/
Arithmetically CohenMacaulay algebraic curves Marco Fr Arithmetically CohenMacaulay algebraic curves Marco Fr

Arithmetically CohenMacaulay algebraic curves Marco Fr - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
483 views
Uploaded On 2015-04-30

Arithmetically CohenMacaulay algebraic curves Marco Fr - PPT Presentation

unipiit urladdres wwwingunipiitd8702 Abstract Let be a numerically connected curve lying on a smooth algebraic surface We show that an invertible sheaf num 8855A is normally generated on if is an ample invertible sheaf of degree 3 As a corollary we s ID: 57682

unipiit urladdres wwwingunipiitd8702 Abstract Let

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Arithmetically CohenMacaulay algebraic c..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

issurjective.Hissaidtobenormallygeneratedifthemapskaresurjectiveforallk2N.ThiscorrespondstosaythatthegradedringR(C;H)=Mk0H0(C;H k)isgeneratedindegree1.WeremarkthatifHisampleonCthenHturnsouttobenormallygeneratedifandonlyifHisveryampleandtheassociatedembeddedscheme'jHj(C)P(H0(C;H)_)isarithmeticallyCohen{Macaulay,i.e.,itshomogeneouscoordinateringisaCohen{Macaulyring.Our rstresultisthefollowingTheorem1.LetCbeanumericallyconnectedcurvecontainedinasmoothalgebraicsurfaceandletHnum!C A,withAanampleinvertiblesheafsuchthatdegHjB2pa(B)+18subcurveBCThenHisnormallygeneratedonCIn[5]itwasshownthattheabovetheoremistrueexceptinsomeexcep-tionalcases.InthepresentpaperweshowthatalsointheseparticularcasesHisnormallygenerated.TheproofofthetheoremrelyonthetheoryofKoszulcohomologydevelopedbyGreenin[6]andtheclassical\Mumford'sargu-ment"for1-dimensionCohen{Macaulayprojectivescheme(seeLemma5),viaadetailedanalysisofnumericallyconnectedcurveswithmultiplecomponents.ThestudyoftheringR(C;H)foranumericallyconnectedcurvehasmanyapplicationsinseveralaspectsofthetheoryofalgebraicsurfaces.Forinstanceifoneconsidertheresolutionofanormalsurfacesingularity:S!Xortherelativecanonicalalgebraofa brationf:S!B(cf.[5]).Anotherapplicationofthesekindofresultscanbefoundintheanalysisofpluricanonicalmapsofalgebraicsurfaceofgeneraltype.Indeed,simplybyrestrictiontodivisorsinanappropriatelinearsystemwecangetfurtherinformationonthedegreeofthegeneratorsofthecanonicalringsorontheprojectivenormalityofasurfaceembeddedbyapluricanonicalsystem.Inparticulartheabovetheorem1turnsouttobeparticularusefulinthespecialsituationswhereitisimpossibletoconsidertheoremsofBertinitype.OurresultonpluricanonicalembeddingsisthefollowingTheorem2.SupposethatSisasmoothsurfaceofgeneraltypewithKSample.Assume(KS)23,pg(S)=h0(S;KS)2andq=h1(S;OS)=0.ThenK 3SisnormallygeneratedonS.Weremarkthat,withmildassumptions,theveryamplenessofK 3Shasbeenprovedin[2](see[2,x5]fortheproof).Herethehypothesespg(S)22 Theorem4.AssumeC=Psi=1ni�itobeacurvecontainedinsmoothalgebraicsurface.Letd=(d1;:::;ds)2NsbesuchthatforeachinvertiblesheafF0ofmultidegreedwehavedegF0jBpa(B)+18subcurveBCThenfor[F]generalinPicd(C),jFjisabase-pointfreesystem.Foraproofoftheabovetheoremssee[5,Thm.3.1,3.2].2.3Mumford'sargumentToprovethesurjectionofacertainmultiplicationmapMumford'sargumentconsistsin ndingausefulsubsheafandthenanalyzingthenaturaldecompo-sitionwhichcomeout.Proposition5(Mumford'sargument).LetL;HbeinvertiblesheavesonacurveCwithjHjandjLjbasepointfreesystems.LetF=H(�)(a0-dimensionalscheme)beaninvertiblesubsheafofHsothatjFjisabasepointfreesystemonC.Assumefurthermorethatthesequence0!F!H!O!0isexactonglobalsectionsandthatthemultiplicationmapp1:H0(F) H0(L)!H0(F L)isonto.Thenwehaveasurjectionr1:H0(H) H0(L)H0(H L)Foraproofsee[9,Thm.6].ApplyingProp.8andThm.3{4asacorollaryofwegetthefollowing(see.