/
Inuence of grating parameters on the linewidths of externalcavity diode lasers Huanqian Inuence of grating parameters on the linewidths of externalcavity diode lasers Huanqian

Inuence of grating parameters on the linewidths of externalcavity diode lasers Huanqian - PDF document

stefany-barnette
stefany-barnette . @stefany-barnette
Follow
462 views
Uploaded On 2014-12-18

Inuence of grating parameters on the linewidths of externalcavity diode lasers Huanqian - PPT Presentation

Thompson and Vladan Vuletic We investigate experimentally the in64258uence of the grating re64258ectivity grating resolution and diode facet antire64258ection AR coating on the intrinsic linewidth of an externalcavity diode laser built with a diffra ID: 25941

Thompson and Vladan Vuletic

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Inuence of grating parameters on the lin..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

metricbecauseofthelinearincreaseinlaseroutputpowerwiththewavelength.Toremovethislineardependence,weaverageovermeasurementsonbothslopesoftheatomicline.Thenoiseasmeasuredbytheavalanchephoto-diodeinFig.2containsbothfrequencyandamplitudenoises.WemeasuretheamplitudenoisebyremovingtheatomiccellandinsertinggrayÞlterstoattenuatethebeampowertoitspreviousvalueonthephoto-diode.WeÞndthattheamplitudenoisescalesap-proximatelyasthesquarerootofthepowerincidentonthephotodiode,anindicationthattheamplitudenoiseatthefrequenciesofinterestisdominatedbyphotonshotnoise,inagreementwithacalculationusingtheknownphotodiodegain.Figure3showsboththetotalnoiseandtheamplitudenoisecontri-butionsforatypicalmeasurement.Thefrequencynoiseisobtainedbysubtractingtheuncorrelatedam-plitudenoisefromthetotalnoiseinquadrature.Thenoisebelow5kHzgenerallyreßectsmechanicalvi-brationsofthelasermount,whereasthenoiseabove5kHzbecomesapproximatelyindependentoffre-quency,indicatingaLorentzianlineshape.ApplyingEq.(1)tothewhite-noiseportion,wemea-suretypicallinewidthsofthe780and852nmlaserstobeinthe250Ð600kHzrange(seeTables1and2),whichisexpectedfordiodesoflength1mmandanindexofrefractionof3.5,setinanexternalcavityoflength3.3cm.Wealsodetermineasimilarlinewidthof250kHzfora399nmNichiaNDHV310APClaserdiode(non-ARcoated)assembledwitha2400mmgratingofForcomparison,themethodofconvertingfre-quencyintoamplitudenoiseviatheatomicabsorp-tionlinehasallowedustomeasurealinewidthasnarrowas30kHzforadistributedBraggreßectorlaserdiode,whoseintrinsiclinewidthwasnarrowedbyopticalfeedbackfromalowÞnesseopticalcavityusingasetupsimilartothatdescribedbyDahmanietal3.EffectsofGratingReßectivity,GratingResolution,andAntireßectionCoatingontheLaserLinewidthTable1showsthelinewidthsmeasuredforvariousgratings(EdmundOptics43222,43753,and43773)assembledwiththesameAR-coatedlaserdiodechip(SacherLasertechnikSAL-850-50,backfacetreßec-0.85,frontfacetreßectivitym,estimatedintrinsiclinewidth35MHz)andcollimator(ThorlabsC390TM-B, Fig.3.(Coloronline)Total(opencircles)andamplitude(Þlledtriangles)spectralnoisedensitiesofan852nmAR-coatedlaserassembledwitha1200mmgratingofreßectivity0.21.Forthefrequencynoise,1V Hzcorrespondsto156MHz Hz.Fortheamplitudenoise,1V Hzcorrespondstoafractionalnoiseof Hz. Fig.4.(Coloronline)CalculatedproÞlesof1200and1800mmgratings,overlappedwithdiode-chipmodesandexternal-cavitymodesspacedbyfrequencyintervalsdeterminedfromFig.1.Thepassiveexternal-cavitymodespectrumiscalculatedforagratingofreßectivity0.61anddiodebackfacetreßectivity0.85.Thediodechipmodespectrumiscalculatedforandiodewitharegenerativegainparameter-izedbythematerialabsorptioncoefÞcient45cm(Ref.29).Table1.Linewidthsof852nmLasersforDifferentGratingsintheLittrowConÞguration 120042000.210.67260,120042000.610.19260,180084000.160.78260,LinewidthsofAR-coated852nmlasersbuiltwithgratings43773,43753,43222fromEdmundOpticsforlines1Ð3.ForaLittrowgratinglaser,theÞrstdiffractionorderwithpowerreßec-isreßectedbackintothelaserforopticalfeedback,whilethezerothorderwithpowerreßectivityisusedasthelaseroutput.Thegratingresolutioniscomputedforabeamdiam-eterof3mmfromthegroovedensityandtheLittrowangle.Thefree-runninglaserlinewidthisestimatedtobe35MHz(Ref.listsdifferenttheoreticalpredictionsforthegivenlaserparameters,andisthelinewidthmeasuredusingEq.(1).,wherearecalculatedfromEq.(26)ofKazarinovandHenry(Ref.12).CalculatedfromEq.(8)ofthepaperofSunetal.(Ref.10).20December2006Vol.45,No.36APPLIEDOPTICS9193 effectivefocallength2.75mm).Differenttheoret-icalpredictionsforthereducedlinewidthinthestrongfeedbackregimearealsogiveninTable1.Asexpectedfromtheory,themeasuredline-widthnarrowssomewhatwithhighergratingre-foraÞxedgratingresolution,i.e.,alinewidthdecreaseby20isobservedasthere-ßectivityistripledfrom0.2to0.6.Sur-prisingly,amuchlargereffectisobservedwhenthegratingresolutionischanged:thelinewidthde-creasesby40astheresolutionisdoubledevenwhenthegratingreßectivityislowered.Theeffectofthegratingresolutionshowsthatthesimplemirror4Ð10isnotfullyadequate,andstronglysug-geststhatfordescribingthelinewidthofexternal-cavitylasers,thecompetitionbetweendiodechipmodesmustbetakenintoaccount.Table1alsoshowsthatthepreferredmethodofdecreasingthelinewidthistoincreasethegratingresolutionratherthanthegratingÕsÞrst-orderreßectivity,sincetheformerdoesnotdecreasetheavailablelaseroutputFigure4givesaphysicalpictureaccountingforbotheffectsofgratingreßectivityandresolution.Theexternalcavity,formedbetweenthebackfacetofthelaserdiodechipandthereßectivegratingsurface,hasaÞnessedeterminedbytheÞrst-orderreßectivityofthegrating.Thegratingresolution,ontheotherhand,setsthewidthofthegratingproÞleinFig.4.Highergratingresolution,achievedwithagratingofhighergroovedensityoracollimatorthatproduceslargerbeamsize,suppressesneighboringdiodechipmodesbetter,leadingtolessmodecompetitionandhencetolessfrequencynoise.Infact,thegreaterinßuenceofthegratingresolutiononthelinewidthindicatesthatthesuppressionofotherlaserdiodechipmodesismoreimportantthantheÞnesseoftheexternalcavity.TheresultsinTable1implythatanarrowerline-widthcanbeobtainedwithoutsacriÞcinglaserout-putpowerbysimplyusingagratingofhighergroovedensity.Inaddition,wehaveattemptedtoincreasethegratingresolutionbyusingacollimatorthatpro-ducedalargerbeamsize(ThorlabsC240TM-B,effec-tivefocallength8.0mm).Wefoundthatevenwhentheopticalfeedbackwasonlynearoptimized,wecouldalreadyachievealinewidthof425kHzusingthe1800mmgrating.Ontheotherhand,thecom-binationofthelargerbeamsizeandthe1800mmgratingalsomeansthattheopticalfeedbackismuchmoresensitivetothegratingangle.Atsuchhighsensitivity,slightthermaldriftsofthealuminumla-sermountmadeitextremelydifÞcultforthegratingtoremainatitsoptimalangle.Asaresult,wewereunabletomaintainreliableoperationinthemechan-icalsetupofFig.2forthiscollimator-gratingcombi-WealsostudytheeffectofthediodeARcoatingonthelinewidth.Table2showsbothmeasuredandcal-culatedlinewidthsofAR-coatedlaserdiodesassembledwiththesamegrating(1200mmHenryÕsmodelpredictsthatthebroaderdiodechiplinewidthofanAR-coatedlasercompensatesforitslargerlinewidthreductionfactorwhensetinanexternalcavity,yieldingalinewidthonthesameor-derasanon-AR-coateddiodelaserusedwiththesamegrating.The130kHzdifferencebetweenthecalculatedlinewidthsinTable2isnotnecessarilysigniÞcant,becausethetheoryemployeddoesnotac-countforotherdiodechipmodes,whichwouldhavebeenbettersuppressedintheAR-coatedlaser.Table2showsaslightlynarrowerlinewidthfortheAR-coatedlaser,althoughthedifferenceislessthantheestimatederrorof80kHzassociatedwitheachmeasurement.WeconcludethatalthoughtheARcoatingeasestheprocedureforoptimizinggratingalignmentaswellasenhanceswavelengthtunability(Fig.1),itseffectonthelinewidthisinsigniÞcant. Fig.5.Plotoflinewidthversuscurrentinjectedintothediodelaser.Thelaserjumpstoadifferentlongitudinalcavitymodenear52mA.Table2.LinewidthsofBothNon-AR-andAR-Coated780nmLasers DiodeModelSanyoDL7140-201S8400.850.154900,SAL-780-408900.858Linewidthsof780nmlaserswithoutandwithanARcoatingonthediodefrontfacet,assembledwiththesamegrating(EdmundOpticsisthediodechiplength,whilearethebackandfrontfacetpowerreßectivities,respectively.areasdeÞnedinTable1.Reference28.,wherearecalculatedfromEq.