/
GeneralizedHibiringsandHibiideals GeneralizedHibiringsandHibiideals

GeneralizedHibiringsandHibiideals - PDF document

skylar
skylar . @skylar
Follow
342 views
Uploaded On 2021-06-27

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "GeneralizedHibiringsandHibiideals" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 GeneralizedHibiringsandHibiideals J¨urge
GeneralizedHibiringsandHibiideals J¨urgenHerzogUniversit¨atDuisburg-EssenEllwangen,March2011 OutlineHibirings HibiidealsGeneralizedHibiringsandHibiideals Outline Hibirings Hibiideals GeneralizedHibiringsandHibiideals Outline HibiringsHibiideals GeneralizedHibiringsa

2 ndHibiideals Hibirings In1985Hibiintrodu
ndHibiideals Hibirings In1985Hibiintroducedaclassofalgebraswhichnowadaysarecalled Hibirings .Theyaresemigroupringsattachedtoniteposets,andmaybeviewedasnaturalgeneralizationsofpolynomialrings. Hibirings In1985Hibiintroducedaclassofalgebraswhichnowadaysarecalled Hibi

3 rings .Theyaresemigroupringsattachedton
rings .Theyaresemigroupringsattachedtoniteposets,andmaybeviewedasnaturalgeneralizationsofpolynomialrings.Indeed,apolynomialringinnvariablesoveraeldKisjusttheHibiringoftheposet [n1]=f1;2;:::;n1g . Hibirings In1985Hibiintroducedaclassofalgebraswhichnowadaysarecall

4 ed Hibirings .Theyaresemigroupringsattac
ed Hibirings .Theyaresemigroupringsattachedtoniteposets,andmaybeviewedasnaturalgeneralizationsofpolynomialrings.Indeed,apolynomialringinnvariablesoveraeldKisjusttheHibiringoftheposet [n1]=f1;2;:::;n1g .Let P=fp1;:::;png beaniteposet.A posetideal IofPisasubsetof

5 Pwhichsatisesthefollowingcondition:fore
Pwhichsatisesthefollowingcondition:forevery p2I; and q2P with qp ,itfollows q2I . Hibirings In1985Hibiintroducedaclassofalgebraswhichnowadaysarecalled Hibirings .Theyaresemigroupringsattachedtoniteposets,andmaybeviewedasnaturalgeneralizationsofpolynomialrings.Ind

6 eed,apolynomialringinnvariablesoveraeld
eed,apolynomialringinnvariablesoveraeldKisjusttheHibiringoftheposet [n1]=f1;2;:::;n1g .Let P=fp1;:::;png beaniteposet.A posetideal IofPisasubsetofPwhichsatisesthefollowingcondition:forevery p2I; and q2P with qp ,itfollows q2I .Let I(P) bethesetoftheposetideals

7 ofP.ThenI(P)isasublatticeofthepowersetof
ofP.ThenI(P)isasublatticeofthepowersetofP;andhenceitisadistributivelattice. ByBirkhoff'stheoremanynitedistributivelatticearisesinthisway. ByBirkhoff'stheoremanynitedistributivelatticearisesinthisway.LetKbeaeld.ThentheHibiringoverKattachedtoPisthetoricring K[I(P)]

8 K[x1;:::;xn;y1;:::;yn] generatedbythese
K[x1;:::;xn;y1;:::;yn] generatedbythesetofmonomials fuI:I2I(P)g where uI=Qpi2IxiQpi62Iyi . ByBirkhoff'stheoremanynitedistributivelatticearisesinthisway.LetKbeaeld.ThentheHibiringoverKattachedtoPisthetoricring K[I(P)]K[x1;:::;xn;y1;:::;yn] generatedbythesetofmono

9 mials fuI:I2I(P)g where uI=Qpi2IxiQpi62I
mials fuI:I2I(P)g where uI=Qpi2IxiQpi62Iyi .Let T=K[ftI:tI2I(P)g] bethepolynomialringinthevariablestIoverK,and 'T!K[I(P)] theK-algebrahomomorphismwithtI7!uI. ByBirkhoff'stheoremanynitedistributivelatticearisesinthisway.LetKbeaeld.ThentheHibiringoverKattachedtoPist

