/
Fourier Series for Accurate Stable ReducedOrder Models for Linear CFD Applications Fourier Series for Accurate Stable ReducedOrder Models for Linear CFD Applications

Fourier Series for Accurate Stable ReducedOrder Models for Linear CFD Applications - PDF document

stefany-barnette
stefany-barnette . @stefany-barnette
Follow
492 views
Uploaded On 2014-12-25

Fourier Series for Accurate Stable ReducedOrder Models for Linear CFD Applications - PPT Presentation

K Willcox and A Megretski Massachusetts Institute of Technology Cambridge MA 02139 Abstract A new method Fourier model reduction FMR for obtaining stable accurate loworder models of very large linear systems is presented The technique draws on tradi ID: 29199

Willcox and

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Fourier Series for Accurate Stable Reduc..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

FourierSeriesforAccurate,Stable,Reduced-OrderModelsforLinearCFDApplications.K.WillcoxandA.MegretskiMassachusettsInstituteofTechnologyCambridge,MA02139Anewmethod,Fouriermodelreduction(FMR),forobtainingstable,accurate,low-ordermodelsofverylargelinearsystemsispresented.Thetechniquedrawsontraditionalcontrolanddynamicalsystemconceptsandutilizesthemin AssistantProfessorofAeronauticsandAstronau-tics,Room37-447,MIT,Cambridge,MA02139,kwill-cox@mit.edu,MemberAIAAAssociateProfessorofElectricalEngineeringandCom-puterScience,Room35-418,MIT,Cambridge,MA02139,Copyright2003byK.WillcoxandA.Megretski.PublishedbytheAmericanInstituteofAeronauticsandAstronautics,Inc.withpermission.casewhencouplingbetweendisciplinarymodels AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 reductionistoprojecttheCFDgoverningequa-tionsontothespacespannedbythe“rstvectors.Whilethereconstructionoftheorigi-nalsnapshotsmightbeŽoptimalŽusingthePODbasis,onecanmakenostatementabouttheac-curacyoftheresultingreduced-orderdynamicalsystem.Infact,onecannotevenguaranteethestabilitypropertiesofthissystem.Despitethis,thePODisfoundtoworkwellinmanycaseshasbeensuccessfullyappliedforabroadrangeofCFDapplications(see,forexample,reviewsinDowellandHallandBeranandSilvaAnotherclassofreductiontechniquesthatarebasedonmatchingmomentsofthesystemtrans-ferfunctionhasbeendevelopedforanalysisoflargelinearcircuits.Forinstance,theArnoldialgorithmcanbeusedtogeneratevectorswhichformanorthonormalbasisfortheKrylovsub-space,andhasbeenappliedtoanalysisofRLCturbomachineryaeroelasticbehaviorandactivecontroldesignforasupersonicdif-TheArnoldimethodiscomputation-allymoreecientthanthePOD,butalsoof-fersnoguaranteesastotheaccuracyorstabilityofthereduced-ordermodel.Moreover,neitherthePODnorArnolditakesaccountofsystemoutputswhenperformingthereduction,hencethereduced-ordermodelsproducedmaybeinef-“cient.ThePODhasbeensuggestedasameanstoobtainanapproximatebalancedtruncationforlargesystemsusingbothinputsandoutputs;12,13however,thereductionapproachiscomputation-allyexpensiveandagainoersnostabilityguar-antees.InWillcoxandMegretski,anewtechnique,Fouriermodelreduction(FMR),forperformingmodelreductionofverylargesystemswaspre-sented.Thismethoddrawsonclassicaldynamicalsystemandcontroltheoryconcepts,andappliesthemusinganiterativeprocedurethatisveryecientforlargesystems.Theresultingreduced-ordermodelsareguaranteedtopreservethesta-bilitypropertiesoftheoriginalsystemandhaveanassociatederrorboundthatdependsonthesmoothnessoftheoriginaltransferfunction.Inthispaper,theFMRalgorithmisreviewedandthenappliedtotwodierentCFDapplications,bothofwhichrequire”uidmodelsofloworder.The“rstexampleinvestigatestheunsteadymo-tionofatwo-dimensionalsubsonicairfoil,whichformsthe”uidcomponentofanaeroelasticanal-ysis.Thesecondexamplederivesamodelofthe”owdynamicsofasupersonicinletthatwillbeusedtoderiveactivecontrolstrategiesandisusedtodemonstratethemultiple-input,multiple-output(MIMO)capabilitiesoftheFMRalgo-rithm.AcomparisonisalsomadewithreducedmodelsderivedusingArnoldiandPOD.Theoutlineofthepaperisasfollows.Inthefollowingsection,thedynamicalsystemarisingfromimplementationofCFDisbrie”ydescribed.TheFMRtechniqueisthenpresented,alongwiththeextensiontotheMIMOcase,andcomparedwithArnoldiandPODapproaches.ThetwoCFDexamplesarethenconsidered,and“nally,conclu-sionsaredrawn.ComputationalFluidDynamicModelConsideragenerallinearizedCFDmodel,whichcanbewrittenas Bu,containstheunknownpertur-bation”owquantitiesateachpointinthecompu-tationalgrid.Forexample,fortwo-dimensional,compressible,inviscid”ow,whichisgovernedbytheEulerequations,theunknownsateachgridpointaretheperturbationsin”owdensity,Cartesianmomentumcomponentsand”owen-ergy.Thevectors)and)in(1)containthesysteminputsandoutputsrespectively.Thede“-nitionofinputsandoutputswilldependupontheproblemathand.Inaeroelasticanalysisofawing,inputsconsistofwingmotionwhileoutputsofin-terestaretheforcesandmomentsgenerated.Forcontrolpurposes,theoutputmightmonitora”owconditionataparticularlocationwhichvariesinresponsetoadisturbanceintheincoming”ow.Thelinearizationmatricesin(1)areevaluatedatsteady-stateconditions.Thematrixisincludedforgenerality,andmaycontainsomezerorows,whicharisefromimple-mentationof”owboundaryconditions.Onsolidwalls,aconditionisimposedonthe”owvelocity,whileatfar“eldboundariescertain”owparam-etersarespeci“ed,dependingonthenatureoftheboundary(in”ow/out”ow)andthelocal”owconditions(subsonic/supersonic).Althoughthese2of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 prescribedquantitiescouldbecondensedoutof(1)toobtainasmallerstate-spacesystem,suchamanipulationisoftencomplicatedandcande-stroythesparsityofthesystem.Themoregeneralformofthesystemisthereforeconsidered.Thesystem(1)isecientfortimecomputa-tionssinceatimediscretization,suchasbackwardEuler,canbeappliedandtheresultinglargesystemmatrixinvertedjustonce.However,theorderofthesystemisstillprohibitivelyhighformanyapplications,suchasaeroelasticityandac-tive”owcontrol.Inthenextsection,wepresentanecientmethodwithqualityguaranteestore-ducethesizeofthesystemwhileretaininganaccuraterepresentationofimportant”owdynam-FourierModelReductionWeconsiderthetaskof“ndingalow-order,sta-ble,continuoustime,lineartimeinvariant(LTI),state-spacemodel )(2)whichapproximateswellthegivenstablestate-spacemodel(1).Weconsider“rstthecaseofsingleinput,singleoutput(SISO),thendiscusslatertheMIMOcase.Typically,in(1)aresparse,squarematricesofverylargedimen-,andthedesiredorderislessthan50.Thequalityofasanapproximationofde“nedastheH-In“nitynormofthedierencebetweentheirtransferfunctions:=supwhichinturnequalsthesquarerootofthemax-imalenergyofthedierence,whichcanbegener-atedwhentestingbothwithanarbitraryunitenergyinputasshowninFigure1.Withthismeasureofmodelreductionerror,ifagoodreducedmodelisfound,canberepresented,fordesignoranalysispurposes,asaseriescon-nection(i.e.asum)ofandasmallŽuncertainŽ G G       Fig.1Comparingerrorsystem=,andthestandardre-sultsfromrobustnessanalysiscanbeappliedtopredicttheeectofreplacinginevenlargerscalesystems.FMRisalowcomplexityalgorithmthatallowsonetoperformmodelreductionofverylargesys-tems.Whiletheresultisnotanoptimalreducedmodelof,itsatis“esanattractiveguaranteedH-In“nitybound.FourierSeriesofDiscreteTimeSystemsConsiderthefulldiscretetime(DT)LTIsystemmodelde“nedbythedierenceequations+1)=a,b,c,daregivenmatricesofcoecients,isthesystemstate,and)arescalarinputandoutput.Itwillbeassumedthatisstable,i.e.1,where)denotesthespectralradiusof,de“nedasthemaximalabsolutevalueofitseigenvalues.ThetransferfunctionhastheFourierdecompositiond,g)(8)TheFourierexpansionconvergesexponentially).Notethatthe“rstFouriercoef-“cientsareeasytocalculateusingthecheapŽiterativeprocesswhichisexpectedtobestableŽsince3of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 