[5,Thm.A])Theorem6.LetHbeaninvertiblesheafonCsuchthatHnumF G,whereF;GareinvertiblesheavessuchthatdegGjBpa(B)8subcurveBC(1)degFjBpa(B)+18subcurveBC(2)Thenthenaturalmultiplicationmap(H0(H)) 2!H0(H 2)isonto.Moreover,ifCisnumericallyconnectedthenHisnormallygeneratedonC.3Koszulcohomologygroupsofalgebraiccurves3.1De nitionandbasicresultsInthissectionwerecallthenotionofKoszulcohomologygroupsasintroducedanddevelopedbyGreenin[6],andwefocusonsomeapplicationsofKoszul4 Proposition7(Duality).LetWjFjbeabasepointfreesystemofdimensionr.ThenKp;q(C;W;H;F)d Kr�p�1;2�q(C;W;!C H�1;F)(whered meansdualityofvectorspace).Foraproofsee[5,Prop.1.4].Proposition8(H0-Lemma).LetF,HbeinvertiblesheavesonCandassumeWH0(C;F)tobeasubspaceofdim=r+1whichyieldsabasepointfreesystem.Ifeither(i)H1(C;H F�1)=0,or(ii)Cisnumericallyconnected,!C=H F�1andr2,or(iii)Cisnumericallyconnected,h0(C;!C H�1 F)r�1andthereexistsareducedsubcurveBCsuchthat:W,!WjB,H0(C;!C H�1 F),!H0(B;!C H�1 F),everynon{zerosectionofH0(C;!C H�1 F)doesnotvanishidenticallyonanycomponentofB;thenK0;1(C;W;H;F)=0,thatis,themultiplicationmapW H0(C;H)!H0(C;F H)issurjective.Proof.BydualityweneedtoprovethatKr�1;1(C;W;!C H�1;F)=0:Tothisaimletfs0;:::;srgbeabasisforWandlet =Psi1^si2^:::^sir�1 i1i2:::ir�12Vr�1W H0(C;!C H�1 F)beanelementintheKerneloftheKoszulmapdr�1;1.Incases(i)and(ii)obviously =0(see[5]fordetails).InthelattercasebyourassumptionswecanrestricttothecurveB.SinceBisreducedwecanchooser+1\sucientlygeneralpoints"onBsothatsj(Pi)=ij.Butthen 2ker(dr�1;1)impliesforeverymultiindexI=fi1;:::ir�2gthefollowingequations(uptosign) j1i1:::ir�2sj1+ j2i1:::ir�2sj2+ j3i1:::ir�2sj3=0:(wherefi1;:::ir�2g[fj1;j2;j3g=f0;:::;r+1g).6 De nition11.LetC=Psi=1ni�ibeanumericallyconnectedcurvecontainedinasmoothalgebraicsurface.ThenCissaidtobeevenifdeg!Cj�iiseven8irreducible�iC(thisisequivalenttosay�i(C��i)even8i.)Evencurvesandevendivisorsappearforinstanceifyouconsiderthecanoni-calsystemjKSjforasurfaceSofgeneraltypeandmayhaveusefulapplicationstotheanalysisofpluricanonicalmapsofalgebraicsurfaces.Indeed,byadjunc-tion,foreverycurveC2jKSjwehavej(2KS)jCj=jKCj,thatiseverycurveinthecanonicalsystemiseven.4.1CombinatorialpropertiesofevencurvesNowweanalyzesomeusefulcombinatorialpropertiesofnumericallyconnectedevencurves.FirstofallwehaveRemark12.LetC=Psi=1ni�ibeanumericallyconnectedevencurve.ThenthereexistsaninvertiblesheafGofmultidegree=(1;:::;s)suchthatG 2num!C:ThefollowingtechnicallemmaswillturnouttobeusefulintheanalysisoftheparticularcasesofTheorem1.Lemma13.LetC=Psi=1ni�ibeanumericallyconnectedcurvecon-tainedinasmoothalgebraicsurface.SupposethatthereexistsaninvertiblesheafGofmultidegree=(1;:::;s)suchthatG 2num!C:Thenforagenerale ectivedivisorOC()inPiceverynon{zerosectioninH0(C;OC())doesnotvanishidenticallyonanypropersubcurveofC.Proof.ThelemmafollowssinceforeverydecompositionC=A+Bwehave0!H0(B;OB() OB(�A))!H0(C;OC())!H0(A;OA())!0andbyadegreeargumentitisH0(B;OB() OB(�A))=0.IndeedbydualityandadjunctionitisequivalenttoprovethatH1(B;!C OB()�1)=0.ThisfollowsbyThm.3sincebynumericallyconnectednessdeg(!C OC()�1)jB0=1 2deg!CjB0pa(B0)foreveryB0B. Finallyweconsidertheparticularsituationwhere�(C��)=2foreveryirreduciblecomponent�8 Sinceforeveryiwehave�i(C��i)=2thisinequalitycanbereadaskXi=1�i(C��i)�kXj=1j6=i�j=kXi=12�kXj=1j6=i�i�j2whichisequivalenttokXi;j=1j6=i2�i�j2k�2i.e.,8i=1;:::;k9uniquej�is.t.