10 hetoricring K[I(P)]K[x1;:::;xn;y1;:::;y
hetoricring K[I(P)]K[x1;:::;xn;y1;:::;yn] generatedbythesetofmonomials fuI:I2I(P)g where uI=Qpi2IxiQpi62Iyi .Let T=K[ftI:tI2I(P)g] bethepolynomialringinthevariablestIoverK,and 'T!K[I(P)] theK-algebrahomomorphismwithtI7!uI.OnefundamentalresultconcerningHibiringsisth

11 atthetoricidealLP=Ker'hasareducedGr¨obne
atthetoricidealLP=Ker'hasareducedGr¨obnerbasisconsistingoftheso-called Hibirelations : tItJtI\JtI[JwithI6JandJ6I: HibishowedthatanyHibiringisanormalCohen–Macaulaydomainofdimension 1+jPj ,andthatitisGorensteinifandonlyiftheattachedposetPisgraded,thatis,allmaximalc

12 hainsofPhavethesamecardinality. Hibishow
hainsofPhavethesamecardinality. HibishowedthatanyHibiringisanormalCohen–Macaulaydomainofdimension 1+jPj ,andthatitisGorensteinifandonlyiftheattachedposetPisgraded,thatis,allmaximalchainsofPhavethesamecardinality.Moregenerally,foranynitelattice L ,notnecessarilydist

13 ributive,onemayconsidertheKalgebra K[L]
ributive,onemayconsidertheKalgebra K[L] withgeneratorsy , 2L,andrelations y y =y ^ y _ where^and_denotemeetandjoininL.HibishowedthatK[L]isadomainifandonlyifLisdistributive,inotherwords,ifLisanideallatticeofaposet. LetKbeaeldand X=(xij)i=1;:::;mj=1;:::;n amatrixofi

14 ndeterminates.WedenotebyK[X]thepolynomia
ndeterminates.WedenotebyK[X]thepolynomialringoverKwiththeindeterminatesxij,andbyAtheK-subalgebraofK[X]generatedbyallmaximalminorsofX. LetKbeaeldand X=(xij)i=1;:::;mj=1;:::;n amatrixofindeterminates.WedenotebyK[X]thepolynomialringoverKwiththeindeterminatesxij,andbyA

15 theK-subalgebraofK[X]generatedbyallmaxim
theK-subalgebraofK[X]generatedbyallmaximalminorsofX.TheK-algebra AK[X] isthecoordinateringofthe Grassmannian ofthem-dimensionalvectorK-subspacesofKn. LetKbeaeldand X=(xij)i=1;:::;mj=1;:::;n amatrixofindeterminates.WedenotebyK[X]thepolynomialringoverKwiththeindeter

16 minatesxij,andbyAtheK-subalgebraofK[X]ge
minatesxij,andbyAtheK-subalgebraofK[X]generatedbyallmaximalminorsofX.TheK-algebra AK[X] isthecoordinateringofthe Grassmannian ofthem-dimensionalvectorK-subspacesofKn.LetbethelexicographicorderonK[X]inducedby x11�x12��x1n�x21�x2

17 2��xm1�xm2�
2��xm1�xm2��xmn: Wedenoteby =[a1;a2;:::;am] themaximalminorofXwithcolumnsa1a2am.Then in()=x1;a1x2;a2xm;am isthe`diagonal'of. Let S=K[x1;:::;xn] beapolynomialring,amonomialorderonSand AS aK-subalgebra. Let S=K[x1;:::

18 ;xn] beapolynomialring,amonomialorderonS
;xn] beapolynomialring,amonomialorderonSand AS aK-subalgebra.ThentheK-algebra in(A) generatedbyallmonomials in(f) with f2A iscalledthe initialalgebra ofAwithrespectto. Let S=K[x1;:::;xn] beapolynomialring,amonomialorderonSand AS aK-subalgebra.ThentheK-algebra in(A

19 ) generatedbyallmonomials in(f) with f2A
) generatedbyallmonomials in(f) with f2A iscalledthe initialalgebra ofAwithrespectto.Ingeneralin(A)isnotnitelygenerated.Asubset SA iscalleda Sagbibases ofAwithrespectto,iftheelementsf2SgenerateAoverK.ThisconcepthasbeenintroducedbyRobbianoandSweedlerandindependentl

20 ybyKapurandMadlener. Let S=K[x1;:::;xn]
ybyKapurandMadlener. Let S=K[x1;:::;xn] beapolynomialring,amonomialorderonSand AS aK-subalgebra.ThentheK-algebra in(A) generatedbyallmonomials in(f) with f2A iscalledthe initialalgebra ofAwithrespectto.Ingeneralin(A)isnotnitelygenerated.Asubset SA iscalleda Sagbi

