PPT-ADVERSARIAL VS INQUISITORIAL

Author : tatiana-dople | Published Date : 2016-11-07

INQUISITORIAL Judge can ask the accused questions Accused must answer questions from lawyers as well as the judge Accused may not be presumed innocent and the burden

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "ADVERSARIAL VS INQUISITORIAL" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

ADVERSARIAL VS INQUISITORIAL: Transcript


INQUISITORIAL Judge can ask the accused questions Accused must answer questions from lawyers as well as the judge Accused may not be presumed innocent and the burden of proof may be on them to prove their innocence. . For next time:. Read page 89-94 in . Pakes. .. Civil law -. Inq. uisitorial. . Common law - Adversarial . There are two basic models for criminal trials which are used in most of the world.. The first, the . 1 : Inquisitorial or Adversarial? Juliet Lucy 1 Contents Introduction ................................ ................................ ................................ ............................... Areas of Difference. Primary Objective of the System. Primary Actors. Collection of Evidence. Presentation of and Limitations on Evidence. Role of Judges, Lawyers and Laypersons. Critiques. etc. Convnets. (optimize weights to predict bus). bus. Convnets. (optimize input to predict ostrich). ostrich. Work on Adversarial examples by . Goodfellow. et al. , . Szegedy. et. al., etc.. Generative Adversarial Networks (GAN) [. Statistical Relational AI. Daniel Lowd. University of Oregon. Outline. Why do we need adversarial modeling?. Because of the dream of AI. Because of current reality. Because of possible dangers. Our initial approach and results. Nets. İlke Çuğu 1881739. NIPS 2014 . Ian. . Goodfellow. et al.. At a . glance. (. http://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html. ). Idea. . Behind. —An Introduction. Binghui. Wang, Computer Engineering. Supervisor: Neil . Zhenqiang. Gong. 01/13/2017. Outline. Machine Learning (ML) . Adversarial . ML. Attack . Taxonomy. Capability. Adversarial Training . Adversarial examples. Ostrich!. Adversarial examples. Ostrich!. Intriguing properties of neural networks. . Christian . Szegedy. , . Wojciech. . Zaremba. , Ilya . Sutskever. , Joan Bruna, . Dumitru. Presenters: Pooja Harekoppa, Daniel Friedman. Explaining and Harnessing Adversarial Examples. Ian J. . Goodfellow. , Jonathon . Shlens. and Christian . Szegedy. Google Inc., Mountain View, CA. Highlights . ML Reading . Group. Xiao Lin. Jul. 22 2015. I. . Goodfellow. , J. . Pouget-Abadie. , M. Mirza, B. Xu, D. . Warde. -Farley, S. . Ozair. , A. . Courville. and Y. . Bengio. . . "Generative adversarial nets." . for . edge detection. Z. Zeng Y.K. Yu, K.H. Wong. In . IEEE iciev2018, International Conference on Informatics, Electronics & Vision '. June,kitakyushu. exhibition center, japan, 25~29, 2018. (. Dr. Alex Vakanski. Lecture 6. GANs for Adversarial Machine Learning. Lecture Outline. Mohamed Hassan presentation. Introduction to Generative Adversarial Networks (GANs). Jeffrey Wyrick presentation. Attacks. Haotian Wang. Ph.D. . . Student. University of Idaho. Computer Science. Outline. Introduction. Defense . a. gainst . Adversarial Attack Methods. Gradient Masking/Obfuscation. Robust Optimization. Dr. Alex Vakanski. Lecture 1. Introduction to Adversarial Machine Learning. . Lecture Outline. Machine Learning (ML). Adversarial ML (AML). Adversarial examples. Attack taxonomy. Common adversarial attacks.

Download Document

Here is the link to download the presentation.
"ADVERSARIAL VS INQUISITORIAL"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents