/
Convex Optimization  Boyd  Vandenberghe Convex Optimization  Boyd  Vandenberghe

Convex Optimization Boyd Vandenberghe - PDF document

stefany-barnette
stefany-barnette . @stefany-barnette
Follow
422 views
Uploaded On 2015-04-07

Convex Optimization Boyd Vandenberghe - PPT Presentation

Approximation and 64257tting norm approximation leastnorm problems regularized approximation robust approximation 61 brPage 2br Norm approximation minimize Ax with k57527k is a norm on interpretations of solution argmin Ax geometric Ax is poi ID: 49300

Approximation and 64257tting norm

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Convex Optimization Boyd Vandenberghe" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ConvexOptimization|Boyd&Vandenberghe6.Approximationand ttingnormapproximationleast-normproblemsregularizedapproximationrobustapproximation6{1 NormapproximationminimizekAxbk(A2Rmnwithmn,kkisanormonRm)interpretationsofsolutionx=argminxkAxbk:geometric:AxispointinR(A)closesttobestimation:linearmeasurementmodely=Ax+vyaremeasurements,xisunknown,vismeasurementerrorgiveny=b,bestguessofxisxoptimaldesign:xaredesignvariables(input),Axisresult(output)xisdesignthatbestapproximatesdesiredresultbApproximationand tting6{2 examplesleast-squaresapproximation(kk2):solutionsatis esnormalequationsATAx=ATb(x=(ATA)1ATbifrankA=n)Chebyshevapproximation(kk1):canbesolvedasanLPminimizetsubjecttot1Axbt1sumofabsoluteresidualsapproximation(kk1):canbesolvedasanLPminimize1TysubjecttoyAxbyApproximationand tting6{3 Penaltyfunctionapproximationminimize(r1)++(rm)subjecttor=Axb(A2Rmn,:R!Risaconvexpenaltyfunction)examplesquadratic:(u)=u2deadzone-linearwithwidtha:(u)=maxf0;jujaglog-barrierwithlimita:(u)=a2log(1(u=a)2)juja1otherwise u(u)deadzone-linearquadraticlogbarrier1:510:500:511:500:511:52Approximationand tting6{4 example(m=100,n=30):histogramofresidualsforpenalties(u)=juj;(u)=u2;(u)=maxf0;jujag;(u)=log(1u2) p=1p=2DeadzoneLogbarrierr22221111000011112222040010020010shapeofpenaltyfunctionhaslargee ectondistributionofresidualsApproximationand tting6{5 Huberpenaltyfunction(withparameter)hub(u)=u2juj(2juj)juj�Mlineargrowthforlargeumakesapproximationlesssensitivetooutliers replacements uhub(u)1:510:500:511:500:511:52 tf(t)1050510201001020left:Huberpenaltyfor=1right:anefunctionf(t)= + t ttedto42pointsti,yi(circles)usingquadratic(dashed)andHuber(solid)penaltyApproximationand tting6{6 Least-normproblemsminimizekxksubjecttoAx=b(A2Rmnwithmn,kkisanormonRn)interpretationsofsolutionx=argminAx=bkxk:geometric:xispointinanesetfxjAx=bgwithminimumdistanceto0estimation:b=Axare(perfect)measurementsofx;xissmallest('mostplausible')estimateconsistentwithmeasurementsdesign:xaredesignvariables(inputs);barerequiredresults(outputs)xissmallest('mostecient')designthatsatis esrequirementsApproximationand tting6{7 examplesleast-squaressolutionoflinearequations(kk2):canbesolvedviaoptimalityconditions2x+AT=0;Ax=bminimumsumofabsolutevalues(kk1):canbesolvedasanLPminimize1Tysubjecttoyxy;Ax=btendstoproducesparsesolutionxextension:least-penaltyproblemminimize(x1)++(xn)subjecttoAx=b:R!RisconvexpenaltyfunctionApproximationand tting6{8 Regularizedapproximationminimize(w.r.t.R2+)(kAxbk;kxk)A2Rmn,normsonRmandRncanbedi erentinterpretation: ndgoodapproximationAxbwithsmallxestimation:linearmeasurementmodely=Ax+v,withpriorknowledgethatkxkissmalloptimaldesign:smallxischeaperormoreecient,orthelinearmodely=Axisonlyvalidforsmallxrobustapproximation:goodapproximationAxbwithsmallxislesssensitivetoerrorsinAthangoodapproximationwithlargexApproximationand tting6{9 