21 bases ofAwithrespectto,iftheelementsf2Sg
bases ofAwithrespectto,iftheelementsf2SgenerateAoverK.ThisconcepthasbeenintroducedbyRobbianoandSweedlerandindependentlybyKapurandMadlener.TheoremThemaximalminorsofXformaSagbibasesoftheGrassmannianalgebraA. Let S=K[x1;:::;xn] beapolynomialring,amonomialorderonSand A

22 S aK-subalgebra.ThentheK-algebra in(A) g
S aK-subalgebra.ThentheK-algebra in(A) generatedbyallmonomials in(f) with f2A iscalledthe initialalgebra ofAwithrespectto.Ingeneralin(A)isnotnitelygenerated.Asubset SA iscalleda Sagbibases ofAwithrespectto,iftheelementsf2SgenerateAoverK.Thisconcepthasbeenintroduce

23 dbyRobbianoandSweedlerandindependentlyby
dbyRobbianoandSweedlerandindependentlybyKapurandMadlener.TheoremThemaximalminorsofXformaSagbibasesoftheGrassmannianalgebraA.Whatistheuseofthistheorem? WedeneapartialonthesetLofmaximalminorsofX: [a1;a2;:::;am][b1;b2;:::;bm],aibiforalli ThesetLwiththispartialorderi

24 sadistributivelattice. Wedeneapartialon
sadistributivelattice. WedeneapartialonthesetLofmaximalminorsofX: [a1;a2;:::;am][b1;b2;:::;bm],aibiforalli ThesetLwiththispartialorderisadistributivelattice.Theorem in(A) isisomorphictotheHibiring K[L] ofthelattice L . WedeneapartialonthesetLofmaximalminorsofX:

25 [a1;a2;:::;am][b1;b2;:::;bm],aibiforal
[a1;a2;:::;am][b1;b2;:::;bm],aibiforalli ThesetLwiththispartialorderisadistributivelattice.Theorem in(A) isisomorphictotheHibiring K[L] ofthelattice L .Indeed,letTbethepolynomialringoverKinthevariablestwith2L,andlet :T!in(A)betheK-algebrahomomorphismwith (t)=in

26 ().OneshowsthattheHibirelations t1t2
().OneshowsthattheHibirelations t1t2t1_2t1^2;1;12L generateKer . WedeneapartialonthesetLofmaximalminorsofX: [a1;a2;:::;am][b1;b2;:::;bm],aibiforalli ThesetLwiththispartialorderisadistributivelattice.Theorem in(A) isisomorphictotheHibiring K[L] ofthelatt

27 ice L .Indeed,letTbethepolynomialringove
ice L .Indeed,letTbethepolynomialringoverKinthevariablestwith2L,andlet :T!in(A)betheK-algebrahomomorphismwith (t)=in().OneshowsthattheHibirelations t1t2t1_2t1^2;1;12L generateKer .CorollaryThecoordinateringAoftheGrassmannianofm-dimensionalK-subspacesofK

28 nisaGorensteinringofdimension m(nm)+1 .
nisaGorensteinringofdimension m(nm)+1 . Hibiideals LetPbeaniteposet.Theideal HPK[x1;:::;xn;y1;:::;yn] whichhisgeneratedbythemonomials uI=Yp2IxpYp62Iyq;II(P) iscalledthe Hibiideal ofP. Hibiideals LetPbeaniteposet.Theideal HPK[x1;:::;xn;y1;:::;yn] whichhisgenera

29 tedbythemonomials uI=Yp2IxpYp62Iyq;II(P
tedbythemonomials uI=Yp2IxpYp62Iyq;II(P) iscalledthe Hibiideal ofP.Theorem(a) HP hasalinearresolution.(b) HP=Tpq(xp;yq) . Hibiideals LetPbeaniteposet.Theideal HPK[x1;:::;xn;y1;:::;yn] whichhisgeneratedbythemonomials uI=Yp2IxpYp62Iyq;II(P) iscalledthe Hibiideal

30 ofP.Theorem(a) HP hasalinearresolution.(
ofP.Theorem(a) HP hasalinearresolution.(b) HP=Tpq(xp;yq) .Application:Let G beanitesimplegraphonthevertexset[n].Onedenesthe edgeideal IG ofGasthemonomialidealinK[x1;:::;xn]withsetofgenerators fxixj:fi;jg2E(G)g . Hibiideals LetPbeaniteposet.Theideal HPK[x1;:::;x

