/
evolutiontoclusteredarchitecturesissomewhatreducedeg evolutiontoclusteredarchitecturesissomewhatreducedeg

evolutiontoclusteredarchitecturesissomewhatreducedeg - PDF document

susan2
susan2 . @susan2
Follow
342 views
Uploaded On 2021-10-01

evolutiontoclusteredarchitecturesissomewhatreducedeg - PPT Presentation

m01Fig3Bmcrit023AlthoughthesegeneralpatternsareconsistentwiththepredictionsofYeamanandWhitlock28theeffectofthestrengthofselectionontherateofgenomeevolutionisnotaccountedforbyEqs2or4likelyinpartbecaus ID: 891326

etal fig unlinked clustered fig etal clustered unlinked evolution pnas 2012 genetics 2010 methods yeaman time 2013 2011 2005

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "evolutiontoclusteredarchitecturesissomew..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 evolutiontoclusteredarchitecturesissomew
evolutiontoclusteredarchitecturesissomewhatreduced(e.g., m =0.1,Fig.3 B ; m crit =0.23).Althoughthesegeneralpatterns areconsistentwiththepredictionsofYeamanandWhitlock (28),theeffectofthestrengthofselectionontherateofgenome evolutionisnotaccountedforbyEqs. 2 or 4 ,likelyinpartbe- causetheseapproximationsignorerearrangementsthatyield clustersoflociwith r � 0( Methods ).When r � 0,theamountof linkagedisequilibriumbetweenloci,andthereforethe  tness bene  tsoflinkage,shouldscalewiththestrengthofselection (19,53),suchthatunderstrongerselectionthereiseffectively alargertargetregion( L )overwhichrearrangementscanyield clustersoflociwith  tnessbene  tsowingtolinkage. Therateofevolutionofclusteringisalsostronglydeterminedby boththepopulationsize( N )andtherateofoccurrenceofrear- rangements(  ).Clusteringevolvesmuchmorerapidlywhen N = 10 4 thanwhen N =10 3 ,butif  isincreasedbyanorderofmag- nitudefor N =10 3 ,therateofevolutionofclusteringisquite similartowhen N =10 4 (Fig.3 C ).Thisshowsthattherateof architectureevolutiondependsheavilyonthepopulation-level rateofoccurrenceofrearrangements( N  ),aspredictedbyEq. 2 . Clusteredgenomicarchitecturesalsoevolvewhenenviron- mentsarebothspatiallyandtemporallyheterogeneous(Fig.4 A ) andwhenpopulationsgothroughalternatingperiodsofspatial heterogeneityandhomogeneity(Fig.4 C ).Fig.4 A showsthe evolutionofgenomicarchitecturewhenpopulationsinhabit aspatiallyheterogeneousenvironment(localoptimaare+1/ Š 1) thatalso  uctuatesovertime(asshowninFig.4 B ).Whenthe periodoftemporal  uctuationsisshort( T =1,000,Fig.4 A ), clusteringevolvesmoreslowlyandstabilizesatanintermediate level.Theamountofclusteringattheendofthesimulations variesnonmonotonicallyasafunctionof T ,withthemostclus- teringseenwhen T =5,000(Fig.4 A ).Whentheperiodisvery long( T =10 5 ),genomicarchitectureevolvestowardhighly clusteredarchitecturesbut  uctuatesduetotransientincreases inthenumberofunclusteredselectedloci( SIText and Fig.S2 ). Whenpopulationsinhabitanenvironmentthatperiodically alternatesbetweenspatiallyhomogeneousandspatiallyhetero- geneous(asshowninFig.4 D ),clusteredgenomicarchitectures stillevolve,althoughtherateofevolutionisslowerforsmaller T (Fig.4 C ).Inthesesimulations,geneticdivergenceoftencollap- sescompletelyduringtheintervalsofhomogeneityandany islandsofallelicdivergencearelost,butclusteredgenomic architecturespersistandcanrapidlygiverisetonewislandsof allelicdivergencewhenheterogeneousenvironmentsarerees- tablished.Clusteredarchitecturesstillevolvewhentheenviron- mentishomogeneousformoretimethanitisheterogeneous, butataslowerrate( SIText and Fig.S3 ). Fromtheaboveresults,itisclearthattherateofrearrangement isanimportantdriverofarchitectureevolution,butistherealsoan effectofthetypeofrearrangement?Therearenumerousmech- anismsthatcangiverisetotherearrangementofsmallfragments ofthegenome:( a )nonhomologousorectopicrecombinationin- volvingtwocloselyspacedcrossovers(54,55),( b )repairfollowing multipledouble-strandedbreaks(56 – 58),( c )intrachromosomal recombinationformingcircularDNAthatreinsertselsewherein thegenome(59),( d )excisionandreinsertionmediatedby  anking transposons(60,61),( e )transposon-mediatedtransduplication [e.g.,byhelitrons(62)o rPack-MULEs(63)],and( f )reverse transcriptionandretrotranspos itionofmRNA,whichresultsin thelossofintronsinthedaughtercopy(64).Ofthese,someresult inthemovementofagenefromoneplacetoanother(e.g., a – d ), whereasothersresultinthecreationofaduplicatecopyinanew location(e.g., e and f ).Unfortunately,thereisstilllittlein- formationontherelativefreque ncyofthesedifferentmecha- nismsindifferentspecies.Alth oughalloftheabovesimulations wererunusingacut-and-pastemodelofrearrangementsimilar tomechanisms a – d ( Methods ),therateofevolutiontowardclus- teredarchitectureswasnotsubstantiallychangedwhenadupli- cationmodelsimilartomechanisms e and f wasusedinstead( Fig. S4 ).However,unlikethecut-and-pastemodel,alowrateofgene deletion(  )wasnecessaryforsigni  cantclusteringtoevolvein theduplicationmodel,becauseotherwisetherewasnomecha- nismthroughwhichthelessclusteredparentalcopyofalocus couldbelost( Fig.S4 ). Inthesesimulations,geneduplication,genedeletion,andre- combinationbetweenrearrangedandancestralhaplotypescanall resultinchangesinthenumberofcopiesofagivenlocusthatare passedfromparenttooffspring.Empiricalstudieshavefoundthat changesingenecopynumberofteninvolvephenotypicchangesor  tnesscosts,likelybecausechangesinthedosageofsomegenes upsettheoverallbalanceofexpression(65 – 67).Alloftheabove simulationswererunundertheassumptionofrelativelyweakse- lectionagainstcopynumbervariants(CNV; Methods ).Therateof evolutiontowardclusteredarchitecturestendedtodecreasewith increasingstrengthofselectionagainstCNV( Fig.S5 ),suggesting thatclusteredarchitecturesaremorelikelytoinvolvegenesthat haveonlyminimal  tnesseffectsduetochangesincopynumber (i.e.,lesspotentialtoupsetthebalanceofexpression;refs.65 – 67). Whensimulationswererunexcluding  tnesscostsforCNV, clusteredarchitecturesstillevolvedatratescomparabletothose showninFig.3,providingtherateofgenedeletionwasatleast ashighastherateofrearrangement( Fig.S4 ). Discussion ImplicationsforGenomicIslandsofDivergence. Therehasbeen considerabledebateabouttheimportanceofdivergencehitch- hikingfortheevolutionofgenomicislandsofdivergence(16,20, 26),withrecentworknotingthattheeffectofdivergencehitch- hikingonestablishmentprobabilitymayoftenbequitelimited relativetotheeffectofselectionactingdirectlyonbene  cial Spatially homogeneous Time ( g enerations x1000) Map position (cM) 0250500 0 10 20 30 40 50 Spatially heterogeneous Time ( g enerations x1000) 0250500 A B Fig.2. Thedistributionofselectedlocialonga singlechromosomeover500,000generationsof evolutionwhentheenvironmentisspatiallyhomo- geneous( A ;optimaare  =+1and+1)andspatially heterogeneous( B ;optimaare  =+1and Š 1).Pop- ulationsareoftenpolymorphicforarrangements, withselectedandneutrallocibothpresentindif- ferentindividualsatthesamechromosomallocation. Foragivenchromosomalpositionatagivenpointin time,blueindicatesthatmostindividualsinboth populationshaveaselectedlocus,redindicatesthat mostindividualsinonepatchhaveaselectedlocus whereasmostindividualsintheotherlocushave aneutrallocus,andwhiteindicatesthatmostindi- vidualsinbothpopulationshaveaneutrallocus; m =0.01,  =0.75, N =10 4 ,  =10 Š 6 . E1746 | www.pnas.org/cgi/doi/10.1073/pnas.1219381110 Yeaman 26.ViaS(2012)Divergencehitchhikingandthespr eadofgenomicisolationduringecological speciation-with-gene-  ow. PhilosTransRSocLondBBiolSci 367(1587):451 – 460. 27.BartonNH,HewittGM(1989)Adapt ation,speciationandhybridzones. Nature 341(6242):497 – 503. 28.YeamanS,WhitlockMC(2011)Thegeneticarchitectureofadaptationunder migration-selectionbalance. Evolution 65(7):1897 – 1911. 29.CharlesworthB,NordborgM,CharlesworthD(1997)Theeffectsoflocalselection, balancedpolymorphismandbackgroundselectiononequilibriumpatternsof geneticdiversityinsubdividedpopulations. GenetRes 70(2):155 – 174. 30.RiesebergLH(2001)Chromosomalrearrangementsandspeciation. TrendsEcolEvol 16(7):351 – 358. 31.NoorMAF,GramsKL,BertucciLA,R

