/
SprayandWait:AnEf SprayandWait:AnEf

SprayandWait:AnEf - PDF document

sherrill-nordquist
sherrill-nordquist . @sherrill-nordquist
Follow
375 views
Uploaded On 2016-06-16

SprayandWait:AnEf - PPT Presentation

anovelroutingschemecalledSprayandWaitSprayandWaitboundsthetotalnumberofcopiesandtransmissionspermessagewithoutcompromisingperformanceUsingtheoryandsimulationsweshowthatiunderlowloadSprayandWait ID: 364307

anovelroutingschemecalledSprayandWait.SprayandWaitboundsthetotalnumberofcopiesandtransmissionspermessagewithoutcompromisingperformance.Usingthe-oryandsimulationsweshowthat:(i)underlowload SprayandWait

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "SprayandWait:AnEf" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

SprayandWait:AnEfÞcientRoutingSchemeforIntermittentlyConnectedMobileNetworksThrasyvoulosSpyropoulosDepartmentofElectricalEngineering,USCspyropou@usc.eduKonstantinosPsounisDepartmentofElectricalEngineering,USCCauligiS.RaghavendraDepartmentofElectricalEngineering,USCraghu@usc.eduABSTRACTIntermittentlyconnectedmobilenetworksaresparsewire-lessnetworkswheremostofthetimetheredoesnotexistacompletepathfromthesourcetothedestination.ThesenetworksfallintothegeneralcategoryofDelayTolerant anovelroutingschemecalledSprayandWait.SprayandWaitboundsthetotalnumberofcopiesandtransmissionspermessagewithoutcompromisingperformance.Usingthe-oryandsimulationsweshowthat:(i)underlowload,SprayandWaitresultsinmuchfewertransmissionsandcompara-bleorsmallerdelaysthan”ooding-basedschemes,(ii)un-derhighload,ityieldssigni“cantlybetterdelaysandfewertransmissionsthan”ooding-basedschemes,(iii)itishighlyscalable,exhibitinggoodandpredictableperformanceforalargerangeofnetworksizes,nodedensitiesandconnectiv-itylevels;whatismore,asthesizeofthenetworkandthenumberofnodesincrease,thenumberoftransmissionspernodethatSprayandWaitrequiresinordertoachievethesameperformancedecreases,and(iv)itcanbeeasilytunedonlinetoachievegivenQoSrequirements,eveninunknownnetworks.WealsoshowthatSprayandWait,usingonlyahandfulofcopiespermessage,canachievecomparablede-laystoanoracle-basedoptimalschemethatminimizesdelaywhileusingthelowestpossiblenumberoftransmissions.Inthenextsectionwegooversomeexistingrelatedworkandsummarizeourcontribution.Section3presentsourpro-posedsolution,SprayandWait.Then,inSection4weshowextensivelyhowtooptimizeSprayandWaitinpracticalsit-uations,andalsoexamineitsscalability.SimulationresultsarepresentedinSection5,wheretheperformanceofallthestrategiesarecomparedwithrespecttomessagedeliverydelayandnumberoftransmissionspermessagedelivered.Finally,Section6concludesthepaper.2.RELATEDWORKANDCONTRIBUTIONSAlthoughasigni“cantamountofworkandconsensusex-istsonthegeneralDTNarchitecture[1],therehasntbeenasimilarfocusandagreementonDTNroutingalgorithms,especiallywhenitcomestonetworkswithopportunisticŽconnectivity.Thismightbeduetothelargevarietyofappli-cationsandnetworkcharacteristicsfallingundertheDTNumbrella.Alargenumberofroutingprotocolsforwirelessad-hocnetworkshavebeenproposedinthepast[6,20].However,traditionalad-hocroutingprotocolsarenotappropriateforthetypesofnetworkswereinterestedinhere.Theper-formanceofsuchprotocolswouldbepoorevenifthenet-workwasonlyslightlydisconnected.Toseethis,notethattheexpectedthroughputofreactiveprotocolsisconnectedwiththeaveragepathdurationandthetimetore-pairabrokenpathrepairwiththefollowingrelationship:throughput=min,raterepair [22].Whenthenet-workisnotdenseenough(asintheICMNcase),evenmod-eratenodemobilitywouldleadtofrequentdisconnections.Thisreducestheaveragepathdurationsigni“cantly.Addi-tionally,repairisatleast2timesthedelayoftheoptimalalgorithm.Consequently,inmostcasesrepairisexpectedtobelargerthanthepathduration,thiswayreducingtheexpectedthroughputtoalmostzero.Proactiveprotocols,ontheotherhand,wouldsimplydeclarelackofapathtothedestinationunderintermittentconnectivity,orresultintoadelugeoftopologyupdatesthatwoulddominatetheavail-ablebandwidthunderhighmobility.Anotherapproachtodealwithdisconnectionsordisrup-tionsŽ[2]istoreinforceconnectivityondemand,bybring-ingforexampleadditionalcommunicationresourcesintothenetworkwhennecessary(e.g.satellites,UAVs,etc.).Sim-ilarly,onecouldforceanumberofspecializednodes(e.g.robots)tofollowagiventrajectorybetweendisconnectedpartsofthenetworkinordertobridgethegap[28,18].Nevertheless,suchapproachesareorthogonaltoourwork;ouraimistostudywhatcanbedoneintheabsenceofsuchenforcedmobilityandconnectivity.AstudyofroutingforDTNnetworkswithpredictableconnectivitywasperformedin[15].There,anumberofalgorithmswithincreasingknowledgeaboutnetworkchar-acteristicslikeupcomingcontactsŽ,queuesizes,etc.iscomparedwithanoptimalcentralizedsolutionoftheprob-lem,formulatedasalinearprogram.Althoughitisshownthatevenlimitedknowledgemightbeadequatetoecientlysolvethisproblem,thealgorithmsproposedapplytothetypesofDTNswereconnectivityisintermittent,butcanbepredicted(forexample,duetoplanetaryandsatellitemovementinIPN[7]).Inourcase,connectivityisratheropportunisticandsubjecttothestatisticsofthemobilitymodelfollowedbynodes.Anumberofroutingproposalsexistthatarespeci“callytargetedtowardsthisnewcontextofintermittentlycon-nectedmobilenetworkswithopportunisticconnectivity.Manyofthemtrytodealwithapplication-speci“cproblems,es-peciallyinthe“eldofsensornetworks.In[23],anumberofmobilenodesperformingindependentrandomwalksservethatcollectdatafromstaticsensorsandde-liverthemtobasestations.EachDataMuleperformsDirectTransmission,thatis,willnotforwarddatatootherData-Mules,butonlydeliverittoitsdestination.Thestatisticsofrandomwalksareusedtoanalyzetheexpectedperfor-manceofthesystem.Theideaofcarryingdatathroughdisconnectedpartsusingavirtualmobilebackbonehasalsobeenusedin[5,13].Inanumberofotherworks,allnodesareassumedtobemobileandalgorithmstotransfermessagesfromanynodetoanyothernodearesoughtfor[3,8,11,14,17,18,19,Epidemicroutingextendstheconceptof”oodinginintermittentlyconnectedmobilenetworks[27].Itisoneofthe“rstschemesproposedtoenablemessagedeliveryinsuchnetworks.Eachnodemaintainsalistofallmessagesitcarries,whosedeliveryispending.Wheneveritencountersanothernode,thetwonodesexchangeallmessagesthattheydonthaveincommon.Thisway,allmessagesareeventu-allyspreadŽtoallnodes,includingtheirdestination(inanepidemicŽmanner).Althoughepidemicrouting“ndsthesamepathastheoptimalschemeundernocontention[25],itisverywastefulofnetworkresources.Furthermore,itcreatesalotofcontentionforthelimitedbuerspaceandnetworkcapacityoftypicalwirelessnetworks,resultinginmanymessagedropsandretransmissions.Thiscanhaveadetrimentaleectonperformance,ashasbeennotedearlierin[19,26],andwillalsobeshowninoursimulationresults.Onesimpleapproachtoreducetheoverheadof”oodingandimproveitsperformanceistoonlyforwardacopywithsomeprobability1[26].(Weshallrefertothispro-tocolasRandomizedFlooding.)Adierent,moresophis-ticatedapproachisthatofHistory-basedUtility-basedRouting[8,17,19].Here,eachnodemaintainsautilityvalueforeveryothernodeinthenetwork,basedonatimerindicatingthetimeelapsedsincethetwonodeslastencoun-teredeachother.Theseutilityvaluesessentiallycarryin-directinformationaboutrelativenodelocations,whichgetdiusedthroughnodesmobility.Therefore,aschemecanbedesigned,wherenodesforwardmessagecopiesonlyto nodeswithahigherutilitybyatleastsomepre-speci“edthresholdvalueforthemessagesdestination.Suchaschemeresultsinsuperiorperformancethan”ooding[17,19],andmakesbetterforwardingdecisionsthanrandom-izedrouting[25].Thismethodhasalsobeenfoundtobequiteecientinthecontextofregular,connected,wirelessnetworks[11].Nevertheless,utility-basedschemesarestill”ooding-basedinnature.Whatisworse,theyarefacedwithanimportantdilemmawhenchoosingtheutilitythreshold.Toosmallathresholdandtheschemebehaveslikepure”ooding.Toohighathresholdandthedelayincreasessig-ni“cantly,asweshallsee.Single-copyschemeshavealsobeenextensivelyexploredin[23,25].Suchschemesgenerateandrouteonlyonecopypermessage(incontrastto”oodingschemesthatessentiallysendacopytoeverynode),inordertosigni“cantlyreducethenumberoftransmissions.Althoughtheymightbeusefulinsomesituations,single-copyschemesdonotpresentdesir-ablesolutionsforapplicationsthatrequirehighprobabilitiesofdeliveryandlowdelays.Finally,anoptimaloracle-basedŽalgorithmhasbeende-scribedin[25].Thisalgorithmisawareofallfuturemove-ment,andcomputestheoptimalsetofforwardingdecisions(i.e.timeandnexthop),whichdeliversamessagetoitsdes-tinationintheminimumamountoftime.Thisalgorithmisofcoursenotimplementable,butisquiteusefultocompareagainstproposedpracticalschemes.Ourscheme,SprayandWait,managestosigni“cantlyre-ducethetransmissionoverheadof”ooding-basedschemeshavebetterperformancewithrespecttodeliverydelayinmostscenarios,whichisparticularlypronouncedwhencontentionforthewirelesschannelishigh.Further,itdoesnotrequiretheuseofanynetworkinformation,noteventhatofpastencounters.WealsoprovideanalyticalmethodstocomputethenumberofcopiespermessagethatSprayandWaitrequirestoachieveatargetaveragemessagedeliverydelay.Thesemethodsarecomplementedbyanalgorithmtoestimatenetworkparametersonline,likethetotalnumberofnodes,inordertobeabletooptimizeSprayandWaitwhentheseareunknown.Finally,wedemonstratethatSprayandWait,unlikeotherschemes,isremarkablyrobustandscal-able,retainingitsperformanceadvantageoveralargerangeofscenarios.3.SPRAYANDWAITROUTINGBasedonthepreviousexposition,wecanidentifyanum-berofdesirabledesigngoalsforaroutingprotocolininter-mittentlyconnectedmobilenetworks.Speci“cally,ane-cientroutingprotocolinthiscontextshould:performsigni“cantlyfewertransmissionsthanepidemicandother”ooding-basedroutingschemes,underallgeneratelowcontention,especiallyunderhightracachieveadeliverydelaythatisbetterthanexistingsingleandmulti-copyschemes,andclosetotheopti-behighlyscalable,thatis,maintaintheaboveper-formancebehaviordespitechangesinnetworksizeornodedensity.besimpleandrequireaslittleknowledgeaboutthenetworkaspossible,inordertofacilitateimplementa-Tothisend,weproposeanovelroutingscheme,calledSprayandWaitthatissimpleyetecient,andmeetstheabovegoals,aswewilldemonstrateinthenextsections.SprayandWaitroutingdecouplesthenumberofcopiesgen-eratedpermessage,andthereforethenumberoftransmis-sionsperformed,fromthenetworksize.ItconsistsoftwoDefinition3.1(SprayandWait).SprayandWaitroutingconsistsofthefollowingtwophases:sprayphase:foreverymessageoriginatingatasourcenode,messagecopiesareinitiallyspread…forwardedbythesourceandpossiblyothernodesreceivingacopy…todistinctrelaysŽ.(Detailsaboutdierentspray-ingmethodswillbegivenlater.)waitphase:ifthedestinationisnotfoundinthespray-ingphase,eachofthenodescarryingamessagecopyperformsdirecttransmission(i.e.willforwardthemes-sageonlytoitsdestination).SprayandWaitcombinesthespeedofepidemicroutingwiththesimplicityandthriftinessofdirecttransmission.Itinitiallyjump-startsŽspreadingmessagecopiesinaman-nersimilartoepidemicrouting.Whenenoughcopieshavebeenspreadtoguaranteethatatleastoneofthemwill“ndthedestinationquickly(withhighprobability),itstopsandletseachnodecarryingacopyperformdirecttransmission.Inotherwords,SprayandWaitcouldbeviewedasatrade-obetweensingleandmulti-copyschemes.Surprisingly,asweshallshortlysee,itsperformanceisbetterwithrespecttobothnumberoftransmissionsanddelaythanallotherpracticalsingleandmulti-copyschemes,inmostscenariosTheabovede“nitionofSprayandWaitleavesopentheissueofhowthecopiesaretobespreadinitially.Anum-berofdierentsprayingŽheuristicscanbeenvisioned.Forexample,thesimplestwayistohavethesourcenodefor-wardallcopiestothe“rstdistinctnodesitencounters(SourceSprayandWaitŽ).Abetterwayisthefollowing.Definition3.2(BinarySprayandWait.).Thesourceofamessageinitiallystartswithcopies;anynodemessagecopies(sourceorrelay),andencountersanothernode(withnocopies),handsovertokeepsforitself;whenitisleftwithonlyonecopy,itswitchestodirecttransmission.ThefollowingtheoremstatesthatBinarySprayandWaitisoptimal,whennodemovementisIID.WhenallnodesmoveinanIIDmanner,BinarySprayandWaitroutingisoptimal,thatis,hastheminimumexpecteddelayamongallsprayandwaitroutingProof.LetuscallanodeactiveŽwhenithasmorethanonecopiesofamessage.Letusfurtherde“neaspray-ingalgorithmintermsofafunctionasfollows:whenanactivenodewithcopiesencountersanothernode, ithandsovertoit)copies,andkeepstheremaining).Anysprayingalgorithm(i.e.any)canberep-resentedbythefollowingbinarytreewiththesourceasitsroot:assigntherootavalueof;ifthecurrentnodehasavalue1createarightchildwithavalueof1)andaleftonewithavalueof);continueuntilallleafnodeshaveavalueof1.Aparticularsprayingcorrespondsthentoasequenceofvisitingallnodesofthetree.Thissequenceisrandom.Nev-ontheaverage,alltreenodesatthesamelevelarevisitedinparallel.Further,sinceonlyactivenodesmayhandoveradditionalcopies,thehigherthenumberofac-tivenodeswhencopiesarespread,thesmallertheresidualexpecteddelay,let).Sincethetotalnumberoftreenodesis“xed(21)foranysprayingfunction,itiseasytoseethatthetreestructurethathasthemaximumnumberofnodesateverylevel,alsohasthemaximumnum-berofactivenodes(ontheaverage)ateverystep.Thistreeisthebalancedtree,andcorrespondstotheBinarySprayandWaitroutingscheme. growslarger,thesophisticationofthesprayingheuris-tichasanincreasingimpactonthedeliverydelayofthesprayandwaitscheme.Figure1comparestheexpectedde-layofBinarySprayandWaitandSourceSprayandWaitasafunctionofthenumberofcopiesused,ina100networkwith100nodes.This“gurealsoshowsthedelayoftheOptimalschemeintroducedin[25]. Delay