Theresultingdeptherrorisproportionaltothephaseerror4=p q.ForF-frequencyMicroPS,eachprojectorcolumnisencodedwithauniqueF+2dimensionalintensityvector.Inordertominimizetheprobabilityofaphaseerror,theop-timalsetoffrequenciesshouldmaximizethedistancedpqbetweenvectorscorrespondingtodistinctprojec-torcolumns.Foragivenfrequencyset\n,theaverageweighteddistancebetweenintensityvectorsis:E(\n)=1 N2NXp;q=1p qdpq(18)whereNisthetotalnumberofprojectorcolumns.Fordpq,weusedthenorm-2Euclideandistance.Then,theoptimalsetoffrequenciesinthefrequencybandd!min;!max]istheonethatminimizesE(\n):\n=argmin\nE(\n);!f22!min;!max8f:(19)ThisisaconstrainedF-dimensionaloptimizationproblem.Weusedthesimplexsearchmethodim-plementedintheMATLABoptimizationtoolboxtosolvethis.Forthefrequencybandof[145175]pixelsandF=5,theaboveprocedurereturnsthefollow-ingfrequencyset:[14571609162416471660]pix-els.Figure 2 (e)showsacomparisonofreconstructionsoftheoptimizedsetversustworandomlyselectedfre-quencysets.Noticethespikesinthedepthmapsforthetwounoptimizedsets(rsttwo).Incontrast,thereconstructionfortheoptimizedsetiserror-free.3.3.ProofofOptimalityWenowshowthatMicroPhaseShiftingistheoret-icallyoptimalintermsofthenumberofinputimages.Lemma1TheminimumnumberofimagesrequiredforF-frequencyphase-shiftingisF+2.Proof1Theproofinvolvescountingthenumberofunknownsforeachcamerapixel.Forapixel,theun-knownsare(a)thedirectilluminationcomponent,(b)theambient+globalilluminationcomponent,and(c)aphasevalueforeachfrequency.GivenFfrequencies,thetotalnumberofunknownsisF+2.Sincethesystemofequationsislinear,theminimumnumberofequa-tions(images)requiredforF-frequencyphase-shiftingisF+2.Corollary1MicroPhaseShiftingistheoreticallyop-timalintermsofthenumberofinputimages.ThisdirectlyfollowsfromLemma1andthefactthatMicroPSrequiresF+2imagesforF-frequencyphaseshifting 5 . 5ThelowerboundofFforMicroPSis2,sinceaminimumof2high-frequencysinusoidsarerequiredtoemulatealow-frequency3.4.ComparisonwiththeStateoftheArtModulatedphaseshiftingneedstoexplicitlysep-arateglobalilluminationbymodulatingthelow-frequencypatternswithhigh-frequencysinusoids[ 4 , 7 Eachlow-frequencypatternismodulatedbyatleast3high-frequencyshiftingsinusoids.Sinceaminimumof3low-frequencypatternsarerequiredtocomputethephase,atleast9imagesareneededperlowfrequency.Recently,Guetal.[ 7 ]showedthatbyusingmulti-plexedillumination,thenumberofinputimagesforeachlowfrequencycanbereducedto7.LetFlbethenumberoflowfrequenciesused,andFhbethenumberofhighfrequencies.Sincethehigh-frequencypatternsdonotrequireexplicitsepa-ration[ 14 ],theminimumnumberofimagesrequiredwiththecurrentstateoftheartis7Fl+3Fh.ForMicroPS,explicitdirect-globalseparationisnotre-quired.Asaresult,MicroPSneedsonlyFl+Fh+2inputimages.Forexample,inordertomeasurephaseforonehighfrequencyandonelow-frequency,modu-latedphaseshiftingwouldrequire7+3=10images.Incontrast,givenabudgetof10images,MicroPScanuse8dierentfrequencies,resultinginsignicantlyhigherqualityreconstructions.4.ExperimentsForourexperiments,weusedaSanyoPLC-XP18Nprojector.Thenumberofprojectorcolumnsis1024.Hence,unitfrequencypatternshaveaperiodof1024pixels.FormodulatedPS,atleast7inputimagesareneeded(Section 3.4 ).Givenabudgetofseveninputimages,onlyasingleunitfrequencycanbeused.Incaseof10inputimages,onehighfrequencyandoneunitfrequencycanbecaptured.ForconventionalPS,abudgetof7and10inputimagesallows2and3fre-quencies,respectively.Cameradefocuswasminimizedbycapturingimageswithasmallcameraaperture.Figure 2 showsdepthrecoveryresultsforaV-groovewithinterre\rections.AsshowninFigures 