LetdenotetheorderapproximationofbasedontheFourierseriesexpansion:Wenotethattheapproximationisguaranteedtobestableandthattheerrorisrelatedtothesmoothnessof ,whereisthederivativeofwithrespecttoFourierSeriesofContinuousTimeSystemsConsiderthefullcontinuoustimeLTIsys-temmodelde“nedbythesystem(1),where)arescalarinputandoutput.Ifisin-vertiblethen)isthesystemstate.Itwillbeassumedthatisstable,i.e.thatallrootsofthecharacteristicequationdet(havenegativerealpart,andthatremainsboundedas0bea“xedpositiverealnumber.ThetransferfunctionhastheFourierdecomposition d,GTheFourierexpansionisderivedfromtheidentity whichallowsonetoapplytheobservationsandtheoremfromtheprevioussubsectiontothiscase.Notethatbycomparing(7)and(13),itcanbeseenthatReducedModelConstructionToconstructan-orderreducedmodel,one“rstcalculatestheFouriercoecients,,...,g.TheDTreducedmodelisthengivenent+1]=t]+bu[t]y[t]=t]+du[t],(19)wherea=00001000010000100g1g2...gAneectiveapproachistousetheecientiterativeproceduretocalculateseveralhundredcoecients,resultinginanintermediatereducedmodeloftheform(19).Asecondreductionstepusingbalancedtruncationcannowbeperformedeasily,sincetheexpressionsforthegrammiansareknownexplicitly.FortheDTreducedmodel(19),thecontrollabilitymatrixistheidentitymatrixandtheobservabilitymatrixistheHankelmatrixthathasasits“rstrow.Thebalancingvec-torscanthereforebeobtainedbycomputingthesingularvectorsofthe-orderHankelmatrix...g...gTheHankelsingularvalues,,...,m,oftheintermediatereducedsystemaregivenbythesingularvaluesof.The“nalreducedsystem,iscomputedasisamatrixwhosecolumnsarethe“rstsingularvectorsof,andischosenaccord-ingtothedistributionofHankelsingularvalues.Speci“cally,itcanbeshownthatthefollowingerrorboundholds:4of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 Itshouldbenotedthattheapplicationofopti-malHankelmodelreductiontotheintermediatereducedmodelwouldyieldaboundontheer-rorlowerthanthatin(23);however,balancedtruncationcanbeappliedveryecientlysincethegrammiansareknownexplicitly.Thisalsoavoidstheexplicitconstructionoftheintermediatesys-tem,ascanbeseeninthefollowingalgorithm.FourierModelReductionAlgorithmTheFouriermodelreductionalgorithmissum-marizedinthefollowingsteps.1.Chooseavalueof.Thevalueofre”ectthefrequencyrangeofinterest.Thenominalvalueisunity;however,ifthere-sponseathighfrequenciesisofinterest,ahighervalueofshouldbechosen.Onecanvisualizethetransformationfromcon-tinuoustodiscretefrequencyasamappingoftheimaginaryaxisintheplanetotheunitcircleintheplane.Thevalueofthendescribesthecompressionoffrequenciesaroundtheunitcircle.2.Calculate+1Fouriercoecientsusing(14)-(18).Usingtheiterativeprocedure,anynumberofcoecientscanbecalculatedwithasingle-ordermatrixinversionorfactor-3.Using(21),calculatethe-orderHankelmatrix.Calculateitssingularvaluesandsin-gularvectors.4.Using(22),constructa-orderDTsystem,.ThevalueofischosenaccordingtothedistributionofHankelsingularvaluesoftheintermediatesystem.5.Convertthe-order,DTreducedmodeltoacontinuous-timemodelusingtherelation-Multiple-Input,Multiple-OutputSystemsAlthoughtheabovealgorithmwasderivedforSISOsystems,itcanbeeasilyextendedtotheMIMOcase.Infact,thestepsaboveareessen-tiallyunchanged.Considerthegeneralcaseofinputsandoutputs.ForStep2,onecanstilluse(14)-(18)tocalculatetheFouriercoecients,al-thoughnoweachisamatrix.Theiterativeprocedureisstillveryecient,sinceconsiderationofmultipleinputsandoutputsrequiresonlyad-ditionalmatrixvectorproducts.InStep3,oneagainuses(21)toconstructtheHankelmatrix.Thesizeofthismatrixwillnow.ThebalancedtruncationinStep4proceedsasbefore,notingonlythateachscalarentryofin(20)isreplacedwithablockentry(zeromatrixoridentitymatrix,asappro-priate)ofsize.Finally,thetransformationsinStep5arevalidfortheMIMOcase.Intheresultssection,twoexampleswillbepre-sentedthatdemonstratetheeectivenessofthisapproach.We“rstcomparetheadvantagesofFMRwithothercommonlyusedtechniques.ComparisonwithAlternativeReductionMethodsThePODisthemostwidelyusedreductionmethodinthe”uiddynamicscommunity.basicideaistocollectasetofsnapshots,whicharesolutionsofthelinearizedCFDmodelatselectedtimeinstantsorfrequencies.Thesesnapshotsarethencombinedtoformanecientbasis,whichisoptimalinthesensethatitminimizestheer-rorbetweentheexactandprojectedCFDdata.Whilethemethodresultsinreduced-ordermodelswhichaccuratelyreproducethosedynamicsin-cludedinthesamplingprocess,themodelsarenotvalidoutsidethesampledrange.Ifsnapshotsareobtainedinthetimedomain,itcanbedi-culttochooseanappropriateforcingfunctionandtypicallymanysnapshotsarerequiredtoobtainaccurateresults.Usingthefrequencydomaintocomputesnapshotsisoftenmoreconvenient,how-evereachfrequencysampledrequiresanmatrixinversion.Moreover,thereduced-ordermodelsobtainedviathePODoernoguaranteeofstability.TheArnoldimethodhasalsobeenusedformodelreductionoflargeCFDsystems.goalofmoment-matchingtechniques,suchastheArnoldimethod,istodetermineareduced-ordermodelbymatchingmoments(orTaylorseriesco-ecients)ofthehigh-ordersystemtransferfunc-tion.TheArnoldimethodhasanadvantageover5of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 thePODinthatasequenceofbasisvectorscanbegeneratedinthefrequencydomainwithjustasin--ordermatrixinversion,andtheapproachofgeneratinganintermediatemodelwhichcanbesubsequentlyfurtherreducedviaHankelmodelreductionalsoworkseectivelyforthistechnique.However,theArnoldimethoddoesnotconsidersystemoutputswhenformingthebasisvectorsandtheresultingreduced-ordermodelsarenotguaranteedtobestable.SincetheArnoldibasisvectorsarederivedfromanexpansionaboutzerofrequency,forsomeap-plicationstheresultingreduced-ordermodelcanbelargeiffrequenciesfarawayfromzeroareofinterest.ThemultiplefrequencypointArnoldimethodattemptstoaddressthisissuebyconsid-eringtransferfunctionexpansionsaboutmultiplefrequencypoints.Inthisway,accuratemodelscanbederivedoveraspeci“edfrequencyrange.Thereductioncostinthiscaseisproportionaltothenumberoffrequencypointsconsidered.BygeneratingmultipleArnoldivectorsateachfre-quencypoint,thesamplescanbeplacedfurtherapartwithoutlossinaccuracy.Themulti-pointArnoldimethodthereforeprovidesawaytotradebetweenthelowreductioncostofArnoldiandthefrequencyspanofPOD.Table1comparestheattributesofeachofthesereductiontechniqueswiththenewFMRap-proachdescribedinthispaper.Reductioncostreferstothenumberof-ordersysteminver-sionsrequired.(ThisisthedominatingfactorinreductionoflargeCFDsystems.)Frequencyrangereferstotherangeofvalidityoftheresult-ingreduced-ordermodels.ThisrangeisselectedaprioriforthePODandmulti-pointArnoldiapproaches.ThevalidityoftheArnoldi-basedreduced-ordermodelisrestrictedtofrequenciesclosetotheexpansionpoint(usuallytakentobezero),whilethenewapproachallowsawiderrangeoffrequenciestobeconsideredthroughthechoiceof.Finally,wenotethatnoneoftheal-ternativemethodsuseinformationpertainingtosystemoutputswhenderivingthereducedmodel;moreover,noneareguaranteedtoproduceasta-blereduced-ordermodel.Inpractice,thePODandArnoldiapproachescanoftengenerateun-stablemodelseventhoughtheoriginalsystemisThenewmethodologyoutperformsothertech-niquesinallcategorieslistedinTable1.TheaccuracyoftheFMRreducedmodelcanalsobequanti“edifthesmoothnessoftheoriginalsys-temtransferfunctionisknown.Wenowpresenttwotestcasesthatdemonstratethenewmethod-ology.ResultswillalsobeshowntocomparethenewmethodagainstArnoldiandPOD.TwoCFDapplicationswillbeconsidered.Eachhasverydierent”owdynamicsandusesadif-ferentCFDformulation;however,FMRwillbeshowntoworkveryeectivelyforboth.SubsonicAirfoilThe“rstexampleisatwo-dimensionalNACA0012airfoiloperatinginunsteadyplungingmo-tionwithasteady-stateMachnumberof0.755.The”owisassumedtobeinviscid,sothegovern-ingequationsarethelinearizedEulerequations,whichhavefourunknownspergridpoint.A“nitevolumeCFDformulationisusedwithaCFDmeshcontaining3482gridpoints,whichcorre-spondstoatotalof=13928unknownsinthelinearstate-spacesystem.Theinputtothissys-temisarigidplungingmotion(verticalmotionoftheairfoil),whiletheoutputofinterestistheliftforcegenerated.Thisinputandoutputaretypicalforanaeroelasticanalysis,whichtypicallywouldalsoincludepitching(angular)motionasaninputandairfoilpitchingmomentasanout-Fouriercoecientsweregeneratedusing(14)-(18)forseveraldierentvaluesof.The“rst201FouriercoecientsareplottedinFigure2for=1.Fordemonstrationpurposes,the=200intermediatemodelsfor10werecon-structedandtheresultingtransferfunctionsarecomparedwiththeCFDinFigure3.Onewouldnotexpecttheplungedynamicstorequiresuchalargenumberofstates;however,sincethecostofcomputingadditionalFouriercoecientsissmallandtheprocessisguaranteedtobestable,onecanchoosetobelarge.As(11)shows,asthenumberofcoecientsincreases,thereductioner-rordecreases.Indeed,ascanbeenseeninFigure3,thetransferfunctionsmatchverycloselyoveralargefrequencyrange.SincetheoriginalCFDmodelisstable,thesereduced-ordermodelsarealsoallguaranteedtobestable.Moreover,thechoiceofdoesnothavealargeeectinthis6of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 Table1ComparisonofreductiontechniquesforCFDsystems. Method Reduction Frequency Stability Preserved TimePOD O(1) FrequencyPOD O(No.ofsnapshots) O(1) Restricted No Multi-PointArnoldi O(No.offreq.points) Selected FMR Moregeneral Yes InputsandOutputs 5 10 15 20 25 30 3 5 0 0.5 1 1.5 2 2.5 3 3.5 4 Hankel singular value Fig.2First201Fouriercoecientsofthetransferfunctionfromplungingmotiontoliftforceforsubsonicairfoil.Figure3isshowntodemonstratethemethodol-ogy;inpracticetheseintermediatemodelswouldnotbecomputed.Rather,theFouriercoecientsareusedtoconstructtheHankelmatrixforfur-therreductionviabalancedtruncation.The“rstthirtyHankelsingularvaluesoftheintermediate=1systemareshowninFigure4.Thesedataindicatethatafurtherreductionto“vestatescanbeachievedwithvirtuallynolossinaccu-racy.Thetransferfunctionofa“ve-statemodelisshowninFigure5,andcanbeseentomatchtheCFDdataextremelywell.Inordertocomparetheperformanceofthenewmethod,reduced-ordermodelsforthisproblemwerecomputedusingthePODandArnoldimeth-ods.PODsnapshotswereobtainedbycausingtheairfoiltoplungeinsinusoidalmotionatselectedfrequencies.Frequencieswereselectedat0.1in-crementsfrom=0to0,requiring21complexinversionsandsolves.Fromthesesnap-shotsasetofPODbasisvectorswasobtained. 