2 eilandJ(2001)Chromosomalinversionsandthe
eilandJ(2001)Chromosomalinversionsandthe reproductiveisolationofspecies. ProcNatlAcadSciUSA 98(21):12084 – 12088. 32.KirkpatrickM,BartonN(2006)Chromosomeinversions,localadaptationand speciation. Genetics 173(1):419 – 434. 33.FederJL,NosilP(2009)Chromosomalinversionsandspeciesdifferences:whenare genesaffectingadaptivedivergenceandreproductiveisolationexpectedtoreside withininversions? Evolution 63(12):3061 – 3075. 34.FederJL,RoetheleJB,FilchakK,NiedbalskiJ,Romero-SeversonJ(2003)Evidencefor inversionpolymorphismrelatedtosympatrichostraceformationintheapple maggot  y, Rhagoletispomonella . Genetics 163(3):939 – 953. 35.ChengC,etal.(2012)EcologicalgenomicsofAnophelesgambiaealongalatitudinal cline:Apopulation-resequencingapproach. Genetics 190(4):1417 – 1432. 36.JonesFC,etal.;BroadInstituteGenomeSequencingPlatform&WholeGenome AssemblyTeam(2012)Thegenomicbasisofadaptiveevolutioninthreespine sticklebacks. Nature 484(7392):55 – 61. 37.NeafseyDE,etal.(2010)SNPgenotypingde  nescomplexgene-  owboundaries amongAfricanmalariavectormosquitoes. Science 330(6003):514 – 517. 38.StrasburgJL,Scotti-SaintagneC,ScottiI,LaiZ,RiesebergLH(2009)Genomicpatterns ofadaptivedivergencebetweenchromosomallydifferentiatedsun  owerspecies. MolBiolEvol 26(6):1341 – 1355. 39.RanzJM,CasalsF,RuizA(2001)Howmalleableistheeukaryoticgenome?Extremerate ofchromosomalrearrangementinthegenus Drosophila . GenomeRes 11(2):230 – 239. 40.PringleEG,etal.(2007)Syntenyandchromosomeevolutioninthelepidoptera: Evidencefrommappingin Heliconiusmelpomene . Genetics 177(1):417 – 426. 41.d ’ AlençonE,etal.(2010)Extensivesyntenyconservationofholocentricchromosomes inLepidopteradespitehighratesoflocalgenomerearrangements. ProcNatlAcad SciUSA 107(17):7680 – 7685. 42.HeliconiusGenomeConsortium(2012)Butter  ygenomerevealspromiscuousex- changeofmimicryadaptationsamongspecies. Nature 487(7405):94 – 98. 43.BackströmN,etal.(2008)Agene-basedgeneticlinkagemapofthecollared  ycatcher( Ficedulaalbicollis )revealsextensivesyntenyandgene-orderconservation during100millionyearsofavianevolution. Genetics 179(3):1479 – 1495. 44.EllegrenH(2010)Evolutionarystasis:Thestablechromosomesofbirds. TrendsEcol Evol 25(5):283 – 291. 45.PevznerP,TeslerG(2003)Humanandmousegenomicsequencesrevealextensive breakpointreuseinmammalianevolution. ProcNatlAcadSciUSA 100(13):7672 – 7677. 46.MurphyWJ,etal.(2005)Dynamicsofmammalianchromosomeevolutioninferred frommultispeciescomparativemaps. Science 309(5734):613 – 617. 47.OnoS(1973)Ancientlinkagegroupsandfrozenaccidents. Nature 244(5414): 259 – 262. 48.CoghlanA,EichlerEE,OliverSG,PatersonAH,SteinL(2005)Chromosomeevolution ineukaryotes:Amulti-kingdomperspective. TrendsGenet 21(12):673 – 682. 49.LynchM(2007)Thefrailtyofadaptivehypothesesfortheoriginsoforganismal complexity. ProcNatlAcadSciUSA 104(Suppl1):8597 – 8604. 50.KooninEV(2009)Evolutionofgenomearchitecture. IntJBiochemCellBiol 41(2): 298 – 306. 51.KimuraM(1962)Ontheprobabilityof  xationofmutantgenesinapopulation. Genetics 47:713 – 719. 52.YeamanS,OttoSP(2011)Establishmentandmaintenanceofadaptivegenetic divergenceundermigration,selection,anddrift. Evolution 65(7):2123 – 2129. 53.BartonNH(2000)Genetichitchhiking. PhilosTransRSocLondBBiolSci 355(1403): 1553 – 1562. 54.PetesTD,HillCW(1988)Recombinationbetweenrepeatedgenesinmicroorganisms. AnnuRevGenet 22:147 – 168. 55.BishopAJR,SchiestlRH(2000)Homologousrecombinationasamechanismfor genomerearrangements:Environmentalandgeneticeffects. HumMolGenet 9(16): 2427 – 334. 56.RichardsonC,JasinM(2000)FrequentchromosomaltranslocationsinducedbyDNA double-strandbreaks. Nature 405(6787):697 – 700. 57.ArguesoJL,etal.(2008)Double-strandbreaksassociatedwithrepetitiveDNAcan reshapethegenome. ProcNatlAcadSciUSA 105(33):11845 – 11850. 58.ManiR-S,ChinnaiyanAM(2010)Triggersforgenomicrearrangements:insightsinto genomic,cellularandenvironmentalin  uences. NatRevGenet 11(12):819 – 829. 59.WoodhouseMR,PedersenB,FreelingM(2010)Transposedgenesin Arabidopsis are oftenassociatedwith  ankingrepeats. PLoSGenet 6(5):e1000949. 60.TonzetichJ,HayashiS,GrigliattiTA(1990)ConservatismofsitesoftRNAlociamong thelinkagegroupsofseveralDrosophilaspecies. JMolEvol 30(2):182 – 188. 61.FreelingM,etal.(2008)Manyormostgenesin Arabidopsis transposedafterthe originoftheorderBrassicales. GenomeRes 18(12):1924 – 1937. 62.LaiJ,LiY,MessingJ,DoonerHK(2005)Genemovementby Helitron transposons contributestothehaplotypevariabilityofmaize. ProcNatlAcadSciUSA 102(25): 9068 – 9073. 63.JiangN,BaoZ,ZhangX,EddySR,WesslerSR(2004)Pack-MULEtransposable elementsmediategeneevolutioninplants. Nature 431(7008):569 – 573. 64.WangW,etal.(2006)Highrateofchimericgeneoriginationbyretropositionin plantgenomes. PlantCell 18(8):1791 – 1802. 65.SpringerM,WeissmanJS,KirschnerMW(2010)Agenerallackofcompensationfor genedosageinyeast. MolSystBiol 6:368. 66.CooperGM,etal.(2011)Acopynumbervariationmorbiditymapofdevelopmental delay. NatGenet 43(9):838 – 846. 67.BirchlerJA,VeitiaRA(2012)Genebalancehypothesis:Connectingissuesofdosage sensitivityacrossbiologicaldisciplines. ProcNatlAcadSciUSA 109(37):14746 – 14753. 68.DavisMB,ShawRG(2001)RangeshiftsandadaptiveresponsestoQuaternary climatechange. Science 292(5517):673 – 679. 69.LowryDB,WillisJH(2010)Awidespreadchromosomalinversionpolymorphism contributestoamajorlife-historytransition,localadaptation,andreproductive isolation. PLoSBiol 8(9):e1000500. 70.JoronM,etal.(2011)Chromosomalrearrangementsmaintainapolymorphic supergenecontrollingbutter  ymimicry. Nature 477(7363):203 – 206. 71.RenautS,etal.(2013)Genomicislandsofdivergencearenotaffectedbygeography ofspeciationinsun  owers.Inpress. 72.HurstLD,PálC,LercherMJ(2004)Theevolutionarydynamicsofeukaryoticgene order. NatRevGenet 5(4):299 – 310. 73.WilliamsEJB,BowlesDJ(2004)Coexpressionofneighboringgenesinthegenomeof Arabidopsisthaliana. GenomeRes 14(6):1060 – 1067. 74.SchmidM,etal.(2005)Ageneexpressionmapof Arabidopsisthaliana development. NatGenet 37(5):501 – 506. 75.ZhanS,HorrocksJ,LukensLN(2006)Islandsofco-expressedneighbouringgenesin Arabidopsisthalianasuggesthigher-orderchromosomedomains. PlantJ 45(3):347 – 357. 76.LeeJM,SonnhammerELL(2003)Genomicgeneclusteringanalysisofpathwaysin eukaryotes. GenomeRes 13(5):875 – 882. 77.Al-ShahrourF,etal.(2010)Selectionupongenomearchitecture:conservationof functionalneighborhoodswithchanginggenes. PLOSComputBiol 6(10):e1000953. 78.BatadaNN,UrrutiaAO,HurstLD(2007)Chromatinremodellingisamajorsourceof coexpressionoflinkedgenesinyeast. TrendsGenet 23(10):480 – 484. 79.BatadaNN,HurstLD(2007)Evolutionofchromosomeorganizationdrivenby selectionforreducedgeneexpressionnoise. NatGenet 39(8):945 – 949. 80.LynchM,BobayLM,CataniaF,GoutJF,RhoM(2011)Therepatterningofeukaryotic genomesbyrandomgeneticdrift. AnnuRevGenomicsHumGenet 12:347 – 366. 81.CharlesworthD,CharlesworthB(1975)TheoreticalgeneticsofBatesianmimicryII. Evolutionofsupergenes. JTheorBiol 55(2):305 – 324. 82.FisherR(1930) TheGeneticalTheoryofNaturalSelection (Clarendon,Oxford). 83.KimuraM(1956)Amodelofageneticsystemwhichleadstocloserlinkageby naturalselection. Evolution 10:278 – 287. 84.NeiM(1967)Modi  cationoflinkageintensitybynaturalselection. Genetics 57(3): 625 – 641. 85.

3 TurnerJRG(1967)Whydoesthegenotypenotcong
TurnerJRG(1967)Whydoesthegenotypenotcongeal? Evolution 21:645 – 656. 86.OttoSP(2009)Theevolutionaryenigmaofsex. AmNat 174(Suppl1):S1 – S14. 87.CharlesworthD,CharlesworthB(1980)Sex-differencesin  tnessandselectionfor centricfusionsbetweensex-chromosomesandautosomes. GeneticalResearch 35:205 – 214. 88.WrightS(1941)Ontheprobabilityof  xationofreciprocaltranslocations. AmNat 75:513 – 522. 89.LandeR(1985)The  xationofchromosomalrearrangementsinasubdivided populationwithlocalextinctionandcolonization. Heredity(Edinb) 54(Pt3):323 – 332. 90.ColosimoPF,etal.(2004)Thegeneticarchitectureofparallelarmorplatereduction inthreespinesticklebacks. PLoSBiol 2(5):E109. 91.AlbertAYK,etal.(2008)Thegeneticsofadaptiveshapeshiftinstickleback: pleiotropyandeffectsize. Evolution 62(1):76 – 85. 92.RogersSM,etal.(2012)Geneticsignatureofadaptivepeakshiftinthreespine stickleback. Evolution 66(8):2439 – 2450. 93.LarkinDM,etal.(2009)Breakpointregionsandhomologoussyntenyblocksin chromosomeshavedifferentevolutionaryhistories. GenomeRes 19(5):770 – 777. 94.WoodhouseMR,TangH,FreelingM(2011)Differentgenefamiliesin Arabidopsis thaliana transposedindifferentepochsandatdifferentfrequenciesthroughoutthe rosids. PlantCell 23(12):4241 – 4253. 95.LanctôtC,CheutinT,CremerM,CavalliG,CremerT(2007)Dynamicgenome architectureinthenuclearspace:regulationofgeneexpressioninthreedimensions. NatRevGenet 8(2):104 – 115. 96.WijchersPJ,deLaatW(2011)Genomeorganizationin  uencespartnerselectionfor chromosomalrearrangements. TrendsGenet 27(2):63 – 71. 97.MartinG,OttoSP,LenormandT(2006)Selectionforrecombinationinstructured populations. Genetics 172(1):593 – 609. 98.Hart  eldM,OttoSP,KeightleyPD(2010)Theroleofadvantageousmutationsin enhancingtheevolutionofarecombinationmodi  er. Genetics 184(4):1153 – 1164. 99.CharlesworthB,CharlesworthD(1993)Directionalselectionandtheevolutionofsex andrecombination. GenetRes 61(3):205 – 224. 100.BürgerR(1999)Evolutionofgeneticvariabilityandtheadvantageofsexand recombinationinchangingenvironments. Genetics 153(2):1055 – 1069. 101.GuillaumeF,RougemontJ(2006)Nemo:Anevolutionaryandpopulationgenetics programmingframework. Bioinformatics 22(20):2556 – 2557. 102.TurelliM(1984)Heritablegeneticvariationviamutation-selectionbalance:Lerch ’ s zetameetstheabdominalbristle. TheorPopulBiol 25(2):138 – 193. 103.GoutJ-F,KahnD,DuretL;ParameciumPost-GenomicsConsortium(2010)The relationshipamonggeneexpression,theevolutionofgenedosage,andtherateof proteinevolution. PLoSGenet 6(5):e1000944. 104.TongAHY,etal.(2001)Systematicgeneticanalysiswithorderedarraysofyeast deletionmutants. Science 294(5550):2364 – 2368. 105.CarpenterAE,SabatiniDM(2004)Systematicgenome-widescreensofgene function. NatRevGenet 5(1):11 – 22. Yeaman PNAS | PublishedonlineApril22,2013 | E1751 EVOLUTION PNASPLUS exceptionstothispatternoccuroververynarrowrangesofmi- grationratefallingjustbelowthecriticalthresholdabovewhich noadaptivedivergenceoccurs(Fig.1,grayshading).Inthese cases,thedivergencehitchhikingadvantageishighbecausethe establishmentprobabilityofsmallunlinkedmutationsiscloseto0. Undertheassumptionthatthelocithatcanpotentiallycon- tributetolocaladaptationareuniformlydistributedthroughout thegenome,theratio  linked /  unlinked willbeafunctionofthe fractionofthegenomethatoccurswithin50cMoneithersideof thefocallocus(i.e.,theregionoverwhichthedivergence hitchhikingadvantageiscalculatedinFig.1),relativetothe fractionofthegenomethatisunlinked.Todevelopasimple heuristicunderassumptionsmostfavorabletothedivergence hitchhikinghypothesis,thisratiocanbeapproximatedas  clustered /  unlinked =1/2/( k – 1/2)=1/(2 k – 1),where k isthe numberofchromosomes,assumingchromosomesareallof equivalentsize,andtheregionmaintainedasaclusterspans50% ofasinglechromosome.Ifweassumethedivergencehitchhiking advantage, EP clustered / EP unlinked  3(fromFig.1)and k =21(as inthethreespinestickleback),thenusingEq. 1 ,wewouldexpect atleast13unlinkedallelestoestablishforeveryclusteredallele thatestablishes.Notethatinmostcasesthisratiowouldbeeven larger,becausetheadvantageofdivergencehitchhikingissel- domashighasthreefold(Fig.1),andtheregionmaintainedas aclusterinmostempiricalcontextsistypicallymuchsmallerthan 50%ofachromosome. Basedontheaboveheuristic,veryfewoftheallelesthat contributetolocaladaptationareexpectedtoresideinagiven islandofdivergenceexceptunderverylimitedregionsofpa- rameterspace.Itmaybearguedthatashortcomingofthis heuristicisthatitconsidersonlytheformationofagenomic islandaroundasinglefocallocus,buttherecouldbemanysuch focallociindifferentlocationsthroughoutthegenome,eachof whichcouldformagenomicisland(effectivelyincreasingthe mutationaltargetand  clustered ).However,thisissueisunlikelyto beimportantbecauseboththeincreaseinestablishmentprob- abilityandthesizeofthegenomicislandthatcanbeformedby divergencehitchhikingareproportionaltothestrengthofse- lectiononthefocaldivergentlocus.Ifmanysuchfocallociexist throughoutthegenome,thenthemaximumstrengthofselection ateachfocallocuswilltypicallybelower,therebyreducingboth thepotentialsizeofthecluster[dueto s vs. r (19,53)]andthe divergencehitchhikingadvantageforanylinkedmutations. Thus,divergencehitchhikingisunlikelytobeabroadlyimpor- tantexplanationfortheexistenceofislandsofdivergencewith- outsomegenomicmechanismthatdramaticallyreducestherate ofrecombinationaroundtheinitiallydivergentlocus,suchas alargeinversion(24,32)ormodi  erscreatingarecombination coldspot.Alternatively,ifgenomicrearrangementsbringto- getherthelocithatcontributetolocaladaptation(therebycre- atingagenomicisland),thiswouldeffectivelyincreasetheratio of  clustered /  unlinked ,andcouldfacilitatedivergencehitchhikingin subsequentboutsoflocaladaptation(iftheallelesformingthe genomicislandhappenedtobelostowingtogenetichomoge- nizationamongpopulations). RearrangementsLeadtoClusteringofLocallyAdaptiveLoci. Clusters oflocallyadaptivelocimightbeexpectedtoevolveundermi- gration – selectionbalancethroughthespreadofgenomicrear- rangements,providedtherateofrearrangementsandtheir probabilityof  xationarebothsuf  cientlyhigh.Ifthelocithat contributetolocaladaptationareinitiallyrandomlydistributed throughoutthegenome,thenthetimerequiredtoevolveacon-  gurationwheretheselociareorganizedinasingletightlylinked clustercanbeapproximatedbyaccountingfortherateofoc- currenceofsuitablerearrangementsandtheirprobabilityof  xation[basedonamodelbyKirkpatrickandBarton(32)].If L isthenumberofbasepairsoverwhich r  0, G isthenumberof basepairsinthegenome,  istherateofrearrangementper locus,pergeneration, N p isthetotalmetapopulationcensussize, and m isthemigrationrate,thenthetime(ingenerations)to evolveaclusteredarchitecturecanbeapproximatedas t  G =  N p  mL  [2] ( Methods givesthederivation).Thiscoarseapproximationwill rangeovermanyordersofmagnitude,dependingontheparam- eters,andprovidessomeintuitionabouttheirrelativeimpor- tance.Itisinsensitivetothenumberoflociinvolvedinlocal adaptation( n ),becausewhen n increases,thelongertimere- quiredtorearrangealargernumberoflociisoffsetbyincreases intherealizedrateofrearrangement,becausetherearemore locithatcanpotentiallyberearrangedintoacl

4 uster.However, thetimerequiredtoevolveap
uster.However, thetimerequiredtoevolveapartiallyclusteredarchitecture(by Eq. 4 )maybeseveralordersofmagnitudelessthanthetimeto evolveafullyclusteredarchitecture(byEq. 2 ; Fig.S1 ).These equationscanbeusedtoprovidecoarsepredictionsofwhether clusteringofgenomicarchitecturemightbeexpectedinagiven taxon.Forexample,if N p =10 5 , L =10 5 , G =10 9 ,and m = 0.001,thencompleteclusteringmightbeseenatbiologicallyre- alistictimescalesif  � 10 Š 5 (as t  10 7 ,byEq. 2 ),andpartial clusteringof n x =5outof n =50locimightoccurif  � 10 Š 7 (as t  2 × 10 7 ,byEq. 4 ).Thismodelillustrateshowslightvariations insomeparameterscanyieldlargeeffectsontherateofgenome evolution,butasameansofmakingquantitativepredictionsit shouldbeseenasacoarseapproximation,owingtotheassump- tionsinvolvedinitsderivation(detailsaregivenin Methods ). Toexploretheevolutionofgenomearchitecturemoreex- plicitly,withfewersimplifyingassumptionsabouttheevolu- tionarydynamics,Iusedindividual-basedsimulationsofatwo- patchmodelundermigration – selectionbalancesimilartothat usedinref.28.Thesesimulationsareinitializedwith10phe- notype-affecting(hereafter,selected)lociequallyspacedalong asinglechromosome,eachseparatedby49neutralloci.Geno- micrearrangementsoccurbymovingasingleselectedlocusto anewlocationaccordingtoeitheracut-and-pasteoraduplica- tionmodel( Methods ),ataper-locusrateof  .Becauserear- rangementscanresultinchangesinthenumberofcopiesofeach locus,smalladditional  tnesscostswereincurredforindividuals thatdidnothaveexactlytwocopiesofeachofthe10original selectedloci(detailsaregivenin Methods ). Whenbothpopulationsinhabitthesametypeofenvironment, thereisnobene  ttohavingatightlylinkedgenomicarchitecture, andthedistributionofselectedlocionthesimulatedchromosome evolvesveryslowly,mainlyunderthein  uenceofrandomgenetic drift(Fig.2 A ).Bycontrast,whenpopulationsinhabitdifferent environmentsandexperienceatensionbetweenmigrationand divergentselection,thearchitectureevolvesrapidlythroughthe successive  xationofsingle-locusrearrangements,eventually leadingtoclustersoftightlylinkedselectedlocithatare  xed acrossbothpopulations(Fig.2 B ).Inthiscase,populationsrapidly evolvegenotypicdivergencethroughtheestablishmentoflocally adaptedallelesateachlocus(usuallywithinseveralthousand generations).Oncegenotypicdivergenceisestablished,rear- rangementsthatmoveoneselectedlocuswithalocallyadapted alleleclosetoanothertendtoinvadeandreplacelesstightly clusteredarchitectures,becauseoftheadvantageofreducedre- combinationbetweenmoretightlylinkedloci.InFig.2 B ,anearly fullyclusteredarchitectureevolvesinanamountoftimesimilar tothatpredictedbyEq. 5 (for m =0.01, n =10, L =2, G =490,  =10 Š 6 , N p =20,000,then t =8.4 × 10 5 ). Inmostcases,therateofevolutiontowardclusteredarchi- tecturesincreaseswiththestrengthofdivergentselection(Fig. 3 A )andmigrationrate(Fig.3 B ).However,whenmigrationrates arehighandjustbelowthecriticalthreshold(24,52),therateof Yeaman PNAS | PublishedonlineApril22,2013 | E1745 EVOLUTION PNASPLUS sites ” (45,46).Studiesofgeneregulationhavefoundevidence thatneighboringgenessometimeshavehighlycorrelatedex- pressionpro  les(72 – 75),ortendtobefunctionallyrelated(76, 77).Evolutionaryexplanationsforthesepatternshavebeenvar- iedbutareoftenrelatedtothebalancebetweenratesofrear- rangement,geneticdrift,andpurifyingselection(50,72).Where explanationsinvokepositiveselection,the  tnessbene  tsare typicallybasedonchangesthatareendogenoustotheorganism andenvironment-independent,suchasfacilitatedregulationof functionallyrelatedgenes(78)orreducedexpressionnoise(79). Thegeneralperspectivethatarisesfromthesestudiesisthat thearchitectureofthegenomeevolveswithlittleconnectionto theecologyofthespecies,beyondtheimpactofdemographyon geneticdrift(50,72).Lynchandcoworkers(49,80)havepre- sentedcompellingevidenceshowingthatspecieswithsmaller effectivepopulationsizestendtohavelargergenomes,duethe reducedef  ciencyofnaturalselectiontoeliminateinsertionsthat increasetheglobalmutationhazard.Beyondthislinktoecology throughdemography,inmostcases,thepatternsthathavebeen studiedincomparativegenomicsaretestablewithoutgoingout intonaturetostudytheecologyofthespecies.Bycontrast,the mechanismofgenomeevolutiondescribedinthisstudyisex- plicitlytiedtotheecologyofthespecies.Thismechanismcanbe seenasanextensionoftheinversion-basedmechanismsoflocal adaptationandspeciationthathavereceivedconsiderablestudy inrecentyears(30 – 32)andmodelsfortheevolutionofsuper- genes(81),whichbothhavemuchincommonwithprevious studiesontheevolutionofrecombination(82 – 86).Thismecha- nismisalsosimilarinmanywaystomodelsfortheevolutionof sexchromosomes;CharlesworthandCharlesworth(87)showed thatrearrangementsmovingautosomallocitosexchromosomes wouldbefavoredwhendifferentalleleswerefavoredineachsex. Bycontrast,inthemechanismdiscussedhere,rearrangementsare favoredbecausetheyreducerecombinationbetweenlociwith allelesthatareadaptedtodifferentenvironments.Although earliermodelsofchromosomeevolutionalsonotedthatpositive selectionduetolinkagecouldresultinthespreadofrearrange- ments,theytypicallyfocusedontheeffectofdriftandpopulation structureonthespreadoflargerearrangementswithdeleterious effectsintheheterokaryotype(e.g.,88,89). Becausetherearrangement-basedmechanismdiscussedhereis explicitlytiedtoecology,studyingitmayrequireadifferentap- proachthanistypicallyusedincomparativegenomics.Inmany cases,localadaptationinvolvesgenesfromnumerouspathways. Forexample,adaptationtofreshwaterinthreespinesticklebacks includesresponsestonovelwaterchemistry,temperatureregimes, visualenvironments,predatorcommunities,andforageavailability (89 – 93).Therefore,analysesofclusteringbasedongeneontology (e.g.,77)mayfailtodetectclustersoflociiftheyinvolvegeneswith suchdifferentproximatefunctions.Also,clustersthatevolvein responsetoadaptationwithgene  owmightspanphysicaldis- tancesmuchlargerthanthosecommonlyanalyzedinthecoex- pressionclusterstudies,whichtypicallyexamineslidingwindowsof 2to15genes(e.g.,73 – 75).Forexample,agenomicislandspanning � 10cMhasbeenobservedinpeaaphidsadaptingtodifferent hosts(5),whichpresumablyincludestenstohundredsofgenes. OneintriguingcomparativegenomicstudyofamniotesbyLarkin etal.(93)foundthatrearrangementbreakpointstendedtocluster inregionscontaininggeneswithgeneontologytermsrelatingto in  ammationandmuscularcontraction,whereasconservedre- gionswithfewbreakpointstendedtoincludegenesfordevel- opment.Theysuggestedthatbecausein  ammationandmuscular contractiongenesaremoredirectlyinvolvedininteractionswith theenvironment,evolutionmayhavefavoredthespreadofrear- rangementsinresponsetonovelenvironmentalchallenges.Simi- larly,Freelingetal.(61)foundthatgeneswithproductsthat interactmoredirectlywithrapidlychangingbioticandabiotic environments(e.g.,diseaseresistanceor  owering)hadhigher Average distance between selected loci (cM) 0 10 20 30 40 Time (generations x1000) 0 250 500 Time (generations x1000) 0250 500 0 10 20 30 40 Local optimum -2 -1 0 1 2 period ( T ) Time interval period ( T ) Local optimum -2 -1 0 1 2 Time AB CD Fig.4. Evolutionofclusteredarchitecturesunderspatialandtemporalheterogeneity( A ,as