of Spray and Wait50010001500200025003000350040005101520L (# of copies)time units source spray and wait binary spray and wait optimal Figure1:ComparisonofSourceSprayandWait,BinarySprayandWait,andOptimalschemes(networkwithnodes).4.OPTIMIZINGSPRAYANDWAITTOMEETPERFORMANCECONSTRAINTSByde“nition,mostICMNnetworksareexpectedtooper-ateinstressedenvironmentsandbynaturebedelaytoler-.Nevertheless,inmanysituationsthenetworkdesignerortheapplicationitselfmightstillimposecertainperfor-mancerequirementsontheprotocols(e.g.maximumdelay,maximumenergyconsumption,minimumthroughput,etc.).Forexample,amessagesentoveranICMNofhandheldsinacampusenvironment,notifyinganumberofpeersaboutanupcomingmeeting,wouldobviouslybeofnouseifitarrivesafterthemeetingtime.ItisofspecialinterestthereforetoexaminehowSprayandWaitcanbetunedtoachievethedesiredperformanceinaspeci“cscenario.Beforewedosothough,wesummarizeinthefollow-inglemmaafewofourownresultsfrom[25]regardingtheexpecteddelayoftheDirectTransmissionandOptimalschemes:Letnodeswithtransmissionrangeper-formindependentrandomwalksona N× torus.Then:1.ThedelayofDirectTransmissionisexponentiallydis-tributedwithaverage34log 2.TheexpecteddelayoftheOptimalalgorithmis whereistheHarmonicNumber,i.e, =(logWehavealsocomputedatightupperboundfortheex-pecteddelayofSprayandWait.Duetolimitationsofspaceweomittheproofandonlystatetheresult.Theinterestedreadercan“ndtheproofin[24].TheexpecteddelayofSprayandWait,whenmessagecopiesareused,isupper-boundedby MŠ1 Thisboundistightwhen4.1ChoosingLtoAchieveaRequiredExpectedDelayInthissectionweanalyzehowtochoose(i.e.thenum-berofcopiesused)inorderforSprayandWaittoachieveaspeci“cexpecteddelay.Notethattheissueofenergydissi-pationisalsodirectlytiedtothenumberofcopiesusedbySprayandWait,sinceSprayandWaitperformsexactlytransmissions.Letusassumethatthereisaspeci“cdeliverydelayconstrainttobemet.Thismightbe,forexample,amaximumexpecteddelaydictatedbytheapplication,asinthecaseofthemeetingnoti“cationmessage.Itisreasonabletoassumethatthisdelayconstraintisexpressedasafactortimestheoptimaldelay1),sincethisisthebestthatanyroutingprotocolcando.TheminimumnumberofcopiesneededforSprayandWaittoachieveanexpecteddelayatmostaEDisindependentofthesizeofthenetworktransmissionrange,andonlydependsonandthenum-berofnodesTheabovelemmastatesthattherequirednumberofcopiesonlydependsonthenumberofnodes,andisstraightforwardtoprovefromEq.(1).Furthermore,sincetheupperboundofEq.(1)istightforsmallL/Mvalues,ifthedelayconstraintisnottoostringent,wecanuseoneofthefollowingmethodstoquicklygetagoodestimatefor:(i)solvetheupperboundequationEq.(1)for,bylettingaEDandtaking,or(ii)approximatetheharmonicnumberinEq.(1)withitsTaylorSeriestermsuptosecondorder,andsolvetheresultingthirddegreepolynomial: 6)L2+a+2MŠ1 M(MŠL=M MŠ1,rn=ni istheHarmonicnumberoforder Table1:minimumtoachieveexpecteddelay 3 4 5 6 7 8 9 13 6 5 4 3 3 3 2 bound N.A. 11 6 5 4 3 3 2 taylor N.A. 10 5 4 3 3 3 2 Onecouldalsoiterativelycalculatetheexactnumberofcopiesneeded,usingthesystemofrecursiveequationsfrom[24].Howeverthismethodisquitemorecumbersome.InTable1wecompareexactresultsfortotheonescalculatedwiththetwoapproximatemethodsfordierentvaluesof.Weassumethenumberofnodesequals100.N.AstandforNonAvailableandmeansthatsuchalowdelayvalueisneverachievablebythebound.Ascanbeseeninthistablethefoundthroughtheapproximationisquiteaccuratewhenthedelayconstraintisnottoostringent.4.2EstimatingwhenNetworkParametersareUnknownThroughoutthepreviousanalysisweveassumedthatnet-workparameters,likethetotalnumberofnodesandsizeofthenetwork,areknown.Thisassumptionmightbevalidinsomenetworksoperatedbyasingleauthority.Nev-ertheless,inmanyenvisionedICMNapplications,eitherorboth,mightbeunknown.Forexample,auserthatuseshisPDAtoexchangetextmessagesoveralowcostICMNnetworkformedbysimilarusers,maynotknowthenumberofothersuchusersoutthereortheirgeograph-icalspread,atthatspeci“ctime.InordertomakeSprayandWaitecientinsuchscenariosaswell,wewouldliketoproduceandmaintaingoodestimatesofrelevantnetworkparameters,andadaptaccordingly.Astheanalysisoftheprevioussectionindicated,onlyanestimateofthenumberofnodesisrequiredtotune,inmostsituations.Thisproblemisdicultingeneral.AstraightforwardwaytoestimatewouldbetocountuniqueIDsofnodesencounteredalready.However,thismethodrequiresalargedatabaseofnodeIDstobemaintainedinlargenetworks,andalookupoperationtobeperformedeverytimeanynodeisencountered.Furthermore,althoughthismethodconvergeseventually,itsspeeddependsonnetworksizeandcouldtakeaverylongtimeinlargedisconnectednetworks.However,ifweassumethatnodesperformindependentran-domwalks,wecanproduceanestimateofbytakingad-vantageofinter-meetingtimestatistics.Speci“cally,letusasthetimeuntilanode(startingfromthestation-arydistribution)encountersothernode.ItiseasytoseefromLemma4.2thatisexponentiallydistributedwithaverage1).Furthermore,ifwesimilarlyasthetimeuntiltwodierentnodesareencoun-tered,thentheexpectedvalueof