/
-�R�X�O�H��K�H�D�W�L�Q�J��L�Q�G�X�F�H�G��F�R�H�[�L�V�W�H�G��V�S�L -�R�X�O�H��K�H�D�W�L�Q�J��L�Q�G�X�F�H�G��F�R�H�[�L�V�W�H�G��V�S�L

-RXOHKHDWLQJLQGXFHGFRH[LVWHGVSL - PDF document

stefany-barnette
stefany-barnette . @stefany-barnette
Follow
363 views
Uploaded On 2016-11-02

-RXOHKHDWLQJLQGXFHGFRH[LVWHGVSL - PPT Presentation

JouleheatinginducedcoexistedspinSeebeckeffectandspinHallmagnetoresistanceintheplatinumYWXWangSHWangLKZouJWCaiZGSunandJRSunStateKeyLaboratoryofAdvanceTechnologyforMaterialSynthesisan ID: 483493

Jouleheating-inducedcoexistedspinSeebeckeffectandspinHallmagnetoresistanceintheplatinum/YW.X.Wang S.H.Wang L.K.Zou J.W.Cai Z.G.Sun andJ.R.SunStateKeyLaboratoryofAdvanceTechnologyforMaterialSynthesisan

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "-RXOHKHDWLQJLQGXFH..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

-RXOHKHDWLQJLQGXFHGFRH[LVWHGVSLQ6HHEHFNHIIHFWDQGVSLQ+DOOPDJQHWRUHVLVWDQFHLQWKHSODWLQXP) &LWDWLRQ \fGRL 9LHZRQOLQH 9LHZ7DEOHRI&RQWHQWV 3XEOLVKHGE\WKH $UWLFOHV\RXPD\EHLQWHUHVWHGLQ $SSO3K\V/HWW \f -$SSO3K\V& \f -$SSO3K\V& \f -$SSO3K\V \f $SSO3K\V/HWW \f Jouleheating-inducedcoexistedspinSeebeckeffectandspinHallmagnetoresistanceintheplatinum/YW.X.Wang,S.H.Wang,L.K.Zou,J.W.Cai,Z.G.Sun,andJ.R.SunStateKeyLaboratoryofAdvanceTechnologyforMaterialSynthesisandProcessing,WuhanUniversityofTechnology,Wuhan430070,ChinaBeijingNationalLaboratoryforCondensedMatterPhysicsandInstituteofPhysics,ChineseAcademyofSciences,Beijing100190,People’sRepublicofChina(Received10September2014;accepted24October2014;publishedonline4November2014)SpinSeebeckeffect(SSE)andspinHallmagnetoresistance(SMR)areobservedsimultaneouslyinthePt/YhybridstructurewhenthermalgradientisproducedbyJouleheating.Accordingtotheirdependencesonappliedcurrent,thesetwoeffectscanbeseparated.TheirdependenceonheatingpowerandmagneticÞeldissystematicallystudied.Withtheincreaseofheatingpower,theSSEenhanceslinearly,whereastheSMRdecreasesslowly.Theoriginofthespincurrentsisfurtheranalyzed.TheheatingpowerdependencesofthespincurrentsassociatedwiththeSSEandtheSMRarefoundtobedifferent.2014AIPPublishingLLCLLChttp://dx.doi.org/10.1063/1.4901101Theexplorationforeffectiveapproachesforthegenera-tion,detection,andmanipulationofspincurrenthasbeenafocusofspintronics.ItwasrecentlyreportedthatthespinSeebeckeffect(SSE)canprovideafeasibleapproachtogen-eratestabilizedspincurrent:Whenatemperaturegradientisestablishedalongtheferromagnet(FM),aspincurrentwillbeformedalongtheFM.Thisspincurrentcanbedetectedbyanoblemetal(NM)andconvertedintoavoltageviainversespinHalleffect(ISHE).Sinceplatinumhasastrongspin-orbitcoupling,thusastrongISHE,itisusuallyutilizedasadetectorofthespincurrent.TheSSEhasbeenobservedinawidevarietyofmaterials,includingmagneticsemiconductors,andmagneticinsulators.BasedontheSSE,aconceptofspincaloritronicshasbeenpresented,andithasreceivedaworldwideattentioninrecentLongitudinalgeometryisthesimplestexperimentalsetupfortheSSEstudy,forwhichthethermalgradientwasestablishedbyeitherattachingaheatsourceandaheatsink,respectively,tothetwoendsofthesample,locallyheat-ingthesamplebyalaserbeam,orapplyingacurrentthroughtheNM.IntheÞrstcase,agoodthermalcontactbetweentheheatreservoirsandthesamplesisrequired.Whileinthecaseoflaserheating,thetemperaturegradientexistsonlyinaverylocalregion.BasedonJouleheating,etal.suggestedanewmethodtogeneratethermalgradient.Becauseofitsfeasibilityandcontrollability,thismethodshowsobviousadvantagesovertheothertwoones.Asreported,magneticproximityeffectandchargeandspincurrentinteractionexistinthePt/Yhybridstructure.Therefore,onemustbecarefulwhendeal-ingwiththeSSEinthiskindofstructure.AccordingtoMiaoetal.themagnetoresistance(MR)ofPt/YIGcouldbemainlyascribedtothespincurrentreßectionatthePt/YIGinterfaceinlowmagneticÞeldsandtotheproximityeffectunderhighÞelds.TheformeriscalledspinHallmagnetoresistance(SMR),anewMRmechanismproposedbyNakayamaetal.AccordingtoNakayamaetal.SMRisinducedbyanonequilibriumproximityeffect.DuetothecoexistedspinHalleffectandISHE,themomen-tumexchangeofthespincurrentatthePt/YIGinterfaceaffectsinreturntheresistanceofthePtstrip.Asaconse-quence,MRappearsinPtasthedirectionofthemagnetiza-tionofYIGrotates.Accordingtotheabovediscussions,theSSEandSMRmayappearsimultaneouslywhenestablishingthethermalgradientbyJouleheating.However,howtoseparatethesetwoeffectsandtheirmutualinßuenceremainunaddresseduptonowdespitetheintensivestudiesontherespectiveSSEandSMR.Inthisletter,theaccompaniedSSEandSMRwerereportedfortheJoule-heatedPt/YIGhybridstructure,andtheirrespectivedependencesonheatingpowerandmagneticÞeldsareestablished.Differencesofthespinaccumulationsassociatedwiththesetwoeffectsarediscussed.(111)-orientedGd(GGG)(50.5mmwasadoptedassubstratesanda21-mthicksinglecrystalYIGslabwasgrownabovetheGGGbyliquidphaseepitaxy.Hall-bar-shapedPtthinlayersweredepositedabovethesub-stratebymagnetronsputtering.Twotypicallayerthick-7nmand30nm,wereadoptedforthepresentstudies.Theresistivity,,ofthePtÞlmswasmfor7nmandmfor30nmattheroomtemperature,measuredbythestandardfour-probetechnique.APt(7nm)/Cu(3nm)/YIGsamplewasalsopre-paredforcomparisonstudy,wheretheCubufferlayerwasintroducedtodepressthemagneticproximateeffect.Thesamplesweremountedonaheatsink(copper)withther-mallyconductiveadhesive,andsealedinanelectromagneticshieldingbox.Theelectricmeasurementswereperformedundertheambientconditions.showsaschematicillustrationoftheexperi-mentalsetup.AlargecurrentwasappliedalongthelongdimensionofthePtÞlmtoestablishathermalgradientalongdirectionofthesample,andamagneticÞeldwasappliedinthesampleplaneatanangleofwithrespectto Authortowhomcorrespondenceshouldbeaddressed.Electronicaddresses:jrsun@iphy.ac.cnandsun_zg@whut.edu.cn0003-6951/2014/105(18)/182403/5/$30.002014AIPPublishingLLC,182403-1APPLIEDPHYSICSLETTERS,182403(2014) toorientthemagneticmomentoftheYIG.Atransversewasthenproducedandrecorded.Ingeneral,thethermalgradientinducedbyJouleheatingwillgenerateaspincurrentinjectionintoPt,thustheSSE.InadditiontotheSSE,accordingtoNakayamaetal.,thespincurrentreßec-tionatthePt/YIGinterfacemayalsoproduceaSMRinPt,yieldingavoltagechangealongthe-directionofthePtstip.InadditiontoSMR,theconventionalanisotropicmagnetore-sistance(AMR)isalsopossiblewhentheproximateeffectisstrong.Obviously,theSSEwillremainunaffectedwhereastheMReffect,eithertheSMRortheAMR,changessignwhilecurrentdirectionreverses.Sinceissimplypro-portionaltoheatingpower(),wehavethefollow-ingrelations)andandVxy(I)þVxy(I)]/2andandVxy(I)Vxy(I)]/2,i.e.,fromtheirdifferentdependencesonoppositelydirectedcurrents,theandtheMRcanbedistinguishedfromeachother.TheSSEandMReffectofthePt/YIGstructurewerestudiedbycyclingmagneticÞeldalongtheroute0.01T0.01T0.01T.Themeasurementbeginsabout20minaftertheapplicationoftheheatingcurrent,whenasteadythermalgradientisestablished.Figs.showthemagneticÞelddependenceof(blacklines),(bluelines),andMR(redlines),obtainedbyapplyingmagneticÞeldatanangleof,here,theMRisdeÞnedasasVMR(H)ÐVMR(0)]tPt/Iqxx(H).Tocomparetheeffectofcur-rentreversion,bothdataobtainedunderarepre-sented.Notably,theexhibitsastrongÞelddependenceinthelowÞeldregion,whichisthesignatureoftheMR,asÞrstreportedbyRef.peakappearsaround0,withasmallhysteresisfortheascending-descendingÞeldopera-tions.AccordingtoFig.,thisisexactlytheÞeldrangeforthemagneticreorientationofYIG.Thecurvesareupsidedownwhenthecurrentdirectionisreversed,indicat-ingthattheMRgovernsthe.AbovethesaturationÞeld,isnearlyconstant.ThisisunderstandablesincetheYIGhasbeenmagneticallysaturated.ThereisamisalignmentforthebaselinesofthecurvesunderthepositiveandnegativeÞelds.ThisisasignatureoftheSSE,whichcontrib-utesawhichchangessignasthemagneticalignmentoftheYIGreverses.TogetaquantitativecharacterizationoftheSSE,in1(c)1(d),weshowtherelations(bluecurves).Asexpected,isnearlyconstantwhenhigh,andundergoesasuddendrop/jumpasthroughthesaturationÞeldofYIG;themagneticreversionofYIGcausesthechange.AsimpleanalysisindicatesthattheVforPt(7nm)/YIGandVforPt(30nm)/YIG.Therearetwopossibleexplanationsfortheinthelattersample,i.e.,thethickPthasshuntedtheorthethermalgradientinthesetwosam-plesaredifferent.Itispossiblethatthethermalgradientpro-ducedbyJouleheatinginYIGisinhomogeneous,concentratingnearthePt/YIGinterface.ThesmallloopcanbeascribedtothemagnetichysteresisoftheYIG.TheMRisalsoshowninFigs.curves).ItgrowsrapidlywithwhentheÞeldislow,and FIG.1.(a)Aschematicillustrationoftheexperimentalsetup.AcurrentappliedtothePtstripandtheJouleheatinducedtemperaturegradientisestablishedinthedirectionoftheYIG.(b)NormalizedmagnetizationofYIG,presentedasafunctionofmag-neticÞeld.(c),(d),and(e)MagneticÞelddependencesofthetransverse(blackcurve),curve),andMR(redcurve)forthesamplesofPt(7nm)/YIG,Pt(30nm)/YIG,andPt(7nm)/Cu(3nm)/YIG,respectively.Themeasurementswereperformedwiththeappliedcurrentsof19mAforPt(7nm)/YIGandPt(7nm)/Cu(3nm)/YIG,and50mAforPt(30nm)/YIG.Here,themagneticÞeldisappliedinthesampleplaneatanangleofwithrespecttothecurrentdirection.182403-2Wangetal.Appl.Phys.Lett.,182403(2014) saturates,abovetheÞeldof50Oe,atthevalueof0.014%for7nmand0.0048%for30nm.ThedecreaseoftheMRwiththeincreaseofisconsistentwiththepreviouslyreportedresults.Asmentionedabove,eithertheSMRortheAMRmaycontributetoMR.AccordingtoNakayamaetal.,theSMRcouldbethemainmechanismdeterminingtheMRforthePt/YIGhybridstructure.AccordingtoMiaoetal.magneticproximityeffect,thustheAMRprevailsunderhighÞelds.TorevealtheoriginoftheMRobservedhere,theMRofthePt(7nm)/Cu(3nm)/YIGstructureisstudiedunderthesameconditionasthatofPt(7nm)/YIG.Fig.showsthattheMRremainswithouttheproximateeffect,thoughitsmagnitudereducesduetotheshort-circuiteffectofthehighlyconductiveCulayer.SinceCuhasalongspindiffusionlengthandaveryweakspin-orbitcoupling,itcancarryaspincurrentoveralongdistancebutpreventsthemagnetizationofthePtlayerbyproximateeffect.Basedonasimplecalculation,weshowthattheshort-circuiteffectofa3-nm-thickCulayerreducestheMRbyafactorofwhiletheexperimentallyobservedreductionisbyafactorof90.ConsideringthepossibleinßuenceoftheCulayeronspincurrent,thisagreementissatisfactory.CombiningtheresultsinFig.withthoseinRefs.,weconcludedthattheMRobservedinoursamplesisdominatedbySMR,i.e.,theSSEandSMRcoexistintheJoule-heatedPt/YIGhybridstructure.TocomparewiththeeffectofJouleheating,wealsomeasuretheSSEforaverticalstructurewhenthethermalgradientisestablishedbyaheaterunderneaththeGGG.Fig.showstheexperimentalsetup,andFig.2(b)istheexper-imentalresults.TwofeaturescanbeidentiÞedfromthedatainFig..First,thesignoftheproducedbyunderneathheatingisoppositetothatofthecausedbyJouleheating,indicatingthatthetemperaturegradientinthesetwocasesisopposite.Second,thevalue,whichVforPt(7nm)/YIGandVforPt(30nm)/YIG,ismuchlowerthanthatproducedbyJouleheating.ItmeansthattheJouleheatingismoreeffectiveinproducingthermalgradient.OnethingdeservingspecialattentionisthatthedifferenceoftheforthePt(7nm)/YIGandPt(30nm)/YIGissmallerthanthatobservedinthecaseofJouleheating(Figs.).Providedthatthethermalgradientinthecaseofunderneathheatingissimilarfortwosamples,thethermalgradientcausedbyJouleheatingcouldbedifferent,thoughtheheatingpowerissimilar.Torevealthephysicaloriginofthethermoelectricsignals,westudiedtherelationswhenmagneticÞeldisappliedatdifferentangles.InFigs.3(a),weshowvaluesdeducedfromthe,45,90,135,and180,respectively.Obviously,exhibitsastrongdependenceon.Itismaximaland180andminimalfor,varyingintheformof,whereVforPt(7nm)/YIG,0.76forPt(30nm)/YIG,and0.39VforPt(7nm)/Cu(3nm)/YIG(Fig.3(c)).Incontrast,theSMRtakesthemaximalvaluesatand135andtheminimalvaluesat,and.AfurtheranalysisindicatesthatSMRexhibitsavariationwith),similartothatobservedbyNakayamaetal.TheÞttingparametersareforPt(7nm)/YIG,5forPt(30nm)/YIG,and1.2forPt(7nm)/Cu(3nm)/YIG.Obviously,relationsownthetypicalfeaturesoftheSSEandSMR,respectively.TheaboveexperimentresultsindicatethatwhenthethermalgradientisestablishedbyJouleheating,theSSEandSMRcoexist,andcanbeseparatedandanalyzed FIG.2.(a)Aschematicillustrationoftheexperimentalsetup.(b)nalsasfunctionsofmagneticÞeld. FIG.3.(a)and(b)MagneticÞelddependenceoftheforthesampleofPt(7nm)/YIG,measuredatdifferentangles.LabelsintheÞguremarkthevaluesof.(c)and(d)angulardependenceofandSMRforPt(7nm)/YIG,Pt(30nm)/YIG,andPt(7nm)/Cu(3nm)/YIG.Solidlinesareresultsoftheoreticalcalculationbasedonthecosorsin2dependence,andsymbolsareexperimentdata.182403-3Wangetal.Appl.Phys.Lett.,182403(2014) independently.Togetanideaabouttheeffectofheating,inFigs.,weshowSMRasfunctionsof.Asexpected,theexhibitsalin-eargrowthwith:Heatingpowerenhancesthespincurrentbyincreasingthermalgradient.Fascinatingly,displaysamuchmorerapidincreasewiththeincreaseofforthesampleof7nmthanfor30nm,indicatingthatthethinnersampleismoresensitivetoJouleheating.Different,SMRundergoesaslightdecreasewith.ThistemperaturedependenceoftheSMRcanbetheoreticallyAccordingtoChenetal.themaximumSMRcanbedescribedby ktPt 2kGtanh2 tPt2kþ2kGtcoth isthespindiffusionlength,isthespinHallisthespinmixingconductance,andisthecon-ductivityofPt.Notingthatisafunctionoftemperature,accordingtotheElliot-Yafetassumption,oneÞndsthattheSMRwilldecreasewiththeincreaseoftempera-Therefore,theslightdecreaseoftheMRwithtemper-atureisthefurtherevidenceoftheSMReffect.Itsuggeststhatthiseffectiscloselyrelatedtothebulkspin-orbitalcou-plinginPt,stemmingfromthereductionofthespindiffu-sionlengthathightemperatures.ThisobservationisparticularlyinterestingsinceitishelpfulindistinguishingtheSMRfromtheeffectcausedbytheRashbaspin-orbitalcouplingatthePt/YIGinterface,asshownrecentlybyetal.Finally,wewouldliketopresentabriefdiscussionaboutthespincurrentsthatareresponsiblefortheSSEandtheSMR.AlthoughtheISHEplaysanimportantroleincausingboththeSSEandtheSMR,themechanismsforthespinaccumulationinthesetwocasesaredifferent.Asformu-lated,thespincurrentdensitythatcausestheSSEhasthe DVISHECg (2)whereistheopen-circuitspinHallconversionefÞ-isacorrectionfactor,isthewidthofthePtstrip.canbefurtherexpressedas 2ehhshktanh tPt2k (3) e2hcoth (4)Incontrast,thespincurrentassociatedwiththeSMRhastheSMR hshekwtanh (5)AdoptingtherepresentativeparametersofthePt/YIGhybrid0.11,and1.5nm,theSMRcanbedirectlycalculated.WeshowtherelationinFig.andtheSMRrelationinFig..BothSMRhavethevaluessimilartothoseaspreviouslyreported.exhibitsaquadraticdependenceonwhichisunderstandablesinceisproportionaltoHowever,theSMRessentiallylinearlygrowswith,indicat-ingthattheeffectoftemperatureisnotstrong.ThisresultisconsistentwiththedatainFig..Accordingtotheaboveanalyses,obviously,thespinaccumulationstemsfromthermalgradientfortheSSE,whereasitiscausedbythespintransfertorqueofdccurrentatthePt/YIGinterfacefortheSMR.Insummary,wedemonstratethatthecurrentheatingisaconvenientandeffectivemethodtoproducetheSSE.DuetothenonequilibriumproximityeffectofthePtÞlm,more-over,theheatingcurrentinducessimultaneouslyaSMR,aneffectjointlyproducedbytheSpinHalleffectandtheinversespinHalleffect.Withtheincreaseofheatingpower,theSSEenhanceslinearlywhereastheSMRdecreasesslowly.Theoriginofthespincurrentsisfurtheranalyzed,anddifferentdependencesonheatingcurrentareobservedforthespincurrentsassociatedwiththeSSEandSMR,indicatingthatthespinaccumulationaredifferentforthesetwoeffects.ThisworkhasbeensupportedbytheNationalBasicResearchofChina(GrantNos.2011CB921801and2012CB921403)andtheNationalNaturalScienceFoundationofChina(GrantNos.11174231,11074285,51372064,and11134007).H.Ohno,Nat.Mater.,952(2010).J.C.LeBreton,S.Sharma,H.Saito,S.Yuasa,andR.Jansen,82(2011). FIG.4.