5 shownin B andspatialheterogeneitypunctua
shownin B andspatialheterogeneitypunctuatedwithperiodsof homogeneity( C ,asshownin D ).InC,theintervallasts1,000generations,duringwhich m =0.5;theblacklineshowstheamountofclusteringforaconstant spatiallyheterogeneousenvironmentwithnoperiodsofhomogeneity.AllotherparametersaresetasinFig.3. E1748 | www.pnas.org/cgi/doi/10.1073/pnas.1219381110 Yeaman areunlinkedtoanarchitecturewhere n x oftheselociarearrangedin asingleclustercanbeapproximatedas t ¼  4 N p  m  L = G  n  n Š 1  Š 1 þ  n x Š 1 i ¼ 2  4 N p  m  L = G  n Š i  Š 1 : [4] If n x = n ,thisreducesto t ¼  4 N p  mL = G  Š 1   n Š 2 i ¼ 1 i Š 1 þ 1 =  n  n Š 1   ¼ G ð H n þ 1 = ð n ð n Š 1 ÞÞÞ 4 N p  mL ; [5] where H n isthe( n Š 2) th harmonicnumber(if n =2, H n =0).Because1 H n 10formostbiologicallyrealisticvaluesof n ,thiscanbeapproximatedtoan orderofmagnitudeas t  G /( N p  mL ).Giventheassumptionsinvolvedin applyingthemodelfromKirkpatrickandBarton(32),parameterizingthis modelrequiresthat L representthenumberofbasepairssurroundingeach locusoverwhich r  0.Notethat N p representsthetotalsizeofthemeta- population,becauserearrangementswouldbefavoredwithinwhichever patchtheyoccurandwouldlikelyeventually  xthroughthemetapopulation (again,thedynamicsinvolvedhereareoversimpli  ed).Becausethismodel ignoresthecontributionsofrearrangementsthatyieldless-tightlylinked clusters(with0 r 0.5),itwilltendtooverestimatethetimerequiredto evolveaclusteredarchitecture.Amor ecomplexmodelbyBürgerandAkerman (24)suggeststhattheKirkpatrickandBarton(32)modelmayunderestimate theinvasionrate,furtherindicatingthatEqs. 4 and 5 shouldtendtoover- estimatethetimerequiredfortheevolutionofclusteredarchitectures. Individual-BasedSimulations. SimulationswererunusingtheversionofNemo (101)thatwasmodi  edforref.28(sourcecodedepositedinSourceforge). Twopopulationsexchangingmigrantsatrate m experiencedivergentse- lection,wherethe  tnessofanindividualwithagivenphenotype( Z )is afunctionofthelocaloptimum(  = ± 1),strengthofselection(  ),andthe curvatureofthe  tnessfunction(  =2): w ¼ 1 Š  ðj  Š Z j = j 2  jÞ  (backward andforwardmigrationratesareequal,giventheconstantdensities). Unlessotherwiseindicated, N =10 4 ,  =0.75, m =0.01,andtheperlocus mutationrate  =10 Š 4 .Unlikeinref.28,mutationsfollowahouse-of-cards model(102),withthenewvalueofamutationreplacinganyexistingvalue. Thismutationmodelwasusedsothatnoallelesoflargeeffectcouldbuild upthroughmultiplemutationsatasinglelocus.Mutationeffectsizesare drawnfromaGaussiandistributionwithmean=0andSD=0.05andare truncatedsothatallmutationsizeswere  | 0.05 | .Thephenotypeiscalcu- latedbyaddingthemutationeffectsacrossallselectedloci,sothatalocally optimalphenotypeinthepatchwith  =1couldbebuiltwith10homozy- gousmutationsof0.05. Genomicarchitectureismodeledbyinterspersingeachof n =10locithat affectthephenotype(selectedloci)with49neutrallocialongasingle chromosome(foratotalof500loci)andsettingtherecombinationrate betweenadjacentlocito0.002,suchthatonaveragetherewouldbeone recombinationeventperindividualpergeneration.Genomicrearrange- mentsoccuratrate  perlocus(setto10 Š 6 unlessotherwisenoted), accordingtooneoftwomodelsofrearrangement.Forthecut-and-paste model,rearrangementsoccurredbymovingasingleselectedlocustoanew locationoccupiedbyaneutrallocus;theselectedlocusreplacestheneutral locusinitsnewlocationandisreplacedbyanewneutrallocusinitsoriginal location,tomaintainchromosomesize(thisprocesswasconstrainedsothat oneselectedlocusneverreplacedanotherselectedlocus).Fortheduplica- tionmodel,theprocesswasidenticaltothecut-and-pastemodel,exceptthe “ parent ” locusretaineditsstateasaselectedlocus.Selectedlocicouldbe lost(i.e.,converttoneutralloci)ataper-locusrateof  ,whichrepresentsthe processofpseudogenizationorgenedeletion.Unlessotherwisenoted,all simulationswererunusingthecut-and-pastemodelwith  =0. Torepresentthe  tnesscostsarisingfromCNV,anadditional  tnesscost ( s c )wascalculatedforeachindividualbasedonaGaussianfunctionwith s c ¼  n i ¼ 1 ð 1 Š exp ½ Š ð 2 Š c i Þ 2 = V c Þ ,summedacrosscontributionsfrom n loci, with c i representingthenumberofcopiesofthe i th locus.Whenthewidthof thisfunction, V c ,issmall,selectionagainstCNVisstrong(e.g.,for V c =50and c =3atonelocus, s c =0.0198);when V c islarge,selectionisweak(e.g.,for V c =5,000and c =3atonelocus, s c =0.0002);for V c =  ,thereisnoselection againstCNV.Thisapproachissimilartoamorecomplexmodelproposedby Goutetal.(103),whichalsoassumesthat  tnessdecreaseswithincreasing deviationsfromoptimallevelsofgeneexpression,whichinturnoccurdue tochangesingenecopynumber.Thecompletedeletionofagenewill sometimes,butnotalways,resultinlethality(104,105);forsimplicity,inall simulationsanyindividualwith c =0foranylocuswasgivena  tnessof 0(irrespectiveof V c ).Unlessotherwisestated,thesimulationsinthispaper wererunusing V c =5,000. Unlessotherwiseindicated,simulationswererunfor500,000generations, withstatisticscalculatedevery500generations,basedonatleast20replicates foreachparametercombination.Theenvironmental  uctuationsshownin Fig.4 A weremodeledusingasinewavewithamplitude=2andperiod T , andthese  uctuationswereaddedontothelocaloptimaineachpopulation (i.e.,+1/ Š 1;asshowninFig.4 B ).Theenvironmental  uctuationsshownin Fig.4 C weremodeledbychangingthelocaloptimafrom+1/ Š 1to0/0and themigrationratefrom0.01to0.5for1,000generations,every T gen- erations(asshowninFig.4 D ).ForallothersimulationsshowninFig.4, migrationratewasheldconstantat m =0.01. ACKNOWLEDGMENTS. IthankMikeWhitlockandSallyOttoforworking withmeontheprojectsthatprecededthismanuscriptandprovidinghelpful feedbackandsuggestionsthroughout.DiscussionswithL.Rieseberg, S.Aitken,J.Mee,D.Schluter,F.Guillaume,J.Mell,theAitken,Rieseberg, andWhitlocklaboratorygroup,andtheEvolutionofGenomicandGenetic Architecturejournalclubalsomadeveryimportantcontributionstothede- velopmentofthispaper;helpfulcommentsoftwoanonymousreviewersare alsoacknowledged.SpecialthankstoJ.Meefornotinganerrorinequation1 inref.28.ComputationswererunontheWestGridGlacierHighPerformance ComputingConsortium.ThisworkwassupportedbyGenomeCanadaand GenomeBCfundingtoAdapTree(co-ProjectleadersS.AitkenandA.Hamann). 1.AllenOrrH(2001)Thegeneticsofspeciesdifferences. TrendsEcolEvol 16(7):343 – 350. 2.BartonNH,KeightleyPD(2002)Understandingquantitativegeneticvariation. Nat RevGenet 3(1):11 – 21. 3.EhrenreichIM,PuruggananMD(2006)Themoleculargeneticbasisofplant adaptation. AmJBot 93(7):953 – 962. 4.TurnerTL,HahnMW,NuzhdinSV(2005)Genomicislandsofspeciationin Anopheles gambiae . PLoSBiol 3(9):e285. 5.ViaS,WestJ(2008)Thegeneticmosaicsuggestsanewroleforhitchhikingin ecologicalspeciation. MolEcol 17(19):4334 – 4345. 6.NosilP,FunkDJ,Ortiz-BarrientosD(2009)Divergentselectionandheterogeneous genomicdivergence. MolEcol 18(3):375 – 402. 7.NadeauNJ,etal.(2012)Genomicislandsofdivergenceinhybridizing Heliconius butter  iesidenti  edbylarge-scaletargetedsequencing. PhilosTransRSocLondB BiolSci 367(1587):343 – 353. 8.RenautS,etal.(2012)Genome-widepattern