(26)ofKazarinovandHenryÕspaper(Ref.12).CalculatedfromEq.(8)ofthepaperofSunetal.(Ref.10).ThecalculationsofSunetal.donotapplyfor1(Ref.10).9194APPLIEDOPTICSVol.45,No.3620December2006 ThisresultalsoagreeswiththeÞndingsofBinderetal.,i.e.,laserswithdifferentfrontfacetreßectivi-tiesexhibitsimilarlinewidthsaslongastheyareinsingle-modeoperation.Thelinewidtherrorof80kHzisestimatedfromthefactthattheamountofcurrentinjectedintothediodelaserinßuencestheextenttowhichthelaseroperatesinasinglemode,whichinturnaffectsthelinewidth(Fig.5).Whenthelaserisabouttojumptoadifferentmode,itbecomesslightlymulti-mode,andtheline-widthincreasesbyanorderofmagnitudeduetomodecompetition.AlthoughwehaveveriÞedthatthelaseroperatedinasinglemodeduringourfrequencynoisemeasurements,Fig.5showsthatthereisstillacurrent-dependentlinewidthvariationof80kHzor20%inthesingle-moderegime.Table3summarizesthesmallestlinewidthsmea-suredforthenear-IRdiodelasers(780,852nm).Forcomparison,thelinewidthofthenear-UVlaser399nmisincluded.4.MechanicalStabilityofLaserMountsFigure6showsanewlasermount(mountB)thatisdesignedtoreducemechanicaloscillationsathigheracousticfrequencies.Fortheregularmount(mountA,seeFig.2),thegratingandlaserdiodearesepa-ratelyattachedtoathirdaluminumpiecethatservesasthebaseofthemount.Theverticalandhorizontalgratinganglesareadjustedbyturningthescrewsofthemirrormountholdingthegrating.Conversely,formountB,thealuminumblockcontainingthegratingisattacheddirectlytotheblockcontainingthelaserdiodeviafournylonpullscrews.Threestainlesssteelscrews,whichpushontheblockcontainingthegrat-ingandapiezostacksandwichedbetweenthetwoblocks,respectively,allowtheverticalandhorizontalgratinganglestobeadjusted.Infact,theverticalangleonlyneedstobeadjustedslightly,becausetheopticalfeedbackisalreadynearoptimalwhenthegratingsitsßushinthemachinedpocket.MountBalsoincludesamirror,whichcouplesthebeamoutofthemountinaÞxeddirectionregardlessofthegrat-ingÕshorizontalangle.ThemechanicalpropertiesofmountBarecharac-terizedintermsofitsfrequencynoisepowerspectraldensityandrmsjitteratlowFourierfrequencies(upto5kHz)andareplottedinFigs.7and8,respec-tively.Forcomparison,Figs.7and8alsodisplaythedataforalaserassembledwithmountA.AtÞrstglance,mountAappearstobemorestablethanTable3.BestAchievedLinewidths Cs852Yes180084000.16320Rb780Yes120041000.27450Yb399No240082000.602508Narrowestlinewidthsachievedwith852and780nmlasersandtheircorrespondingdiodeandgratingparametersasdeÞnedinTable1. Fig.6.(Coloronline)SchematicofmountB.Thefournylonpullscrewsthatattachthetwoaluminumblockstoeachotherarenot Fig.7.(Coloronline)FrequencynoisepowerspectraldensitiesformountB(opencircles)andmountA(Þlledtriangles)lasers.MountBonlyhasastrongmechanicalresonanceat500Hz,whereasmountAhasmechanicalresonancesat2kHz. Fig.8.(Coloronline)RmsjittersoflasersassembledbothwithmountB(opencirclesforunlockedandsolidcurveforlocked)andmountA(Þlledtrianglesforunlockedanddashedcurveforlocked)versusintegrationbandwidth.Thermsjitterisgivenby20December2006Vol.45,No.36APPLIEDOPTICS9195 narrowspectrallinewidthforhigh-resolutionspectroscopy,ÓJpn.J.Appl.Phys.,Part15890Ð5895(1996).26.K.L.Corwin,Z.-T.Lu,C.F.Hand,R.J.Epstein,andC.E.Wieman,ÒFrequency-stabilizeddiodelaserwiththeZeemanshiftinanatomicvapor,ÓAppl.Opt.27.B.Dahmani,L.Hollberg,andR.Drullinger,ÒFrequencysta-bilizationofsemiconductorlasersbyresonantopticalfeed-back,ÓOpt.Lett.876Ð878(1987).28.C.H.Henry,ÒTheoryofthelinewidthofsemiconductorlasers,ÓIEEEJ.QuantumElectron.259Ð264(1982).29.M.W.FlemingandA.Mooradian,ÒFundamentallinebroad-eningofsingle-mode(GaAl)Asdiodelasers,ÓAppl.Phys.Lett.511Ð513(1981).30.C.J.Hawthorn,K.P.Weber,andR.E.Scholten,ÒLittrowÕconÞgurationtunableexternalcavitydiodelaserwithÞxeddirectionoutputbeam,ÓRev.Sci.Instrum.4477Ð447920December2006Vol.45,No.36APPLIEDOPTICS9197