M1+1 fromthesetwoequationswegetthefollow-ingestimatefor bytheprocedureabovepresentssomechal-lengesinpractice,becauseareensembleaverages.Sincehittingtimesareergodic[4],anodecancollectsampleintermeetingtimesandcalculatetimeaver-instead.However,thefollowingcomplica-tionarises:whenarandomwalkmeetsanotherrandomwalkbecomecoupled[12];inotherwords,thenextintermeetingtimeofisnotanymoreexponen-tiallydistributedwithaverage.Inordertoovercomethisproblem,eachnodekeepsarecordofallnodeswithwhichitiscoupled.Everytimeanewnodeisencountered,itisstampedascoupledŽforanamountoftimeequaltorelaxationtimeforthatgraph,whichistheexpectedtimeuntilawalkstartingfromagivenpositionreachesitsstationarydistribution[4].Then,whennodemeasuresthenextsampleintermeetingtime,itignoresallnodesthatitscoupledwithatthemoment,denotedasandscalesthecollectedsample .Asimilarprocedureisfollowedfor.Puttingitalltogether,aftersampleshavebeencollected: nnkMŠck MŠ1T1T2=1 nnkMŠck1 MŠ1T11+MŠck inEq.(2)wegetacurrentestimate.AscanbeseenbyEq.(2),theestimatorforsensitivetosmalldeviationsoffromtheiractualvalues.Thereforeitisusefulforanodetoalsomaintainarunningaverageof.Speci“cally,therunningestimateisupdatedwitheverynewestimateAlthoughtheexpositionofourestimationmethodhasbeenbasedontherandomwalkmobilitymodel,itisimpor-tanttonotethatthismethodholdsforanymobilitymodelwithapproximatelyexponentiallydistributedmeetingtimesThereasonforthisisthattheexpectedmeetingtime,whichdiersfrommobilitymodeltomobilitymodel,getscancelledfromtheequations.Whatisimportantisthattheexpectedtimeofmeetinganyofnodesisapproximately theex-pectedtimeofmeetingonenode.Figure2showshowtheonlineestimate,calculatedwithourproposedmethod,quicklyconvergestoitsactualvaluefora200200toruswith200nodes,forboththerandomwalkandrandomwaypointmodels.(Notethateveninthissmallscenario,ourmethodsconvergenceismorethantwotimesfasterthanID-counting.)Wehavetestedourestimatorindierentscenariosandhaveobservedsimilarconvergence,aswell.Inthefuture,weintendtoexaminehowourmethodperformswithothermobilitymodels,too.Asageneralrulethough,itisshownin[4]thatthehittingtimedistributionofgeneralrandomwalksongraphsalwayshasanexponentialtail,andinmanycasesisapproximatelyexponentialitself.Consequently,weexpectthatifagivenmobilitymodelcanbe(evenapproximately)representedasarandomwalkonanappropriategraph,thenourmethodshouldproducesucientlyaccurateestimates.Asa“nalnote,bothourmethodandID-countingcouldtakeadvantageofindirectinformationlearning,wherenodesexchangeknownuniqueIDsorindependentlycollectedsam-plestospeedupconvergence.4.3ScalabilityofSprayandWaitHavingshownhowto“ndtheminimumnumberofcopiestoachieveadelayatmosttimestheoptimal,itwouldbeinteresting,fromascalabilitypointofview,toseehow Estimation of M - Random Walk10020030040001000200030004000number of samplesM value Actual M = 200 Estimated M Estimation of M - Rand. Waypoint10020030040001000200030004000number of samplesM value Actual M = 200 Estimated M Figure2:Onlineestimatorofnumberofnodes(grid,transmissionrangemixingtime=4000thepercentageofnodesthatneedtoreceiveacopybehavesasafunctionof.Thereasonforthisisthefollowing:IfweassumethatalargeenoughTTLvalueisusedandnoretransmissionsoccur,”ooding-basedschemeswilleventuallygiveacopytoeverynodeandthereforeper-formatleasttransmissions.Increasedcontentionandtheresultingretransmissionswillobviouslyincreasethisvaluesigni“cantly,asweshallsee.Evenutility-basedschemeswithreasonableutilitythresholdswillperform()trans-missions.Ontheotherhand,SprayandWaitperformstransmissions,andproducesverylittlecontentioncomparedto”ooding-basedschemes.Consequently,thenumberoftransmissionsthatSprayandWaitperformspermessageisatmostafractionofthenumberoftransmissionspermessage”ooding-basedschemesperform.InFigure3wedepictthebehaviorofasafunc-tionoffordierentvaluesof.Itisimportanttonotetherethat,asthenumberofnodesinthenetworkincreases,thepercentageofnodesthatneedtobecomerelaysinSprayandWaittoachievethesameperformancerelativetotheoptimalisactuallydecreasing.Inotherwords,althoughtheperformanceoftheoptimalschemealsoimproveswiththeperformanceofSprayandWaitseemstoimprovefaster.Theintuitionbehindsthisinterestingresultisthefollowing:thedelayofSprayandWaitisdominatedbythedelayofthewaitphase;inthatcase,ifL/Miskeptcon-stant,thedelayofSprayandWaitdecreasesroughlyas1Ontheotherhand,thedelayoftheoptimalschemede-creasesmoreslowlyaslog(,ascanbeseenbyEq.(1).ThefollowingLemmagivesaformalproof. Percentage of Nodes Receiving a Copy 100100010000100000Number of Nodes (M)percentage (%) =10 Percentage of Nodes Receiving a Copy 100100010000100000Number of Nodes (M)percentage (%) =10 Figure3:Requiredpercentageofnodesceivingacopyforsprayandwaittoachieveanex-pecteddelayofaEDLetL/Mbeconstantandlet.LetdenotetheminimumnumberofcopiesneededbySprayandWaittoachieveanexpecteddelaythatisataED,forsome.Then isadecreasingfunctionofProof.wecanusetheupperboundofEq.(1)toexaminethebehaviorofSprayandWait: MŠ1 =(log(=(log( Also,let,whereisaconstant(1).Replacinginthepreviousequationgivesus(log(1log(1 MŠ11Šc c Now,forlarge 1.Therefore,keepingthesizeofthegridandtransmissionrangeconstantwegetthat=(1)+(1) =( Ontheotherhand,forconstantlog( )ascanbeeasilyseenfromEq.(1).Hence, 1 log((i.e.decreasingwith),ifL/Miskeptcon-stant.Thisimpliesthatifwerequire tobekeptcon-stantforincreasing,thenL/Mhastobedecreasing. Thisbehaviorof(combinedwiththeindepen-denceof)impliesthatSprayandWaitisextremelyscalable.Whilemostoftheothermulti-copyschemesperformarapidlyincreasingnumberoftransmis-sionsasthenodedensityincreases,SprayandWaitactuallydecreasesthetransmissionspernodeasthenumberofnodesincreases.Itsperformanceadvantageovertheseschemesbecomesevenmorepronouncedinlargenetworks.5.SIMULATIONRESULTSWehaveusedacustomdiscreteevent-drivensimulatortoevaluateandcomparetheperformanceofdierentrout-ingprotocolsunderavarietyofmobilitymodelsandundercontention.Aslotted,randomaccesswithcollisiondetec-tionMACprotocolhasbeenimplementedinordertoarbi-tratebetweennodescontentingforthesharedchannel.Theroutingprotocolswehaveimplementedandsimulatedarethefollowing:(1)Epidemicrouting(epidemicŽ),(2)Ran-domized”oodingwith=(01)(random-”oodŽ),(3)Utility-basedroutingasdescribedin[19]withautility=(02)(utility-”oodŽ),(4)Optimal(binary)SprayandWaitwithcopies(spray&wait(L)Ž),(5)SeekandFocussingle-copyrouting(seek&focusŽ)[25],and(6)Oracle-basedOptimalrouting(optimalŽ).(Wewillusetheshorternamesintheparenthesestorefertoeachroutingschemeinsimulationplots.)Inallscenariosconsidered,eachmessageisassignedaTTLvaluebetween40006000timeunits.Wehavetriedtotunetheparametersofeachprotocolineachscenariosep-arately,inordertoachieveagoodtradeofortheprotocolinhand.Finally,wedepicttwoplotsforSprayandWaitfortwodierentvalues,inordertogainbetterinsightintothetransmissions-delaytradeosinvolved.WechoosethesevaluesaccordingtothetheoryofSection4.(Speci“cally,suchthatitsdelaywouldbeabout2thatoftheoptimalscheme,ifthenodeswereperformingrandomwalks.)We“rstevaluatetheeectoftracloadontheperfor-manceofallroutingschemes(ScenarioA).Wethenexamine theirperformanceasthelevelofconnectivitychanges(Sce-narioB).5.1ScenarioA:EffectofTrafÞcLoad100nodesmoveaccordingtotherandomwaypointmodel[6]ina500500gridwithre”ectivebarriers.Thetransmis-sionrangeofeachnodeisequalto10.Finally,eachnodeisgeneratinganewmessageforarandomlyselecteddestinationwithaninter-arrivaltimedistributionuniformin[1]untiltime10000.Wevaryfrom10000to2000creatingaveragetracloads(totalnumberofmessagesgeneratedthroughoutthesimulation)from200(lowtrac)to1000(hightrac).Figure4depictstheperformanceofallroutingalgorithms,intermsoftotalnumberoftransmissionsandaveragede-liverydelay.Epidemicroutingperformedsigni“cantlymoretransmissionsthanotherschemes(from56000to144000),andatleastanorderofmagnitudemorethanSprayandWait.Therefore,wedonotincludeitinthetransmissionplots,inordertobettercomparetheremainingschemes.AsisevidentbytheseplotsSprayandWaitoutperformsallsingleandmulti-copyprotocolsdiscussedandachievesitsdesigngoalssetinSection3.Speci“cally:(i)underlowtracitsdelayissimilartoEpidemicroutingandis2timesfasterthanallothermulti-copyprotocols;itperformsanorderofmagnitudelesstransmissionsthanEpidemicrouting,and56timeslesstransmissionsthanRandomizedandUtility-based,and(ii)underhightracitretainsthesameadvantageintermsoftotaltransmissions,andoutperformsallotherprotocols,intermsofdelay,byafactorof1Asa“nalnote,thedeliveryratioofalmostallschemesinthisscenariowasabove90%foralltracloads,exceptthatofSeekandFocuswhichwasabout70%,andthatofEpidemicroutingwhichplummetedtolessthan50%forveryhightrac,duetoseverecontention. 5000100001500020000250003000035000400004500050000Total Transmissions random-flood utility-flood seek&focus spray&wait(L=10) spray&wait(L=16) 50010001500200025003000350040004500 s eek&focu s Delivery Delay (time units) Increasing traffic Increasing traffic 5000100001500020000250003000035000400004500050000Total Transmissions random-flood utility-flood seek&focus spray&wait(L=10) spray&wait(L=16) 50010001500200025003000350040004500 s eek&focu s Delivery Delay (time units) Increasing traffic Increasing traffic Increasing traffic Increasing traffic Increasing traffic Figure4:ScenarioA-performancecomparisonofallroutingprotocolsundervaryingtracloads.5.2ScenarioB:EffectofConnectivityInthisscenario,thesizeofthenetworkis200200andweto4000(mediumtracload).Wevarythenumberofnodesandtransmissionrangetoevaluatetheperfor-manceofallprotocolsinnetworkswithalargerangeofcon-nectivitycharacteristics,rangingfromverysparse,highlydisconnectednetworks,toconnectednetworks.Beforeweproceed,itisnecessarytode“neameaningfulconnectivitymetric.Althoughanumberofdierentmet-ricshavebeenproposed(forexample[10]),nowidespreadagreementexists,especiallyifoneneedstocapturebothdisconnectedandconnectednetworks.Webelievethatameaningfulmetricforthenetworksofinterestistheex-pectedmaximumclustersizede“nedasthepercentageoftotalnodesinthelargestconnectedcomponent(cluster).Thisindicateswhatpercentageofnodeshavealreadycon-glomeratedintotheconnectedpartofthenetwork,withoneŽimplyingaregularconnectednetwork.Figure5de-pictstheconnectivitymetricforthe200200torus,asafunctionoftransmissionrangefor2dierentvaluesof Percentage of Nodes in Max Cluster (200x200)0.20.40.60.81.25101520253035404550Tx Range (K)percentage M = 100 M = 200 Figure5:Expectedpercentageoftotalnodesinlargestconnectedcomponent,asafunctionofWehavepickedanumberofpointsfromFigure5thatspantheentireconnectivityrange,andhaveevaluatedtheperformanceofallprotocolsunderthesescenarios.Figure6andFigure7depictthenumberoftransmissionsandtheaveragedelay,respectively.Ascanbeseenthere,SprayandWaitclearlyoutperformsallprotocols,intermsofbothtransmissionsanddelay,foralllevelsofconnectivity.Mostimportantly,itisextremelyscalableandrobust,comparedtoothermulti-copyorevensingle-copyoptions.EpidemicroutingandtherestoftheschemesmanagetoachieveadelaythatiscomparabletoSprayandWaitforveryfewconnectivityvaluesonly,butperformquitepoorlyforthevastmajorityofscenarios.Furthermore,theirperformanceseemstovarysigni“cantlyfordierentconnectivitylevels(despiteoureorttotuneeachprotocolforthegivensce-nario,wheneverpossible).SprayandWait,ontheotherhand,exhibitsgreatstability.Itperformsa“xednumberoftransmissionsacrossallscenarios,whileachievingadeliverydelaythatdecreasesasthelevelofconnectivityincreases,asonewouldexpect.6.CONCLUSIONInthisworkweinvestigatedtheproblemofecientrout-inginintermittentlyconnectedmobilenetworks.Wepro-posedasimplescheme,calledSprayandWait,thatman-agestoovercometheshortcomingsofepidemicroutingand Transmissions (thousands) K = 5 (2.5%) K = 10 (4.4%) K = 20 (14.9%) K = 30 (68%) K = 35 (92.5%) 100150200250300 Transmissions (thousands) K = 5 (1.9%) K = 10 (4.3%) K = 15 (13.3%) K = 20 (54.4%) K = 25 (95.5%) M = 100M = 200 Transmissions (thousands) K = 5 (2.5%) K = 10 (4.4%) K = 20 (14.9%) K = 30 (68%) K = 35 (92.5%) 100150200250300 Transmissions (thousands) K = 5 (1.9%) K = 10 (4.3%) K = 15 (13.3%) K = 20 (54.4%) K = 25 (95.5%) M = 100M = 200 Figure6:ScenarioB-Transmissionsasafunctionofnumberofnodesandtransmissionrange 5001000150020002500300035004000Delivery Delay (time units) K = 5 (2.5%) K = 10 (4.4%) K = 20 (14.9%) K = 30 (68%) K = 35 (92.5%) 5001000150020002500300035004000Delivery Delay (time units) K = 5 (1.9%) K = 10 (4.3%) K = 15 (13.3%) K = 20 (54.4%) K = 25 (95.5%) M = 100M = 200 5001000150020002500300035004000Delivery Delay (time units) K = 5 (2.5%) K = 10 (4.4%) K = 20 (14.9%) K = 30 (68%) K = 35 (92.5%) 5001000150020002500300035004000Delivery Delay (time units) K = 5 (1.9%) K = 10 (4.3%) K = 15 (13.3%) K = 20 (54.4%) K = 25 (95.5%) M = 100M = 200 Figure7:ScenarioB-Deliverydelayasafunctionofnumberofnodesandtransmissionrangeother”ooding-basedschemes,andavoidstheperformancedilemmainherentinutility-basedschemes.UsingtheoryandsimulationsweshowthatSprayandWait,despiteitssimplicity,outperformsallexistingschemeswithrespecttonumberoftransmissionsanddeliverydelays,achievescom-parabledelaystoanoptimalscheme,andisveryscalableasthesizeofthenetworkorconnectivitylevelincrease.Infutureworkweintendtolookindetailintoschemesthatsprayanumberofcopiesquickly,andthenuseutility-basedorotherecientsingle-copyschemestorouteeachcopyindependently.SuchschemeswouldaimtorealizetheperformanceadvantagesofthegenericSprayandWaitap-proachincaseswheremobilitymightberestrictedorcorre-latedinspaceandtime.7.REFERENCES[1]Delaytolerantnetworkingresearchgroup.http://www.dtnrg.org[2]Disruptiontolerantnetworking.http://www.darpa.mil/ato/solicit/DTN/[3]Sensornetworkingwithdelaytolerance(sendt).http://down.dsg.cs.tcd.ie/sendt/[4]D.AldousandJ.Fill.Reversiblemarkovchainsandrandomwalksongraphs.(monographinwww.berkeley.edu/users/aldous/RWG/book.html[5]A.Beaufour,M.Leopold,andP.Bonnet.Smart-tagbaseddatadissemination.InProc.ACMInter.WorkshoponWirelessSensorNetsandApplications(WSNA),Sept.2002.[6]J.Broch,D.A.Maltz,D.B.Johnson,Y.-C.Hu,andJ.Jetcheva.Aperformancecomparisonofmulti-hopwirelessadhocnetworkroutingprotocols.InComputingandNetworking,pages85…97,1998.[7]S.Burleigh,A.Hooke,L.Torgerson,K.Fall,V.Cerf,B.Durst,andK.Scott.Delay-tolerantnetworking:anapproachtointerplanetaryinternet.CommunicationsMagazine,41:128…136,2003.[8]X.ChenandA.L.Murphy.Enablingdisconnectedtransitivecommunicationinmobileadhocnetworks.Proc.ofWorkshoponPrinciplesofMobileComputing,colocatedwithPODC01,Aug.2001.[9]A.Doria,M.Udn,andD.P.Pandey.Providingconnectivitytothesaaminomadiccommunity.InProc.2ndInt.Conf.onOpenCollaborativeDesignforSustainableInnovation,Dec.2002.[10]O.Dousse,P.Thiran,andM.Hasler.Connectivityinad-hocandhybridnetworks.InProc.ofInfocom,June[11]H.Dubois-Ferriere,M.Grossglauser,andM.Vetterli.Agematters:ecientroutediscoveryinmobileadhocnetworksusingencounterages.InProc.ACMMobiHoc03,June2003.[12]R.Durrett.Probability:TheoryandExamplesDuxburyPress,secondedition,1995.[13]N.Glance,D.Snowdon,andJ.-L.Meunier.Pollen:usingpeopleasacommunicationmedium.,35(4):429…442,Mar.2001.[14]M.GrossglauserandD.N.C.Tse.Mobilityincreasesthecapacityofadhocwirelessnetworks.IEEE/ACMTransactionsonNetworking.,10(4):477…486,2002.[15]S.Jain,K.Fall,andR.Patra.Routinginadelaytolerantnetwork.InProc.ACM/Sigcomm,Aug.2004.[16]D.B.Johnson,D.A.Maltz,andJ.Broch.Adhoc,chapter5-DSR:thedynamicsourceroutingprotocolformultihopwirelessadhocnetworks.Addison-Wesley,2001.[17]P.Juang,H.Oki,Y.Wang,M.Martonosi,L.S.Peh,andD.Rubenstein.Energy-ecientcomputingforwildlifetracking:designtradeosandearlyexperienceswithzebranet.InProc.ASPLOS02,Oct.[18]Q.LiandD.Rus.Communicationindisconnectedadhocnetworksusingmessagerelay.JournalofParallelandDistributedComputing.,63(1):75…86,2003.[19]A.Lindgren,A.Doria,andO.Schelen.Probabilisticroutinginintermittentlyconnectednetworks.SIGMOBILEMobileComputingandCommunicationsReview,7(3):19…20,2003.[20]M.Mauve,J.Widmer,andH.Hartenstein.Asurveyonposition-basedroutinginmobilead-hocnetworks.IEEENetwork,10(6):30…39,2001.[21]C.E.Perkins,E.M.Belding-Royer,andS.R.Das.Ad-hocon-demanddistancevectorrouting.IETFMANETDRAFT,2002.[22]N.Sadagopan,F.Bai,B.Krishnamachari,andA.Helmy.Paths:analysisofpathdurationstatisticsandtheirimpactonreactivemanetroutingprotocols.Proc.ofMobiHoc03,pages245…256,June2003.[23]R.C.Shah,S.Roy,S.Jain,andW.Brunette.Datamules:Modelingandanalysisofathree-tierarchitectureforsparsesensornetworks.ElsevierAdHocNetworksJournal,1:215…233,Sept.2003.[24]T.Spyropoulos,K.Psounis,andC.S.Raghavendra.Multiple-copyroutinginintermittentlyconnectedmobilenetworks.TechnicalReportCENG-2004-12,USC,2004.[25]T.Spyropoulos,K.Psounis,andC.S.Raghavendra.Single-copyroutinginintermittentlyconnectedmobilenetworks.InProc.ofIEEESecon04,2004.[26]Y.-C.Tseng,S.-Y.Ni,Y.-S.Chen,andJ.-P.Sheu.Thebroadcaststormprobleminamobileadhocnetwork.WirelessNetworks,8(2/3):153…167,2002.[27]A.VahdatandD.Becker.Epidemicroutingforpartiallyconnectedadhocnetworks.TechnicalReportCS-200006,DukeUniversity,Apr.2000.[28]W.Zhao,M.Ammar,andE.Zegura.Amessageferryingapproachfordatadeliveryinsparsemobileadhocnetworks.InProc.MobiHoc04,2004.