6 sofdivergenceduringspeciation:the lakewh
sofdivergenceduringspeciation:the lakewhite  shcasestudy. PhilosTransRSocLondBBiolSci 367(1587):354 – 363. 9.SmadjaCM,etal.(2012)Large-scalecandidategenescanrevealstheroleof chemoreceptorgenesinhostplantspecializationandspeciationinthepeaaphid. Evolution 66(9):2723 – 2738. 10.FederJL,EganSP,NosilP(2012)Thegenomicsofspeciation-with-gene-  ow. Trends Genet 28(7):342 – 350. 11.RogersS,BowlesW,MeeJA(2013)Theconsequencesofgenomicarchitectureon ecologicalspeciationinpostglacial  shes. CurrentZoology 59(1):53 – 71. 12.StrasburgJL,etal.(2012)Whatcanpatternsofdifferentiationacrossplantgenomestellus aboutadaptationandspeciation? PhilosTransRSocLondBBiolSci 367(1587):364 – 373. 13.SmithJM,HaighJ(1974)Thehitch- hikingeffectofafavourablegene. Genet Res 23(1):23 – 35. 14.HermissonJ,PenningsPS(2005)Softsweeps:Molecularpopulationgeneticsof adaptationfromstandinggeneticvariation. Genetics 169(4):2335 – 2352. 15.PrzeworskiM,CoopG,WallJD(2005)Thesignatureofpositiveselectiononstanding geneticvariation. Evolution 59(11):2312 – 2323. 16.NoorMAF,BennettSM(2009)Islandsofspeciationormiragesinthedesert? Examiningtheroleofrestrictedrecombinationinmaintainingspecies. Heredity (Edinb) 103(6):439 – 444. 17.NachmanMW,PayseurBA(2012)Recombinationratevariationandspeciation: Theoreticalpredictionsandempiricalresultsfromrabbitsandmice. PhilosTransR SocLondBBiolSci 367(1587):409 – 421. 18.PetryD(1983)Theeffectonneutralgene  owofselectionatalinkedlocus. Theor PopulBiol 23(3):300 – 313. 19.BartonN,BengtssonBO(1986)Thebarriertogeneticexchangebetweenhybridizing populations. Heredity 56:357 – 376. 20.FederJL,NosilP(2010)Theef  cacyofdivergencehitchhikingingeneratinggenomic islandsduringecologicalspeciation. Evolution 64(6):1729 – 1747. 21.CharlesworthD,CharlesworthB(1979)Selectiononrecombinationinclines. Genetics 91(3):581 – 589. 22.PylkovKV,ZhivotovskyLA,FeldmanMW(1998)Migrationversusmutationinthe evolutionofrecombinationundermultilocusselection. GenetRes 71(3):247 – 256. 23.LenormandT,OttoSP(2000)Theevolutionofrecombinationinaheterogeneous environment. Genetics 156(1):423 – 438. 24.BürgerR,AkermanA(2011)Theeffectsoflinkageandgene  owonlocal adaptation:Atwo-locuscontinent-islandmodel. TheorPopulBiol 80(4):272 – 288. 25.FederJL,GejjiR,YeamanS,NosilP(2012)Establishmentofnewmutationsunder divergenceandgenomehitchhiking. PhilosTransRSocLondBBiolSci 367(1587): 461 – 474. E1750 | www.pnas.org/cgi/doi/10.1073/pnas.1219381110 Yeaman exclusive.Veryfewstudieshavebeenabletoidentifywhetherloci withsignaturesofdivergenceareinfactcontributingtolocal adaptationorjustneutralalleles “ alongfortheride. ” Several empiricalstudieshaveidenti  edmultiplesignaturesofdiver- gencethatmaptochromosomalinversions(34 – 37),butothers havefoundthatinversionswereonlyweaklyimplicatedin adaptivedivergence(e.g.,ref.38).Beyondunderstandingthe originsandmaintenanceoflocaladaptation,determiningthe importanceofthesevariousmechanismsalsohasimplications forunderstandingthenatureofgenomeevolution.Ifislandsof divergenceareactivelybuiltbythe  xationofgenomicrearrange- ments(mechanism iv ),thenadaptation-with-gene  owcouldbe animportantandunderappreciateddriverofevolutionof genomicarchitecture. This “ competitionamonggenomicarchitectures ” mechanism couldprovideapartialexplanationforthedramaticvariationin theratesatwhichrearrangementsaccumulateinthegenomesof differenttaxa.Ratesofcoarse-scalechromosomalrearrangement aremorethanthreeordersofmagnitudehigherin Drosophila thaninmammals(39).Althoughrelativelylowratesofchangein geneorderhavebeenfoundinLepidopteransbasedoncoarse- scalemappingdata(40),  ne-scalegenomicanalyseshaveshown ratesofrearrangementashighasorhigherthanthosein Dro- sophila ,largelyduetonumeroussmall-scaletranspositionsand inversions(41,42).However,genomicanalysesofbirdsreveal ratesofgene-orderevolutionevenlowerthanthoseinmammals atboththemicro-andmacroscale(43,44).Ratesofrearrange- mentaccumulationalsovaryacrossthegenome;somehighly conservedregionshaveverylowratesofaccumulation,relativeto so-calledfragileregionsthatexperiencehigherratesofaccumu- lation(45,46).Explanationsforthisdramaticvariationinratesof genomeevolutionhavelargelyfocusedonnonadaptiveargu- mentsbasedonrearrangementrate,theactivityoftransposable elements,ordemographicdrift-basedmechanismsthatmodify theef  cacyofpurifyingselectiontopurgemildlydeleterious rearrangements(39,47 – 50).Ifrearrangementstendtobein- volvedinlocaladaptation,thenecologicallymediatedpositive selectionmayplayaroleindrivingsomeofthesedifferencesin ratesandpatternsofgenomeevolution. Here,Ijointlyconsidertheevolutionoflocaladaptationand genomearchitectureinpopulationsinhabitingheterogeneous environments.Idevelopaheuristicbasedonpreviouslyestab- lishedanalyticalmethodstoexplorethelikelihoodofgenomic islandsofdivergenceevolvingunderthestandarddivergence hitchhikinghypothesis(mechanism i ).Usingthisheuristic,I showthatincreasesinestablishmentprobabilityduetodi- vergencehitchhikingshouldrarelybelargeenoughtoexpect strongstatisticalsignaturesofislandsofdivergence.Ithenusean analyticalapproximationandindividual-basedsimulationsto explorethepotentialimportanceofsmallgenomicrearrange- mentsasawaytocreateclustersoflocallyadaptiveloci,which maybefavoredowingtoreducedratesrecombinationbetween loci(mechanism iv ).I  ndthatclusteringoflocallyadaptiveloci evolvesreadilyunderawiderangeofparameterspace,sug- gestingthatsmall-scalegenomicrearrangementsmayplayan importantroleintheevolutionofislandsofgenomicdivergence. Results LikelihoodofIslandFormationbyDivergenceHitchhiking. Ifgenomic islandsofdivergencecommonlyevolvebydivergencehitchhik- ing,thenwewouldexpectastatisticalenrichmentofthenumber oflocallyadaptedallelesthatoccurinclusters,relativetothe numberofunlinkedlocallyadaptedallelesscatteredthroughout thegenome.Asimpleexpressionforthisratiocanbeapproxi- matedby n clustered n unlinked ¼ EP clustered EP unlinked  clustered  unlinked ; [1] where n clustered and n unlinked representthenumberoflocallyadap- tedallelesthatestablishinaclusterextendingto50cMoneither sideofthefocallocus(i.e., r =0.5)vs.anywhereintherestofthe genome, EP clustered and EP unlinked representtheaverageestablish- mentprobabilitiesforclusteredandunlinkedmutations,and  clustered and  unlinked representthegenomicmutationratesaver- agedoverallclusteredandunlinkedloci.Theestablishment probabilities, EP clustered and EP unlinked ,canbeestimatedbyusing thecontinent-islandmodelofBürgerandAckerman(24)to calculatetherelative  tnessoflinkedandunlinkedmutations, andsplicingthisintoKimura ’ s(51)equationfor  xationproba- bility,asshownbyYeamanandOtto(52).Thisapproach assumesthatagenomicislandbeginsasasingledifferentiated allele(ata “ focallocus ” )andexpandsasotherlinkedlocally adaptedmutationsestablish(detailsaregivenin Methods ). Althoughtheadvantageduetodivergencehitchhikingmaybe quitelargeformutationsthathappentobeverytightlylinkedto theinitiallydivergedfocallocus,mostgenomesareverylarge, andthechancethatamutationwouldoccurfortuitouslyintight linkageisquitesmall,relativetothechanceofamutationoc- curringelsewhereinthegenome.Ifweassumethatthelocithat couldpotentiallycontributetolocalad

7 aptationarerandomly distributedthroughou
aptationarerandomly distributedthroughoutthegenome,thenrelativelyfewofthese lociwouldbefoundintightlinkagetothefocallocus.Thetotal advantageduetodivergencehitchhikingcanbequanti  edby averagingtheratio EP clustered / EP unlinked overallpossiblelinked sites(from r =0.5to r    0,aroundthefocallocus).Asshown inFig.1,forthismodeltheaveragedivergencehitchhikingad- vantageisrarelyhigherthanthreefold(andusuallymuchlower) overawiderangeofbiologicallyrealisticparameters.Theonly 0246 8 10 Migration rate Divergence hitchiking advantage 0.0010.010.10.5 = 0.001 = 0.01 = 0.1 Fig.1. Onaverage,mutationslinkedtoalocuswithanestablishedlocally adaptedallelehaveonlyaslightadvantageoverunlinkedmutationsin termsofincreasedestablishmentprobabilityduetodivergencehitchhiking, (divergencehitchhikingadvantage= EP clustered / EP unlinked ),exceptatvery highmigrationrates,justbelowthecriticalthresholdforthemaintenanceof localadaptation(grayshading).Curvesshowthedivergencehitchhiking advantageforthreestrengthsofselectiononthenewmutation(  ),aver- agedovermutationsoccurringatarangeofdistancesfromtheinitialdi- vergentlocus,from0.001cMto50cM,usingEq. 3 .Inallcases,selectionon theestablishedalleleis  =0.9;similarresultsarefoundforlowervaluesof  , butpeakstendtobenarrower. E1744 | www.pnas.org/cgi/doi/10.1073/pnas.1219381110 Yeaman mutations(25).Here,Ipresentaheuristicmodelthatexplicitly quanti  estheeffectofdivergencehitchhikingonestablishment probability(Fig.1)andshowthatitisunlikelytoyieldstrong signaturesofislandsofdivergenceundertheassumptionthat thelocithatcancontributetolocaladaptationarerandomly scatteredthroughoutthegenom e.Instead,foreachlocally adaptedallelethatestablishesinagenomicislandduetodi- vergencehitchhiking,therewilllikelybemanyallelesthates- tablishatrandomlocationsthroughoutthegenome.Thisoccurs becausethemutationaltargetthatresideswithinapotential genomicislandisverylimitedrelativetothemutationaltarget acrossthewholegenome,the  tnessadvantageforbeingtightly linkedissmall,andunlinkedmutationsstillhaverelativelyhigh probabilitiesof  xation. Althoughthe  tnessadvantageofbeingtightlylinkedmay usuallybetoosmalltohavemucheffectontheevolutionofge- nomicislandsontheshorttimescaleofasingleboutoflocalad- aptation,thesimulationresultsIpresentshowthatcompetition amonggenomicarchitecturescanhavepronouncedeffectsover longerevolutionarytimescales.Highlyclusteredgenomicarchi- tecturesevolvereadilygivensuf  cientlylargepopulations,rear- rangementrates,strengthsofselectionandratesofmigration(Fig. 3).Withinthiscontext,themutationaltargetitselfisrearranged, whichwouldincreasetheproportionofclusteredrelativetoun- linkedmutationsthatcouldestablishinanysubsequentbouts ofadaptation. Divergencehitchhikingcouldpotentiallyplayanimportant roleinforminggenomicislandsofdivergenceinconjunction withthisrearrangementmechanism,ifaspeciesexperiences temporalenvironmentalordemographic  uctuationsthatresult inrepeatedepisodesofdivergentselectionandadaptivere- sponsefollowedbyhomogenization.Thecyclingofglacialand interglacialperiodsovermillionsofyearsprovidesanempirical exampleofonesuchsourceofenvironmental  uctuation,which haslikelyaffectedadaptationinnumerousspecies(68).Here,I foundthatclusteredgenomicarchitecturesevolveunderarange ofscenarioswithenvironmental  uctuations(Fig.4 A ),andthese clusteredarchitecturespersistthroughperiodsofhomogeniza- tionamongpopulations(Fig.4 C ),unliketheclusteredallelic architecturesdescribedbyYeamanandWhitlock(28).The amountofclusteringtendedtovarywiththeperiodoftemporal  uctuations(Fig.4 A ),suggestingthatglacialcyclesmighthave quitedifferenteffectsonthegenomicsofadaptationinlong- livedspeciessuchasforesttreescomparedwithshort-lived speciessuchasannualplants.Giventhecyclicalnatureofcli- matic  uctuationsandaccompanyingrangeshifts,itseemspos- siblethatforeveryspeciationeventinthehistoryofsomegenera therehavebeenmultipleepisodesofdivergenceandhomoge- nization.Althoughtheprocessofecologicalspeciationmaybe conceptualizedasacontinuumfromearlystagesofdivergenceto “ good ” specieswithcompletereproductiveisolation(10),move- mentalongthiscontinuumisnotunidirectional.Thevagariesof historymayresultinrepeatedtransitionsbackandforthalong thiscontinuum,increasingthewindowofopportunityforcom- petitionamongarchitecturesanddivergencehitchhikingtoplay aroleinadaptionand,eventually,speciation. Studiesofthegeneticsoflocaladaptationandecologicalspe- ciationthat  ndevidenceofgenomicislandsshouldstrivetotest whetherthelociinvolvedhavebeenbroughttogetherbyrear- rangements.Thiscouldbeachievedbycomparinghoworthologs associatedwithlocaladaptationaredistributedalongchromo- somesinanumberofsisterspeciesspanningincreasingtaxonomic distances.Numerousstudieshavefoundevidencethatsegregating inversionsareofteninvolvedinadaptivegeneticdivergence(36, 69,70),butlessfocushasbeenplacedonothertypesofrear- rangements.Itisworthnotingthatfortheinversion-basedmech- anismofadaptationproposedbyKirkpatrickandBarton(32), inversionsmustbesegregatingtoreducerecombination,whereas rearrangementsdiscussedinthispaperreducerecombinationby changingthepositionoflocionchromosomes,andthereforetend to  xacrosspopulations.Anotherimportantpredictionfromthis workisthatislandsofdivergencewithmultipleselectedalleles couldbeexpectedtoforminallopatry,providedthespecieshad aprevioushistoryofadaptationwithgene  ow(duringwhichtime clustersoflocicouldhaveevolvedthroughrearrangements).In- deed,thiscouldprovidepartialexplanationforthesimilarityin sizeandnumberofgenomicislandsfoundinsympatricvs.allo- patricpairsofpopulationsof Helianthus (71). ImplicationsfortheEvolutionofGenomeArchitecture. Withcurrent advancesingenomesequencingtechnologies,considerablere- searchhasfocusedon  ndingpatternsintheorganizationof genesonchromosomes.Comparativegenomicstudieshavefound thatthedistributionofrearrangementbreakpointstendstobe nonrandomthroughoutthegenome,withhighernumbersof rearrangementsat “ fragilesites ” andlowernumbersat “ solid 0 10 20 30 40 Average distance between selected loci (cM) 0 10 20 30 40 0 Time (generations x1000) 0250500 10 20 30 40 A B C Fig.3. Theaveragepairwisedistancebetweenselectedlocidecreasesover timeatdifferentrates,givendifferentstrengthsofphenotypicselection( A ), migrationrates( B ),andpopulationsizesandrearrangementrates( C ).Un- lessotherwisespeci  ed, m =0.01,  =0.75, N =10 4 ,  =10 Š 6 ,andallother parametersareasdescribedin Methods . Yeaman PNAS | PublishedonlineApril22,2013 | E1747 EVOLUTION PNASPLUS likelihoodsoftranspositionin Arabidopsis .Althoughratherspec- ulative,theseinterpretationsofthedataareconsistentwiththe predictionsforthespreadofrearrangementsduetolocaladap- tationdiscussedhere,soitwouldbeinterestingtotestforsimilar patternsinothertaxa. Therateofrearrangementoccurrenceisoneofthemostim- portantfactorsdeterminingwhetherclusteredarchitectures evolve(Eq. 2 andFig.3 C ),butverylittleisknownaboutthe magnitudeof  fordifferentrearrangementmechanisms,despite mountingevidencethatnumeroussmall-scalerearrangements haveaccumulatedwithinsomelineagesovertime(42,61).For example,in Arabidopsisthaliana ,itisestimatedthat21 – 27