2 (d,e),con-ventionalPS(redcurve)resultsinsignicantaswellassystematicerrors.ModulatedPSreducesthesystem-aticbiasbyseparatingtheeectsofinterre\rections.However,theresultingdepthestimatessuerduetolowSNRoftheseparateddirectilluminationcompo-nent.Incontrast,MicroPSproducesnearlyerror-freeresultswiththesamenumberofinputimages.Figures 4 (a-e)showshaperecoveryresultsforsceneswithdierentglobalilluminationanddefocuseects.Theceramicbowlhasstronginterre\rections.Thelemonskinistranslucent,resultinginsubsurfacescat-tering.Thedepth-rangefortheRussiandollssceneislarge,resultinginilluminationdefocus.Thewaxbowlischallengingbecauseithasbothstronginterre\rectionsandsubsurfacescattering sinusoid.Inpractice,Fdependsonthecomplexityofthescene.Inourexperiments,3F5wasfoundtobesucient. ConventionalPSresultsinlargeandsystematicer-rorsduetointerre\rectionsandlowSNRinlowalbedoregions(e.g.,regionsontheRussiandolls).ModulatedPSrequiresalargenumberofimagesperfrequency.Withabudgetof7images,onlytheunitfrequencycanbeacquired,whichisnotsucientforaccuraterecon-struction.Moreover,theexplicitseparationofdirectcomponentfromthecapturedimagesfurtherenhancesthenoise.Theproblemisespeciallysevereforregionsoflowalbedoandhighlytranslucentmaterials(waxbowlandlemon),forwhichthedirectcomponentisasmallfractionofthetotalradiance.MicroPSdoesnotrequireexplicitseparationandcapturesmanymorespatialfrequenciesgiventhesameimagebudget,thusresultinginhighqualityreconstructions.Themetalbowlillustratesafailurecase.Duetohigh-frequencyinterre\rections,thereconstructedshapesforalltheschemeshavelargeholesanderrors.Formoreresults,see[ 1 5.DiscussionScopeandlimitations:WhileMicroPSreducestheerrorsduetoglobalillumination,itmaynotcompletelyremovethem.Forexample,inthepresenceofhigh-frequencylighttransportsuchasmirrorinterre\rec-tions,MicroPSispronetoerrors(seeFigure 4 (e)foranexample).However,forsceneswherethefre-quencyoflighttransportislessthanthefrequencyofthesinusoidsused,MicroPSwillmitigatetheeectsofglobalillumination.Errorandresolutioncharacteristics:AlthoughtheerrorcharacteristicsofMicroandConventionalPSaredierentduetodierentprojectedpatternsanddecodingalgorithms,bothcanresolvecorrespondenceswithsub-pixelaccuracy,asbothbelongtotheclassofcontinuouscodingschemes.However,incaseoflowSNR,theresolutionisoftenlimitedbylightsourceandcameranoise.Thereisatradeobetweendepthresolu-tionandthenumberofinputimages.Intheexamplesshowninthepaper,arelativelysmallnumberofinputimagesareused,resultinginalowSNR.Ifmoreim-agesareused,noiseceasestobethelimitingfactorandsub-pixelresolutioncanbeachieved.PolarizationandMicroPS:Polarizationhasbeenusedtoreducetheeectofsub-surfacescatteringinphaseshifting[ 3 ].ThisapproachcanalsobeusedinconjunctionwithMicroPSbyplacingpolarizersinfrontofthecameraandtheprojector.Frequencyselection:Thefrequencyselectionalgo-rithm(Section 3.2 )doesnotnecessarilyyieldtheopti-malfrequencyset.Theoptimalsetoffrequenciesde-pendsonthenoiselevelsandresolutionsoftheprojec-torandthecamera,scene'salbedosandlighttransportcharacteristics.Whilehighfrequenciesarepreferredforcopingwithglobalillumination,theyarealsomorepronetoamplitudeloss,andhence,lowSNR.Infuture,weenvisageincorporatingtheprojectorandcameracharacteristicsandcoarselighttransportcharacteris-ticsofthescene(acquiredwithafewinitialmeasure-ments)inthefrequencyselectionalgorithm.Acknowledgments:ThisresearchwassupportedinpartsbyNSF(grantnumberIIS09-64429)andONR(grantnumberN00014-11-1-0285).References[1]Projectwebpage.http://www.cs.columbia.edu/CAVE/projects/MicroPhaseShifting/. 