31 n;y1;:::;yn] whichhisgeneratedbythemonom
n;y1;:::;yn] whichhisgeneratedbythemonomials uI=Yp2IxpYp62Iyq;II(P) iscalledthe Hibiideal ofP.Theorem(a) HP hasalinearresolution.(b) HP=Tpq(xp;yq) .Application:Let G beanitesimplegraphonthevertexset[n].Onedenesthe edgeideal IG ofGasthemonomialidealinK[x1;:::;xn]

32 withsetofgenerators fxixj:fi;jg2E(G)g .F
withsetofgenerators fxixj:fi;jg2E(G)g .ForwhichgraphsisIGCohen–Macaulay? Theorem(H-Hibi)LetGbeabipartitegraphwithvertexpartitionV[V0.Thenthefollowingconditionsareequivalent: (a) GisaCohen–Macaulaygraph; (b) jVj=jV0jandtheverticesV=fx1;:::;xngandV0=fy1;:::;yngcanbela

33 belledsuchthat: (i) fxi;yigareedgesfori=
belledsuchthat: (i) fxi;yigareedgesfori=1;:::;n; (ii) iffxi;yjgisanedge,thenij; (iii) iffxi;yjgandfxj;ykgareedges,thenfxi;ykgisanedge. P1234 y1y2y3y4x1x2x3x4G(P) TheAlexanderdual:letIbeasquarefreemonomialideal.Then I=r\j=1PFj; whereforasubsetF[n]weset

34 PF=(fxi:i2Fg) . TheAlexanderdual:letIbea
PF=(fxi:i2Fg) . TheAlexanderdual:letIbeasquarefreemonomialideal.Then I=r\j=1PFj; whereforasubsetF[n]weset PF=(fxi:i2Fg) .Theideal I_=(xF1;:::;xFr) iscalledthe Alexanderdual ofI.HereforasubsetF[n]weset xF=Qi2Fxi . TheAlexanderdual:letIbeasquarefreemonomialideal.The

35 n I=r\j=1PFj; whereforasubsetF[n]weset
n I=r\j=1PFj; whereforasubsetF[n]weset PF=(fxi:i2Fg) .Theideal I_=(xF1;:::;xFr) iscalledthe Alexanderdual ofI.HereforasubsetF[n]weset xF=Qi2Fxi .Example: I=(x1x4;x1x5;x2x5;x3x5)=(x1;x2;x3)\(x1;x5)\(x4;x5) . TheAlexanderdual:letIbeasquarefreemonomialideal.Then I=r\

36 j=1PFj; whereforasubsetF[n]weset PF=(fx
j=1PFj; whereforasubsetF[n]weset PF=(fxi:i2Fg) .Theideal I_=(xF1;:::;xFr) iscalledthe Alexanderdual ofI.HereforasubsetF[n]weset xF=Qi2Fxi .Example: I=(x1x4;x1x5;x2x5;x3x5)=(x1;x2;x3)\(x1;x5)\(x4;x5) .Therefore I_=(x1x2x3;x1x5;x4x5) . Theorem(Eagon-Reiner)LetISbea

37 squarefreemonomialideal.ThenI_isCohen-Ma
squarefreemonomialideal.ThenI_isCohen-Macaulay,ifandonlyifIhasalinearresolution. Theorem(Eagon-Reiner)LetISbeasquarefreemonomialideal.ThenI_isCohen-Macaulay,ifandonlyifIhasalinearresolution.Since HP=Tpq(xp;yq) andhasalinearresolution,theAlexanderdual H_P isCohen–M

38 acaulaybytheEagon–ReinerTheorem. Theorem
acaulaybytheEagon–ReinerTheorem. Theorem(Eagon-Reiner)LetISbeasquarefreemonomialideal.ThenI_isCohen-Macaulay,ifandonlyifIhasalinearresolution.Since HP=Tpq(xp;yq) andhasalinearresolution,theAlexanderdual H_P isCohen–MacaulaybytheEagon–ReinerTheorem.But H_P=(fxpyq:p

39 qg) istheedgeidealofabipartitegraphsati
qg) istheedgeidealofabipartitegraphsatisfyingtheconditions(i),(ii)and(ii).ThisprovesonedirectionoftheclassicationtheoremofCohen-Macaulaybipartitegraphs. GeneralizedHibiidealsandHibirings LetPbeaniteposetand I(P) thesetofposetidealsofP.Anr-multichainofI(P)isachain