8 %of allgeneshavebeenrearrangedsincetheco
%of allgeneshavebeenrearrangedsincethecommonancestorwith Papaya,almostallofwhichoccurredassingle-generearrange- ments(61,94).Whereasmanyofthesewerelikelycausedbyret- rotransposition(94),othermechanismsareimplicatedinatleast 55%oftherearrangementsthatoccurredsincethe A.thaliana – Arabidopsislyrata split(59).Althoughhighlyspeculative,itis possiblethatthe3Dorganizationofchromosomesinthenucleus couldfacilitatetheevolutionofclustering.Spatialproximityof genesinthenucleushasbeenshowntoin  uencebothgenereg- ulation(95)andratesofrearrangement(96),soifgenesthattend tobeinvolvedinlocaladaptationarealsobroughtintoclose proximityinthenucleustofacilitatecoregulation,theymightmore readilyberearrangedontothesamechromosome.Furtherre- searchwillhelpidentifyhowcommonlythevariousrearrangement mechanismsoccur,andhowthisvariesamongspecies. Itisimportanttonotethatwhereasspatialenvironmentalhet- erogeneitywilltendtofavortightclusteringofthelociinvolvedin localadaptation,someformsoftemporalheterogeneitymayfavor lessclustering.Whenapopulationevolvestowardanewoptimum bythe  xationofnovelbene  cialmutations,tightlinkagebetween selectedlociwilltendtoslowtheresponsetoselection,duetothe slowerrateatwhichbene  cialmutationsondifferentchro- mosomesarebroughttogetherbyrecombination[i.e.,theHill – Robertsoneffect(86,97,98)].Similarly,currentlybene  cial combinationsofallelesmightbecomedetrimentalfollowingan environmentalchange,favoringincreasedrecombinationbetween thelociinvolvedinlocaladaptation(23,86,99,100).Theresultsin Fig.4 A showthattherelationshipbetweenperiodlength( T )and amountofclusteringisnonmonotonic,suggestingthatfurtherre- searchisneededtodeterminehowthesedifferentformsofselec- tionwillinteractandwhethersomeintermediaterecombination ratemaybeoptimalundercertaintypesofenvironmentalvariation. Moregenerally,anyadvantageofreducedrecombinationbetween locallyadaptedlocimaybecounteredbyarangeoffactorsthat favorincreasedratesofrecombination(86).Thisbringsusbackto Turner(85),whoasked, “ Whydoesthegenotypenotcongeal? ” and suggestedthatclustersoflocimightevolveduetolocus-speci  c bene  tsoftighterlinkage,despiteglobalbene  tsofrecombination. Itseemslikelysomeintermediateamountofclusteringwouldyield ratesofrecombinationlowenoughtomaintainlinkagedisequi- libriumbetweencombinationsoflocallyadaptedalleles,buthigh enoughtofacilitatethepurgingofdeleteriousallelesandthe spreadofnewbene  cialmutationsintimesofenvironmental change.Giventheimportanceofmigrationratesfordetermining theadvantageoflinkage(32),andmutationratesfordetermining thedeleteriouseffectsoflinkage(86),itseemslikelythattheop- timalamountofclusteringwillbedeterminedtosomeextentbythe ratioofmutationtomigration.Regardlessofwhicharrangementof adaptivelociisselectivelyoptimal,driftandlimitedrearrangement ratesmightpreventtherealizationofsuchcon  gurations.Com- parativegenomicstudiesofecologicaladaptationwillprovide much-neededdatatoevaluatetherelativeimportanceofselective andstochasticprocessesinshapingthearchitectureofthegenome. Methods AnalyticalApproximationsofEstablishmentProbability. Theestablishment probabilitiesofnewlinked( EP clustered )andunlinked( EP unlinked )mutations canbeapproximatedusingthesplicingapproachdescribedbyYeamanand Otto(52)withthetwo-locuscontinent-islandmodelofBürgerandAkerman (24).Considerapopulationexperiencingnaturalselectionandimmigration, withtwoloci( A and B )thatrecombineatrate r .Ifthereisastablepoly- morphismsegregatingatlocus B ( B 1 and B 2 experienceselectionof+  and –  , respectively),andamaladaptedalleleatlocus A ( A 2 experiencesselection of –  ),thenanewlocallyadaptedallele, A 1 (experiencingselectionof+  ), willestablishwhentheratesofrecombinationandimmigrationofthe maladaptedgenotype( m ; A 2 B 2 )aresuf  cientlylow(24).Basedonthe derivationsdescribedbyBürgeran dAkerman(24),therateatwhichthis allelewillinvadecanbeapproximatedbyevaluatingtheJacobianmatrixfor theirequation2atfrequenciesof A 1 B 1 =0, A 2 B 1 =0, A 1 B 2 =1 – ( m /  ),and A 2 B 2 = m /  (equilibriafromequation3.9inref.24).AsshownbyYeaman andOtto(52),theleadingeigenvalueofthismatrixcanbeusedtoap- proximatethenetstrengthofselectionfavoringtheinvasionoftheallele A 1 ,andcanbesubstitutedfor s inpopulationgeneticapproximationsfor  xationprobability.Becausethe  xationprobabilityofanewmutationis  2 s inlargepopulations, A 1 willestablishwithprobability EP ¼ 2  Š  Š r þ   2 þ 2  r Š 4 mr þ r 2 q : [3] Therefore,theadvantageduetodivergencehitchhikingforanewmutation linkedatsomerecombinationrate r = x canthenbequanti  edastheratioof EP r = x / EP r =0.5 . ToparameterizethisequationforFig.1,theaveragevalueof EP clustered wascalculatedacross50,000loci,withrecombinationratesranginglinearly from0.001cMto50cMinincrementsof0.001cM(i.e.,numericalin- tegration).Thisapproachassumesthatgenedensityandrecombination ratesareuniformacrossthegenomeandisintendedasameansofap- proximating EP clustered / EP unlinked toparameterizeEq. 1 ,ratherthananat- tempttomakehighlyaccuratepredictions.Althoughtheaverageof EP clustered / EP unlinked wouldbehigherifcalculatedoverasmallerrangeof recombinationrates,thiswouldalsoimplyasmallermutationaltarget(and therefore  clustered ),leadingultimatelytoalowervaluefor n clustered . EvolutionofClusteredGenomicArchitectures. Ifall n locithatcontributeto localadaptationbegininanunlinkedcon  gurationdistributedrandomly throughoutthegenome,thetimerequiredtorearrange n x oftheselociinto asingletightlylinkedclustercanbeestimatedasfollows.Iftheper-locusrate ofrearrangementis  andtheprobabilityofinsertionnearaspeci  clocusis L / G (where L isthesizeoftheregionaroundthelocusand G isthesizeofthe genome),thenrearrangementsyieldinga  rstpairofclusteredlociwilloccur atprobabilityof2 N p  ( L / G ) n ( n – 1)pergenerationinametapopulationofsize N p ,becausethereare n possiblelocithatcouldmoveintotightlinkagewith anyofthe( n – 1)otherloci.Followingthis  rststep,theprobabilityofrear- rangementsmovingoneoftheremaininglociintotightlinkagewiththis  rstclusterwouldbe2 N p  ( L / G )( n – i ),forthe i th locusaddedtothecluster, where i rangesfrom2to( n x – 1). Itissomewhatlessstraightforwardtoestimatetheprobabilitythatany suitablerearrangementswouldspreadthroughthepopulation,butthiscan beapproximatedbyconsideringonlythoserearrangementsthatresultin extremelytightlinkage,reducingtherateofrecombinationto  0.For amodeloflocaladaptationwithimmigration(atrate m ),Kirkpatrickand Barton(32)showedthatifanewchromosomalinversioncapturestwolo- callyadaptedloci,reducingtherateofrecombinationfrom r =0.5to r =0,it shouldspreadatarateof m .Importantly,thisrateisindependentofthe strengthofselectiononthelociwithintheinversion,soitshouldgeneralize toanyrearrangementsthatreducerecombinationtonearly0betweentwo previouslyunlinkedloci,regardlessoftheeffectofsizesoftheallelesin- volved(althoughathighmigrationrates,alleleswithsmall s wouldbelost). Thisapproachneglectsan