4 , 5 , 7 [2]M.Chandraker,F.Kahl,andD.Kriegman.Re\rectionsonthegeneralizedbas-reliefambiguity.InCVPR,2005. 3 [3]T.Chen,H.P.A.Lensch,C.Fuchs,andH.peterSeidel.Po-larizationandphase-shiftingfor3Dscanningoftranslucentobjects.InCVPR,2007. 3 , 7 [4]T.Chen,H.-P.Seidel,andH.P.A.Lensch.Modulatedphase-shiftingfor3Dscanning.InCVPR,2008. 1 , 3 , 6 [5]C.Hermans,Y.Francken,T.Cuypers,andP.Bekaert.Depthfromslidingprojections.InCVPR,2009. 1 , 3 [6]V.Couture,N.Martin,andS.Roy.Unstructuredlightscanningtoovercomeinterre\rections.InICCV,2011. 3 [7]J.Gu,T.Kobayashi,M.Gupta,andS.K.Nayar.Mul-tiplexedilluminationforscenerecoveryinthepresenceofglobalillumination.InICCV,2011. 1 , 3 , 6 [8]M.Gupta,A.Agrawal,A.Veeraraghavan,andS.Narasimhan.Structuredlight3Dscanningthepresenceofglobalillumination.InCVPR,2011. 1 , 3 [9]M.Gupta,Y.Tian,S.G.Narasimhan,andL.Zhang.Acombinedtheoryofdefocusedilluminationandgloballighttransport.InIJCV,Toappear. 3 [10]V.I.GushovandY.N.Solodkin.Automaticprocessingoffringepatternsinintegerinterferometers.OpticsLasersEngineering,14,1991. 2 , 4 , 5 [11]M.Holroyd,J.Lawrence,andT.Zickler.Acoaxialopti-calscannerforsynchronousacquisitionof3Dgeometryandsurfacere\rectance.ACMTrans.Graph.,29(3),2010. 3 [12]M.Liao,X.Huang,andR.Yang.Interre\rectionremovalforphotometricstereobyusingspectrum-dependentalbedo.InCVPR,2011. 3 [13]S.K.Nayar,K.Ikeuchi,andT.Kanade.ShapefromInter-re\rections.IJCV,6(3),1991. 2 [14]S.K.Nayar,G.Krishnan,M.D.Grossberg,andR.Raskar.Fastseparationofdirectandglobalcomponentsofasceneusinghighfrequencyillumination.ACMTrans.Graph.,25(3),2006. 1 , 4 , 6 [15]J.ParkandA.C.Kak.3Dmodelingofopticallychallengingobjects.IEEETVCG,2008. 3 [16]J.Salvi,S.Fernandez,T.Pribanic,andX.Llado.Astateoftheartinstructuredlightpatternsforsurfaceprolometry.PatternRecognition,43,2010. 1 [17]M.Takeda,Q.Gu,M.Kinoshita,H.Takai,andY.Taka-hashi.Frequency-multiplexfourier-transformprolometry:Asingle-shotthree-dimensionalshapemeasurementofob-jectswithlargeheightdiscontinuitiesand/orsurfaceisola-tions.AppliedOptics,36(22),1997. 2 , 5 [18]C.E.Towers,D.P.Towers,andJ.D.C.Jones.Absolutefringeordercalculationusingoptimisedmulti-frequencyse-lectioninfull-eldprolometry.OpticsandLasersinEn-gineering,43,2005. 5 [19]Y.XuandD.Aliaga.Anadaptivecorrespondencealgo-rithmformodelingsceneswithstronginterre\rections.IEEETVCG,2009. 1 , 3 [20]H.Zhao,W.Chen,andY.Tan.Phase-unwrappingal-gorithmforthemeasurementofthree-dimensionalobjectshapes.AppliedOptics,33(20),1994. 2 , 3 SceneMicroPSModulatedPSConventionalPS (a)Ceramicbowl:Interre\rections (b)Lemon:Subsurfacescattering (c)Russiandolls:Illuminationdefocus (d)Waxbowl:Interre\rections+subsurfacescattering (e)Metalbowl:High-frequencyinterre\rectionsFigure4.Shaperecoveryforsceneswithdierentglobalilluminationanddefocuseects.Foreveryscene,7inputimageswereusedforeachscheme.(a)Ceramicbowlwithinterre\rections.(b)Lemonwithsubsurfacescattering.(c)RussianDolls.Largedepth-rangeofthesceneresultsinilluminationdefocus.(d)Waxbowlwithbothinterre\rectionsandstrongsubsurfacescattering.Withonly7inputimages,MicroPSachievesahighqualityreconstruction.Incontrast,conventionalPSresultsinsystematicerrorsduetointerre\rections,andbothconventionalandmodulatedPSsuerduetolowSNRofthedirectirradiancecomponentinlowalbedoandhighlytranslucentregions.(e)Metalbowl(failurecase).Duetohigh-frequencyspecularinterre\rections,reconstructedshapesusingalltheschemeshavelargeholesanderrors.
© 2021 docslides.com Inc.
All rights reserved.