40 ofposetidealsoflengthr, I:I1I2Ir=P
ofposetidealsoflengthr, I:I1I2Ir=P: GeneralizedHibiidealsandHibirings LetPbeaniteposetand I(P) thesetofposetidealsofP.Anr-multichainofI(P)isachainofposetidealsoflengthr, I:I1I2Ir=P: Wedeneapartialorderontheset Ir(P) ofallr-multichainsofI(P)bysetting I

41 I0 if IkI0k fork=1;:::;r. GeneralizedHi
I0 if IkI0k fork=1;:::;r. GeneralizedHibiidealsandHibirings LetPbeaniteposetand I(P) thesetofposetidealsofP.Anr-multichainofI(P)isachainofposetidealsoflengthr, I:I1I2Ir=P: Wedeneapartialorderontheset Ir(P) ofallr-multichainsofI(P)bysetting II0 if IkI0k fo

42 rk=1;:::;r.ThepartiallyorderedsetIr(P)is
rk=1;:::;r.ThepartiallyorderedsetIr(P)isadistributivelattice,ifwedenethemeetof I:I1Ir and I0:I01I0r as I\I0 where (I\I0)k=Ik\I0k fork=1;:::;r,andthejoinas I[I0 where (I[I0)k=Ik[I0k fork=1;:::;r. Witheachr-multichainIofIr(P)weassociateamonomial uI inthepol

43 ynomialring S=K[fxij:1ir;1jng] inrni
ynomialring S=K[fxij:1ir;1jng] inrnindeterminateswhichisdenedas uI=x1J1x2J2xrJr; where xkJk=Qp`2Jkxk` and Jk=IknIk1 fork=1;:::;r. Witheachr-multichainIofIr(P)weassociateamonomial uI inthepolynomialring S=K[fxij:1ir;1jng] inrnindeterminateswhichisdeneda

44 s uI=x1J1x2J2xrJr; where xkJk=Qp`2Jkx
s uI=x1J1x2J2xrJr; where xkJk=Qp`2Jkxk` and Jk=IknIk1 fork=1;:::;r.Wedenoteby Hr;P themonomialidealinSgeneratedbythesemonomialsandby Rr(P) theK-subalgebrageneratedbythemonomialgeneratorsofHr;P. Witheachr-multichainIofIr(P)weassociateamonomial uI inthepolynomialr

45 ing S=K[fxij:1ir;1jng] inrnindetermi
ing S=K[fxij:1ir;1jng] inrnindeterminateswhichisdenedas uI=x1J1x2J2xrJr; where xkJk=Qp`2Jkxk` and Jk=IknIk1 fork=1;:::;r.Wedenoteby Hr;P themonomialidealinSgeneratedbythesemonomialsandby Rr(P) theK-subalgebrageneratedbythemonomialgeneratorsofHr;P.Forr=2thei

46 dealHr;PisjusttheclassicalHibiideal,andR
dealHr;PisjusttheclassicalHibiideal,andRr(P)theHibiringoftheideallatticeI(P)ofP. Let T bethepolynomialringoverKinthesetofindeterminates ftI:I2Ir(P)g . Let T bethepolynomialringoverKinthesetofindeterminates ftI:I2Ir(P)g .Furthermorelet ':T!Rr(P) bethesurjectiveK-alge

47 brahomomorphismwith '(tI)=uI forall I2Ir
brahomomorphismwith '(tI)=uI forall I2Ir(P) . Let T bethepolynomialringoverKinthesetofindeterminates ftI:I2Ir(P)g .Furthermorelet ':T!Rr(P) bethesurjectiveK-algebrahomomorphismwith '(tI)=uI forall I2Ir(P) .TheoremTheset =ftItI0tI[I0tI\I02T:I;I02Ir(P)incomparableg

48 isareducedGr¨obnerbasisoftheideal Lr=Ker
isareducedGr¨obnerbasisoftheideal Lr=Ker' withrespecttothereverselexicographicorder. Let T bethepolynomialringoverKinthesetofindeterminates ftI:I2Ir(P)g .Furthermorelet ':T!Rr(P) bethesurjectiveK-algebrahomomorphismwith '(tI)=uI forall I2Ir(P) .TheoremTheset =ftItI