9 ydirect  tnesscostscausedbytherearra
ydirect  tnesscostscausedbytherearrangement itselfowingtodisruptedexpression,problemswithrecombination,orim- balancedgenenumber,so  shouldbeinterpretedastherateofrear- rangementsthatdonotinvolvesigni  cant  tnesscosts.FollowingYeaman andOtto(52),theprobabilityof  xationofsuchrearrangementsshouldbe  2 m ,andtheexpectedtimebeforetheoccurrenceofarearrangementthat  xestoyieldthe  rstpairofclusteredlociisthereciprocalofthesecom- binedprobabilities: t 1 ¼ð 2 m × 2 N p  ð L = G Þ n ð n Š 1 ÞÞ Š 1 .Ignoringrearrange- mentsthatreduceclusteringonceithasevolved,becausethesewillbe disfavored,theexpectedtimetoevolvefromanarchitecturewhereall n loci Yeaman PNAS | PublishedonlineApril22,2013 | E1749 EVOLUTION PNASPLUS Genomicrearrangementsandtheevolutionofclusters oflocallyadaptiveloci SamYeaman a,b,1 a DepartmentofForestandConservationSciencesand b BiodiversityResearchCentre,UniversityofBritishColumbia,Vancouver,BC,CanadaV6T1Z4 EditedbyMichaelLynch,IndianaUniversity,Bloomington,IN,andapprovedApril1,2013(receivedforreviewNovember8,2012) Numerousstudiesofecologicalgeneticshavefoundthatalleles contributingtolocaladaptationsometimesclustertogether,form- ing “ genomicislandsofdivergence. ” Divergencehitchhikingtheory positsthattheseclustersevolvebythepreferentialestablishmentof tightlylinkedlocallyadaptedmutations,becausesuchlinkage reducestheratethatrecombinationbreaksuplocallyfavorable combinationsofalleles.Here,Iusecalculationsbasedonpreviously developedanalyticalmodelsofdivergencehitchhikingtoshowthat veryfewclusteredmutationsshouldbeexpectedinasingleboutof adaptation,relativetothenumberofunlinkedmutations,suggest- ingthatdivergencehitchhikingtheoryalonemayoftenbeinsuf  - cienttoexplainempiricalobservations.Usingindividual-based simulationsthatallowforthetranspositionofasinglegeneticlocus fromonepositiononachromosometoanother,Ithenshowthat tightclusteringofthelociinvolvedinlocaladaptationtendsto evolveonbiologicallyrealistictimescales.Theseresultssuggestthat genomicrearrangementsmayoftenbeanimportantcomponentof localadaptationandtheevolutionofgenomicislandsofdivergence. Moregenerally,theseresultssuggestthatgenomicarchitectureand functionalneighborhoodsofgenesmaybeactivelyshapedbynat- uralselectioninheterogeneousenvironments.Becausesmall-scale changesingeneorderarerelativelycommoninsometaxa,compar- ativegenomicstudiescouldbecoupledwithstudiesofadaptation toexplorehowcommonlysuchrearrangementsareinvolvedin localadaptation. chromosomalrearrangement | geneticarchitecture | migration – selectionbalance | synteny U nderstandingthegeneticbasisofadaptationisacentral problemofevolutionarybiology.Inlightofarapidlygrowing bodyofempiricaldata,therehasbeenconsiderableinterestin howmanygenescontributetolocaladaptation,thedistributionof theireffectsizes,andwheretheyarelocatedinthegenome(1 – 3). Numerousstudieshavefoundevidencethatthelocithataremost stronglydifferentiatedbetweenpopulationsaresometimesclus- teredtogether(i.e.,inclosephysicallinkage),inwhathavebeen termed “ genomicislandsofdivergence ” (4 – 11).However,other studieshavefoundlittleornoevidenceofdivergentallelesclus- teringinlargegenomicislands(6,10,12).Inlightofthesecon-  ictingpatterns,furtherresearchisnecessarytoclarifywhenand howgenomicislandsshouldbeexpectedtoevolve. Genomicislandsmayevolveasabyproductofnaturalselection orasdirectresponsetonaturalselection(orsomecombinationof thetwo).Inthebyproductcase,selectionincreasesthefrequencyof afocalallele,causingallelesatlinkedneutrallocitoalsoincreasein frequency(13 – 17).Thisyieldsasignatureofdivergenceatadjacent locithatdecreaseswithincreasingratesofrecombination(i.e., distancefromtheselectedsite),andwillgraduallydisappearfol- lowingtheinitialselectivesweepinpopulationsthatdivergedin allopatry.Ifdivergentselectionoccursinthefaceofcontinuedgene  ow,geneticdivergenceatlinkedneutrallociwilltendtopersist, owingtoareductionintheeffectiverateofmigration(18,19), whichisalimited “ neutral ” formofdivergencehitchhiking(20). Genomicislandscanalsoevolveasadirectadaptiveresponse todivergentselectionwithgene  ow.Ifadaptationtoagiven environmentisbasedonchangesinallelefrequencyatmultiple loci,thenrecombinationbetweenthechromosomesofalocally adaptedparentandamaladaptedimmigrantwilltendtobreak upcombinationsofalleleswithhigh  tnessthathavebeen establishedbyselection(21 – 24).Aslongasmigrationratesare lowenoughthatthedescendentsofalocallyadaptedallele spendalargeproportionoftheirtimeinthepatchwherethey are  ttest,thenitisbene  cialtobetightlylinkedtootheralleles thatarealsolocallyadapted. Thereareatleastfourdifferentmechanismsfortheevolutionof genomicislandsasadirectresponsetoselection,basedonthe generaladvantageofreducedrecombinationbetweenlocally adaptedalleles:( i )increasedestablishmentprobabilityoflinked locallyadaptedalleles[divergencehitchhiking(5,25,26)],( ii ) increasedpersistencetimeoflinkedlocallyadaptedallelesfol- lowingsecondarycontact(6,27),( iii )competitionamongcombi- nationsofalleleswithsimilarphenotypiceffectsbutdifferent linkagerelationships[competitionamonggeneticarchitectures (28)],and( iv )the  xationofgenomicrearrangementsthatmove locallyadaptedlociintoclosegeneticlinkage[competitionamong genomicarchitectures(28)].Forallfourofthesemechanisms,the  tnessbene  tsduetolinkagetendtodecreasewithincreasing ratesofrecombinationbetweenlocallyadaptedalleles(21,24,25, 28,29).Asaresult,genomicislandsaremorelikelytoevolvein areasofthegenomewithlowratesofrecombination,suchas coldspotsorregionswithsegregatinginversions(17,30 – 33).It shouldbenoted,however,thattheseregionsarealsomorelikelyto havehighlevelsofdivergenceduetothebyproductmechanism discussedabove(17). Unfortunately,itisoftenverydif  culttoevaluatewhichof thesemechanismsmaybeinvolvedinbuildinggenomicislandsof divergence,especiallybecausetheyarenotnecessarilymutually Signi  cance Genomescansoften  ndthatthelociinvolvedinlocaladap- tationtendtoclustertogetheronchromosomes.Aleading explanationsuggeststhatclustersevolvebecausetheproba- bilityofanewmutationestablishingishigherwhenoccurring nearanotherlocallyadaptedmutation,becausesucharchi- tecturesareseldomdisruptedbyrecombination.Ishowthat thistheoryisunlikelytoexplainempiricallyobservedclusters. Instead,simulationsshowthatclustersaremorelikelytoform throughgenomicrearrangementsthatbringcoadaptedloci closetogether.Thissuggeststhatecologicalselectionmayplay animportantroleinshapinggenomearchitecture,incontrast tomanynonadaptiveexplanations. Authorcontributions:S.Y.designedresearch,performedresearch,contributednewre- agents/analytictools,analyzeddata,andwrotethepaper. Theauthordeclaresnocon  ictofinterest. ThisarticleisaPNASDirectSubmission. FreelyavailableonlinethroughthePNASopenaccessoption. Datadeposition:ThesourcecodeforthesimulationshasbeendepositedintheSource- forgeRepository, https://sourceforge.net/projects/nemorearrange/ . 1 E-mail:yeaman@zoology.ubc.ca. Thisarticlecontainssupportinginformationonlineat www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1219381110/-/DCSupplemental . www.pnas.org/cgi/doi/10.1073/pnas.1219381110PNAS | PublishedonlineApril22,2013 | E1743 – E1751 EVOLUTION PNASPL

Related Contents


Next Show more