ScalarizedproblemminimizekAxbk+\rkxksolutionfor\r�0tracesoutoptimaltrade-o curveothercommonmethod:minimizekAxbk2+kxk2with�0TikhonovregularizationminimizekAxbk22+kxk22canbesolvedasaleast-squaresproblemminimize\r\r\r\rAp Ixb0\r\r\r\r22solutionx=(ATA+I)1ATbApproximationand tting6{10 Optimalinputdesignlineardynamicalsystemwithimpulseresponseh:y(t)=tX=0h()u(t);t=0;1;:::;Ninputdesignproblem:multicriterionproblemwith3objectives1.trackingerrorwithdesiredoutputydes:Jtrack=PNt=0(y(t)ydes(t))22.inputmagnitude:Jmag=PNt=0u(t)23.inputvariation:Jder=PN1t=0(u(t+1)u(t))2trackdesiredoutputusingasmallandslowlyvaryinginputsignalregularizedleast-squaresformulationminimizeJtrack+Jder+Jmagfor xed;,aleast-squaresprobleminu(0),...,u(N)Approximationand tting6{11 example:3solutionsonoptimaltrade-o surface(top)=0,small;(middle)=0,larger;(bottom)large tu(t)05010015020010505 ty(t)05010015020010:500:51 tu(t)05010015020042024 ty(t)05010015020010:500:51 tu(t)05010015020042024 ty(t)05010015020010:500:51Approximationand tting6{12 Signalreconstructionminimize(w.r.t.R2+)(k^xxcork2;(^x))x2Rnisunknownsignalxcor=x+vis(known)corruptedversionofx,withadditivenoisevvariable^x(reconstructedsignal)isestimateofx:Rn!Risregularizationfunctionorsmoothingobjectiveexamples:quadraticsmoothing,totalvariationsmoothing:quad(^x)=n1Xi=1(^xi+1^xi)2;tv(^x)=n1Xi=1j^xi+1^xijApproximationand tting6{13 quadraticsmoothingexample ixxcor00100010002000200030003000400040000:50:5000:50:5 i^x^x^x0001000100010002000200020003000300030004000400040000:50:50:50000:50:50:5originalsignalxandnoisysignalxcorthreesolutionsontrade-o curvek^xxcork2versusquad(^x)Approximationand tting6{14 totalvariationreconstructionexample ixxcor005005001000100015001500200020002211001122 i^xi^xi^xi000500500500100010001000150015001500200020002000222000222originalsignalxandnoisysignalxcorthreesolutionsontrade-o curvek^xxcork2versusquad(^x)quadraticsmoothingsmoothsoutnoiseandsharptransitionsinsignalApproximationand tting6{15 ixxcor005005001000100015001500200020002211001122 i^x^x^x000500500500100010001000150015001500200020002000222000222originalsignalxandnoisysignalxcorthreesolutionsontrade-o curvek^xxcork2versustv(^x)totalvariationsmoothingpreservessharptransitionsinsignalApproximationand tting6{16 RobustapproximationminimizekAxbkwithuncertainAtwoapproaches:stochastic:assumeAisrandom,minimizeEkAxbkworst-case:setAofpossiblevaluesofA,minimizesupA2AkAxbktractableonlyinspecialcases(certainnormskk,distributions,setsA)example:A(u)=A0+uA1xnomminimizeskA0xbk22xstochminimizesEkA(u)xbk22withuuniformon[1;1]xwcminimizessup1u1kA(u)xbk22 gureshowsr(u)=kA(u)xbk2 ur(u)xnomxstochxwc21012024681012Approximationand tting6{17 stochasticrobustLSwithA=A+U,Urandom,EU=0,EUTU=PminimizeEk(A+U)xbk22explicitexpressionforobjective:EkAxbk22=EkAxb+Uxk22=kAxbk22+ExTUTUx=kAxbk22+xTPxhence,robustLSproblemisequivalenttoLSproblemminimizekAxbk22+kP12xk22forP=I,getTikhonovregularizedproblemminimizekAxbk22+kxk22Approximationand tting6{18 worst-caserobustLSwithA=fA+u1A1++upApjkuk21gminimizesupA2AkAxbk22=supu21kP(x)u+q(x)k22whereP(x)=A1xA2xApx,q(x)=Axbfrompage5{14,strongdualityholdsbetweenthefollowingproblemsmaximizekPu+qk22subjecttokuk221minimizet+subjectto24IPqPTI0qT0t350hence,robustLSproblemisequivalenttoSDPminimizet+subjectto24IP(x)q(x)P(x)TI0q(x)T0t350Approximationand tting6{19 example:histogramofresidualsr(u)=k(A0+u1A1+u2A2)xbk2withuuniformlydistributedonunitdisk,forthreevaluesofx r(u)xlsxtikxrlsfrequency01234500:050:10:150:20:25xlsminimizeskA0xbk2xtikminimizeskA0xbk22+kxk22(Tikhonovsolution)xrlsminimizessupA2AkAxbk22+kxk22Approximationand tting6{20