1 2 3 4 5 6 7 8 9 10 12 10 8 6 4 frequencyreal(G(jw)) w0=1 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 3 3.5 frequencyimag(G(jw)) Fig.3Transferfunctionfromplungingmo-tiontoliftforceforsubsonicairfoil.Re-sultsfromCFDmodel(=13)arecom-paredtoreduced-ordermodelsderivedusing201Fouriercoecientswith 5 10 15 20 25 30 3 5 0 0.5 1 1.5 2 2.5 3 3.5 4 Hankel singular value Fig.4Hankelsingularvaluesforsubsonicairfoilcase.Valuesarecalculatedusing201Fouriercoecients,evaluatedwith7of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 0 1 2 3 4 5 6 7 8 9 10 12 10 8 6 4 frequencyreal(G(jw)) FMR: k=5 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 3 3.5 frequencyimag(G(jw)) Fig.5Transferfunctionfromplungingmotiontoliftforceforsubsonicairfoil.ResultsfromCFDmodel(=13)arecomparedtoaFMRmodelderivedusing=200Arnoldivectorsweregeneratedabout=0.Us-ingthesameapproachasforthenewmethod,200Arnoldivectorsweregenerated(withthecostofasingle-orderinversion),andbalancedtrun-cationwasappliedtotheresulting200system.Figure6showsthetransferfunctionsof“fth-orderreduced-ordermodelsconstructedus-ingPOD,ArnoldiandthenewFMRapproach.Itcanbeenseenthateventhoughitismuchmoreexpensivetocomputethantheothermethods,thePODhastheworstperformance.Inpar-ticular,the“gureshowsthat,asexpected,thePOD-basedreduced-ordermodelhasalargeer-roroutsidethefrequencyrangeincludedinthesnapshots.Forthisexample,theArnoldi-basedreduced-ordermodelshowssimilaraccuracytothenewapproach.SupersonicDiuserForthesecondexample,weconsiderunsteady”owthroughasupersonicdiuserasshowninFig-ure7.TheCFDmodelisdevelopedbylinearizingtheEulerequationsaboutasteady-statesolution,theMachcontoursforwhichareplottedinFig-ure7.Thenominalin”owMachnumberforthissteadycaseis2.2.TheCFDformulationforthisproblemresultsinasystemoftheform(1)andisdescribedfullyinLassaux.TheCFDmodelhas3078gridpointsand11,730unknowns.Areduced-ordermodelisrequiredforthedif-fuserdynamicsinordertoderiveactivecontrolstrategies.Thesestrategieswillbeusedtocoun- 1 2 3 4 5 6 7 8 9 10 12 10 8 6 4 frequencyreal(G(jw)) FMR 1 2 3 4 5 6 7 8 9 10 1 0 1 2 3 4 frequencyimag(G(jw)) Fig.6Transferfunctionfromplungingmo-tiontoliftforceforsubsonicairfoil.ResultsfromCFDmodel(=13)arecomparedreduced-ordermodelsderivedusingFMR,ArnoldiandPOD.BoththeArnoldiandFMRmodelshavebeencreatedusingbalancedtruncationfroman=200 Fig.7Machcontoursforsteady”owthroughsupersonicdiuser.Steady-statein”owMachnumberis2.2.teracttheeectofvariationsintheincoming”ow.Innominaloperation,thereisastrongshockdownstreamofthediuserthroat,ascanbeseeninFigure7.Incomingdisturbancescancausetheshocktomoveforwardtowardsthethroat.Whentheshocksitsatthethroat,theinletisunsta-ble,sinceanydisturbancethatmovestheshockslightlyupstreamwillcauseittomoveforwardrapidly,leadingtounstartoftheinlet.Thisisextremelyundesirable,sinceunstartresultsinalargelossofthrust.Inordertopreventunstartfromoccurring,”owbleedingupstreamofthedif-fuserthroatwillbeusedtoactivelycontrolthepositionoftheshockasshowninFigure8.Therearethereforetwoinputsofinteresttothesystem:theincoming”owperturbationandthebleedactuation.Forthisexample,the”owperturbationofinterestisavariationindensitythatisspatiallyconstantacrossthediuserin-8of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 Pressure sensingUpstream bleedShockAverageInlet disturbance (density) Engine compresso r Fig.8Supersonicdiuseractive”owcontrolproblemsetup.Upstreambleedisusedtocontrolthepositionoftheshockinthepresenceofincoming”owdisturbances.letplane.TheoutputofinterestistheaverageMachnumberatthethroat,whichcanbemoni-toredtoensurethattheshockremainssucientlyfardownstream.Thereduced-ordermodelshouldcapturethedynamicsaccuratelyforfrequencies,wherethereferencefrequencyisde-“nedasthefreestreamspeedofsounddividedbythediuserheight.Thisfrequencyrangeissucienttocapturetypicaldisturbancesduetoatmosphericvariations.InWillcoxandMegretski,theFMRtech-niquewasappliedtoeachofthesetransferfunc-tionsindependently.Itwasfoundthattenstatesweresucienttocapturethebleeddynamicsac-curately,butmorestateswererequiredforthedisturbancedynamicssincetheycontainadelay.Inthelattercase,atleasttwentystateswerere-quiredtoobtainagood“tforandvalues10yieldedmoreaccuratemodelsthan=1.TheFMRmodelsforeachsetofdynamicsrepresentaconsiderablereductioninorderfromtheoriginalCFDsystem,howeveritisdesirabletoobtainasinglereduced-ordermodelthatcap-turestheeectsofbothinputs.TheFMRalgorithmwasappliedtothistwo-input,single-outputproblemwith=5.201setsofFouriercoecientswerecalculated,whereeachsetcontainedtwocoecients(onecorrespondingtoeachinput/outputpair).The400Hankelmatrixwasthenconstructedandusedtoperformafurtherreductionviabal-ancedtruncation.The“rst“ftyHankelsingu-larvaluesoftheintermediatesystemareplottedinFigure9.Basedonthisdistribution,twentystateswereretainedforthe“naltwo-input,single-outputreduced-ordermodel.Thetransferfunc-tionsofthistwenty-statemodelarecomparedwithCFDresultsinFigures10and11.Asthe“guresshow,withonlytwentystatestheMIMOreduced-ordermodelcapturesthedynamicsveryaccuratelyoverthefrequencyrangeofinterest. 10 20 30 40 50 6 0 0 0.5 1 1.5 2 2.5 Fig.9HankelsingularvaluesofintermediateFMRsupersonicdiusersystem.201coe-cientswereusedforeachinputandIfabettermatchathigherfrequenciesisre-quiredforthedensitydisturbancedynamics,moreFouriercoecientscouldbecomputedtoformtheintermediatemodel,orahighervalueofbechosen.Finally,acomparisonismadeforthebleeddy-namicsusingFMR,ArnoldiandPODmodels,eachofsize=10.Aten-stateSISOFMRmodelwasderivedusing=201coecients=5.FortheArnoldimethod,thetwostepreductionapproachcouldnotbeusedinthiscase,sinceincludingahighnumberofArnoldivectorsinthebasisresultedinanunstablein-termediatemodel.TheArnoldireducedmodelwasthereforecomputedbyprojectingtheCFDmodelontothespacespannedbythe“rsttenArnoldivectors.ThePODmodelwasobtainedbycomputing41snapshotsat21equally-spacedfrequenciesfromf/f=0tof/f=2.Thisre-quiredtheinversionofonerealand20complex-ordermatrices.Theresultingtransferfunc-tionsareplottedinFigure12.ItcanbeseenfromFigure12thattheFMR9of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2 1 0 1 2 f/f0real(G(jw)) 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2 1.5 1 0.5 0 0.5 1 f/f0imag(G(jw)) FMR Fig.10TransferfunctionfrombleedactuationtoaveragethroatMachnumberforsupersonicdiuser.ResultsfromCFDmodel(=11arecomparedtoMIMOFMRreduced-ordermodelwithtwentystates. 0.5 1 1.5 2 2.5 3 3.5 4 1 0.5 0 0.5 1 1.5 2 2.5 f/f0real(G(jw)) 0.5 1 1.5 2 2.5 3 3.5 4 2 1.5 1 0.5 0 0.5 1 f/f0imag(G(jw)) FMR Fig.11Transferfunctionfromincomingden-sityperturbationtoaveragethroatMachnum-berforsupersonicdiuser.ResultsfromCFDmodel(=11)arecomparedtoMIMOFMRreduced-ordermodelwithtwentystates.modelmatchestheCFDresultswellovertheen-tirefrequencyrangeplotted,withasmalldiscrep-ancyathigherfrequencies.TheArnoldimodelmatcheswellforlowfrequencies,butshowscon-siderableerrorforf/f3.ThePODmodelhassomeundesirableoscillationsatlowfrequen-cies,andstrictlyisonlyvalidoverthefrequencyrangesampledinthesnapshotensemble(f/f2).TheperformanceofthePODandArnoldimodelscanbeimprovedbyincreasingthesizeofthereduced-ordermodels,however,inprac- 0.5 1 1.5 2 2.5 3 3. 5 0 0.5 1 1.5 2 2.5 f/f0|G(jw)| POD 0.5 1 1.5 2 2.5 3 3. 5 4 2 0 2 4 f/f0phase(G(jw)) Fig.12TransferfunctionfrombleedactuationtoaveragethroatMachnumberforsupersonicdiuser.ResultsfromCFDmodel(=11arecomparedtoFMR,PODandArnoldimod-elswith=10tice,itisfoundthatiftoomanybasisvectorsareincluded,thesetechniquesresultinunstablemodels.ForthePOD,onecouldalsoconsideraddingmoresnapshotstotheensemble.AmajordisadvantageofthesemethodsisthatthechoiceofthenumberofPODorArnoldibasisvectorstobeincludedandthesnapshotlocationsmustbedeterminedinanadhocmannerthatbalancesstabilityandaccuracy.Moreover,asinthedif-fuser”owcaseconsideredhere,stabilityofthereducedmodelisoftenatroublesomeissue.Fouriermodelreduction(FMR)isanewmethodformodelreductionofverylargelinearsystems.Themethodyieldsaccurate,guaran-teedstablereduced-ordermodels,whichcanbederivedusinganecientiterativeprocedure.AneectiveuseofthemethodistoderivetheHan-kelmatrixofanintermediatereducedsystem,withmorestatesthandesiredbutwhichcapturestherelevantdynamicsveryaccurately.Balancedtruncationcanthenbeappliedecientlytoob-taina“nalreduced-ordermodelwhosesizeischosenaccordingtothedistributionofHankelsin-gularvalues.Resultshavebeenpresentedfortwolargedy-namicalsystems,arisingfromimplementationofcomputational”uiddynamicmethods.Whilethe”owdynamicsofthetwosystemsareverydier-ent-oneisasubsonicexternal”ow,theother10of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235 asupersonicinternal”ow-thenewmethodisshowntoworkextremelyeectivelyinbothcases.Thecosttoevaluatethereduced-ordermodelsismuchlowerthanforothercommonlyusedmeth-odssuchastheproperorthogonaldecomposition.Moreover,thenewmethodyieldsreduced-ordermodelsthatarenotrestrictedtoaparticularfrequencyrange,accountforsysteminputsandoutputs,andhaveguaranteedstability.Adamjan,V.,Arov,D.,andKrein,M.,“AnalyticPropertiesofSchmidtPairsforaHankelOperatorandtheGeneralizedSchur-TakagiProblem,”Math.USSRSbornikVol.15,1971,pp.31–73.Bettayeb,M.,Silverman,L.,andSafonov,M.,“Op-timalApproximationofContinuous-TimeSystems,”Pro-ceedingsofthe19thIEEEConferenceonDecisionandControl,Vol.1,December1980.Kung,S.-Y.andLin,D.,“OptimalHankel-NormModelReductions:MultivariableSystems,”IEEETrans-actionsonAutomaticControl,Vol.AC-26,No.1,August1981,pp.832–52.Moore,B.,“PrincipalComponentAnalysisinLinearSystems:Controllability,Observability,andModelReduc-IEEETransactionsonAutomaticControl,Vol.AC-26,No.1,August1981,pp.17–31.Holmes,P.,Lumley,J.,andBerkooz,G.,Turbulence,CoherentStructures,DynamicalSystemsandSymmetryCambridgeUniversityPress,Cambridge,UK,1996.Sirovich,L.,“TurbulenceandtheDynamicsofCoher-entStructures.Part1:CoherentStructures,”ofAppliedMathematics,Vol.45,No.3,October1987,pp.561–571.Dowell,E.andHall,K.,“Modelingofuid-structureinteraction,”AnnualReviewofFluidMechanics,Vol.33,2001,pp.445–90.Beran,P.andSilva,W.,“Reduced-OrderModeling:NewApproachesforComputationalPhysics.”AIAAPaper2001-0853,presentedat39thAerospaceSciencesMeeting&Exhibit,Reno,NV,January2001.Silveira,L.,Kamon,M.,Elfadel,I.,andWhite,J.,“ACoordinate-TransformedArnoldiAlgorithmforGener-atingGuaranteedStableReduced-OrderModelsofRLCComputerMethodsinAppliedMechanicsandEngineering,Vol.169,No.3-4,February1999,pp.377–Willcox,K.,Peraire,J.,andWhite,J.,“AnArnoldiapproachforgenerationofreduced-ordermodelsforturbo-machinery,”ComputersandFluids,Vol.31,No.3,2002,pp.369–89.Lassaux,G.andWillcox,K.,“Modelreductionforac-tivecontroldesignusingmultiple-pointArnoldimethods.”AIAAPaper2003-0616,2003.Lall,S.,Marsden,J.,andGlavaski,S.,“EmpiricalModelReductionofControlledNonlinearSystems,”Pro-ceedingsoftheIFACWorldCongress,1999.Willcox,K.andPeraire,J.,“BalancedModelReduc-tionviatheProperOrthogonalDecomposition,”,Vol.40,No.11,November2002,pp.2323–30.Willcox,K.andMegretski,A.,“FourierModelReduc-tionforLarge-ScaleApplicationsinComputationalFluidDynamics,”TobepresentedatSIAMConferenceonAp-pliedLinearAlgebra,Williamsburg,VA,July2003.Willcox,K.,Reduced-OrderAerodynamicModelsforAeroelasticControlofTurbomachines,Ph.D.thesis,Dept.ofAeronauticsandAstronautics,MIT,February2000.Lassaux,G.,High-FidelityReduced-OrderAerody-namicModels:ApplicationtoActiveControlofEngine,Master’sthesis,Dept.ofAeronauticsandAstro-nautics,MIT,June2002.11of11 AmericanInstituteofAeronauticsandAstronauticsPaper2003-4235