49 0tI[I0tI\I02T:I;I02Ir(P)incomparableg i
0tI[I0tI\I02T:I;I02Ir(P)incomparableg isareducedGr¨obnerbasisoftheideal Lr=Ker' withrespecttothereverselexicographicorder.CorollaryRr(P)isanormalCohen–Macaulaydomainofdimension n(r1)+1 CorollaryLetPbeaniteposet.Thefollowingconditionsareequivalent: I Rr(P)isGorens

50 tein. I R2(P)isGorenstein. I Pisgraded.
tein. I R2(P)isGorenstein. I Pisgraded. CorollaryLetPbeaniteposet.Thefollowingconditionsareequivalent: I Rr(P)isGorenstein. I R2(P)isGorenstein. I Pisgraded.Proof:Oneshowsthat Rr(P)=R2(P[r1]) . CorollaryLetPbeaniteposet.Thefollowingconditionsareequivalent: I Rr

51 (P)isGorenstein. I R2(P)isGorenstein. I
(P)isGorenstein. I R2(P)isGorenstein. I Pisgraded.Proof:Oneshowsthat Rr(P)=R2(P[r1]) .FinallyweconsiderthegeneralizedHibiidealHr;PanditsAlexanderdual. Let CP amultichainoflengthr,i.e., C=fp1;p2;:::;prg with p1p2pr .Let C bethesetofallmultichainsoflengthrof

52 P. Let CP amultichainoflengthr,i.e., C=
P. Let CP amultichainoflengthr,i.e., C=fp1;p2;:::;prg with p1p2pr .Let C bethesetofallmultichainsoflengthrofP.Wedenethemonomial uC=Qri=1xi;pi andlet Ir;P=(fuC:C2Cg) . Let CP amultichainoflengthr,i.e., C=fp1;p2;:::;prg with p1p2pr .Let C bethesetofallm

53 ultichainsoflengthrofP.Wedenethemonomia
ultichainsoflengthrofP.Wedenethemonomial uC=Qri=1xi;pi andlet Ir;P=(fuC:C2Cg) .TheidealsIr;Pmaybeinterpretedasfacetidealsofacompletelybalancedsimplicialcomplexes,asintroducedbyStanley. Let CP amultichainoflengthr,i.e., C=fp1;p2;:::;prg with p1p2pr .Let C bet

54 hesetofallmultichainsoflengthrofP.Weden
hesetofallmultichainsoflengthrofP.Wedenethemonomial uC=Qri=1xi;pi andlet Ir;P=(fuC:C2Cg) .TheidealsIr;Pmaybeinterpretedasfacetidealsofacompletelybalancedsimplicialcomplexes,asintroducedbyStanley.Theorem(a) Hr;P hasalinearresolution.(b) H_r;P=Ir;P . Let CP amultich

55 ainoflengthr,i.e., C=fp1;p2;:::;prg with
ainoflengthr,i.e., C=fp1;p2;:::;prg with p1p2pr .Let C bethesetofallmultichainsoflengthrofP.Wedenethemonomial uC=Qri=1xi;pi andlet Ir;P=(fuC:C2Cg) .TheidealsIr;Pmaybeinterpretedasfacetidealsofacompletelybalancedsimplicialcomplexes,asintroducedbyStanley.Theore

56 m(a) Hr;P hasalinearresolution.(b) H_r;P
m(a) Hr;P hasalinearresolution.(b) H_r;P=Ir;P .CorollaryThefacetidealofacompletelybalancedsimplicialcomplexarisingfromaposetisCohen–Macaulay. J.A.EagonandV.Reiner,ResolutionsofStanley-ReisnerringsandAlexanderduality.J.ofPureandAppl.Algebra,130,265–275(1998). V.Ene,J

57 .Herzog,F.Mohammadi,Monomialidealsandtor
.Herzog,F.Mohammadi,MonomialidealsandtoricringsofHibitypearisingformaniteposet,Europ.J.Comb.32,404–421,(2011) J.HerzogandT.Hibi,Distributivelattices,bipartitegraphsandAlexanderduality.J.AlgebraicCombin.22,289–302(2005). J.HerzogandT.Hibi,MonomialIdeals.Springer(201

58 0). T.Hibi,Distributivelattices,afnesem
0). T.Hibi,Distributivelattices,afnesemigroupringsandalgebraswithstraighteninglaws,in“CommutativeAlgebraandCombinatorics”(M.NagataandH.Matsumura,eds.)Adv.Stud.PureMath.11,North-Holland,Amsterdam,93–109(1987). R.Stanley,BalancedCohen-Macaulaycomplexes.Trans.Amer.Mat

Related Contents


Next Show more