(a)and(b)Effectofheatingpower()onthe(a)andtheSMR(b).(c)Relationsbetweenspincurrentandappliedcurrent.(d)RelationsbetweenspincurrentSMRandappliedcurrent.Solidlinesin(a),(b),and(d)areguidesfortheeye.Solidlinesin(c)aretheresultsÞttingtotheequationof182403-4Wangetal.Appl.Phys.Lett.,182403(2014) K.Uchida,S.Takahashi,K.Harii,J.Ieda,W.Koshibae,K.Ando,S.Maekawa,andE.Saitoh,,778(2008).A.Azevedo,L.H.VilelaLeao,R.L.Rodriguez-Suarez,A.B.Oliveira,andS.M.Rezende,J.Appl.Phys.,10C715(2005).C.M.Jaworski,J.Yang,S.Mack,D.D.Awschalom,J.P.Heremans,andR.C.Myers,Nat.Mater.,898(2010).K.Uchida,J.Xiao,H.Adachi,J.Ohe,S.Takahashi,J.Ieda,T.Ota,Y.Kajiwara,H.Umezawa,H.Kawai,G.E.W.Bauer,S.Maekawa,andE.Nat.Mater.,894(2010).K.-i.Uchida,H.Adachi,T.Ota,H.Nakayama,S.Maekawa,andE.Appl.Phys.Lett.,172505(2010).G.E.W.Bauer,E.Saitoh,andB.J.vanWees,Nat.Mater.,391(2012);F.L.Bakker,A.Slachter,J.P.Adam,andB.J.vanWees,Phys.Rev.Lett.,136601(2010);M.Hatami,G.E.W.Bauer,Q.F.Zhang,andP.Phys.Rev.Lett.,066603(2007);M.JohnsonandR.Silsbee,Phys.Rev.B,4959(1987);A.Slachter,F.L.Bakker,J.P.Adam,andB.J.vanWees,Nat.Phys.,879(2010).M.Weiler,M.Althammer,F.D.Czeschka,H.Huebl,M.S.Wagner,M.Opel,I.-M.Imort,G.Reiss,A.Thomas,R.Gross,andS.T.B.Goennenwein,Phys.Rev.Lett.,106602(2012).M.Schreier,N.Roschewsky,E.Dobler,S.Meyer,H.Huebl,R.Gross,andS.T.B.Goennenwein,Appl.Phys.Lett.,242404(2013).H.Nakayama,M.Althammer,Y.T.Chen,K.Uchida,Y.Kajiwara,D.Kikuchi,T.Ohtani,S.Geprags,M.Opel,S.Takahashi,R.Gross,G.E.W.Bauer,S.T.B.Goennenwein,andE.Saitoh,Phys.Rev.Lett.,206601B.F.Miao,S.Y.Huang,D.Qu,andC.L.Chien,Phys.Rev.Lett.236601(2014).Y.T.Chen,S.Takahashi,H.Nakayama,M.Althammer,S.Goennenwein,E.Saitoh,andG.E.W.Bauer,Phys.Rev.B,144411(2013).M.Althammer,S.Meyer,H.Nakayama,M.Schreier,S.Altmannshofer,M.Weiler,H.Huebl,S.Geprags,M.Opel,R.Gross,D.Meier,C.Klewe,T.Kuschel,J.M.Schmalhorst,G.Reiss,L.Shen,A.Gupta,Y.T.Chen,G.E.W.Bauer,E.Saitoh,andS.T.B.Goennenwein,Phys.Rev.B224401(2013).S.R.Marmion,M.Ali,M.McLaren,D.A.Williams,andB.J.Hickey,Phys.Rev.B,220404(2014).V.L.Grigoryan,W.Guo,G.E.W.Bauer,andJ.Xiao,Phys.Rev.B161412(R)(2014).M.Weiler,M.Althammer,M.Schreier,J.Lotze,M.Pernpeintner,S.Meyer,H.Huebl,R.Gross,A.Kamra,J.Xiao,Y.T.Chen,H.J.Jiao,G.E.W.Bauer,andS.T.B.Goennenwein,Phys.Rev.Lett.,176601F.D.Czeschka,L.Dreher,M.S.Brandt,M.Weiler,M.Althammer,I.M.Imort,G.Reiss,A.Thomas,W.Schoch,W.Limmer,H.Huebl,R.Gross,andS.T.B.Goennenwein,Phys.Rev.Lett.107,046601H.J.JiaoandG.E.W.Bauer,Phys.Rev.Lett.,217602(2013).182403-5Wangetal.Appl.Phys.Lett.,182403(2014)

Related Contents


Next Show more