�i�j=1andequalitiesholdthroughout.ThisexactlymeansthatBandthenCredarechainsofirreducibleandreducedcomponents,suchthatCredB=2.InparticularBandCredarenumericallyconnectedsinceCis2-connected(cf.[4]).Thelastassertionfollowssinceforeveryiwehave�i(C��i)=2. 4.2NumericallyconnectedevenirreduciblecurvesNextwefocalizeonirreduciblebutnonreducedcurves.Lemma15.LetC=3�beanirreduciblebutreducedcurveofmultiplic-ity3containedinasmoothalgebraicsurface.SupposeC3-connected.Thenh1(C;!C(�))=1foragenerale ectivedivisorof(multi)degree1 2(deg�!C).Proof.Firstofallnoticethat!Cisveryampleandyieldsanembedding'!C(C)PNsinceCis3-connectedandnothonestlyhyperelliptic(see[2,x3]),andthatforageneralofdegree1 2(deg�!C),by[5,Thm.3.1]itisH0(C;!C)H0(2�;!C)Oj2�Theproofwillbemadebyinductionon.For=1takeapointQ.willbechosenamongalltheCartierdivisorsofdegree1withsupportQ.WerecallthatthesetofallCartierdivisorofmultidegree=1concentratedatQisisomorphictoBQ=f[g]jg2OQ;C;vQ((g))=1gwhere:C!�isthereductionmorphismandvQ()isthevaluationatQinOQ;�(see[10,x4]).FurthermoreifC=n�iscontainedinasmoothalgebraicsurfacethenBQ=An�1(seee.g.[10,4.3.1]).NowitisH0(C;!C)KQandH0(C;!C)j2�foreverylocaltransversecutsupportedatQsince!Cisveryampleandlength(j2�)=2.Finally,10 SetF:=H(�)=H G�1.ThenwehavedegF 2j�idegHj�i8i,whencedegFjBpa(B)+1forallBC.Case1.Thereexistsanindexhs.t. h2hdh.InthiscaseFandGsatisfythehypothesesofTheorem6andthenwecanconclude.Case2.Foralli=1;:::;sdeg!Cj�iisevendegAj�i=1Herewewilltreat rstlythegeneralsituation,showingthatwemay ndanewdecompositionHnumF0 G0,withF0andG0asinTheorem6,andthenwewilltreattheexceptionalcases.Tothisaimletusconsiderthefollowinglist(a)C=n�;n3;�2even;(b)C=�1+2�2;�1�2=1;(c)Forallirreducible�C;�(C��)=2.Claim16.Assumethatforalli=1;:::;sdeg!Cj�iisevenanddegAj�i=1.IfCdoesnotbelongtotheabovelistthenthereexistsadecom-positionHnumF0 G0,withF0andG0asinTheorem6.Proof.Byhypothesesthereexistsanirreduciblecomponent�hofmulti-plicitynhsuchthat�h(C��h)4.TakingAhageneraltransversecutonthiscomponent,weletG0:=G Ah,F0:=F A�1h,andweinferthatG0andF0satisfyrespectivelycondition(3)andcondition(4)ofTheorem6.ForG0thisisobvious.AboutF0wehavedegF0jB=deg!CjB 2+degAjB�degAhjBThus,ifB=CtherequiredinequalityholdssincedegAjB�degAhjB2becausecase(a)and(b)donotoccur,whileifBCandB6=mh�hitholdsbecauseCis2-connectedanddegAjB�degAhjB1.Finally,ifB=mh�h(1mhnh)itholdsthankstoourchoiceof�h. Theexceptionalcon gurations.Inthecon gurations(a),(b),(c)listedabovewecannolonger ndasuitabledecompositionwithF,!H,jFjb.p.f.andH1(F)=H1(H F�1)=0.Intheseparticularcon gurationswehaveG=OC()isaninvertiblesheafsuchthat!CnumG 2(3)12 ToapplyProposition8weneedanestimateforh0(C;!C H�1 F).Thisfollowssincedeg(!C H�1 F)j�2=pa(�2),andfurthermore!C H�1 FnumG:thusbyLemma13,forageneral,H0(C;!C H�1 F),!H0(�2;!C H�1 F)andwemayassumethisvectorspacebeingofdimension1.Con guration(c).Forallirreducible�C;�(C��)=2.LetG=OC()andF=H(�).Noticethatforallirreducible�C;wehavedegFj�=pa(�)+1anddegGj�=pa(�):IfCisreducedjFjisabasepointfreesystemofprojectivedimensionr2(sincebynumericallyconditionsdegA3)while!C H�1 FnumGsatis esLemma13.Toconcludeweonlyneedh0(C;!C H�1 F)h0(C;F)�2:Thiscanbeeasilyseensince,asabove,forageneralwehaveH0(C;!C H�1 F),!H0(�;!C H�1 F)=C.ThusH0-lemmaholdsandwecanconclude.NowletusassumeCnonreduced.BytheaboveanalyseswemayassumethatCredhasatleast3component.LetusconsiderthesplittingofLemma14,C=Cred+BwhereB=Pki=1�iisachainofreducedcurvesuchthatCred�1=Cred�k=1;Cred�i=08i=2;:::;k�1:Now,bydegreeconsideration(sincewehavedegFj�i=pa(�i)+1,)forFsucientlygeneral,wemayassumeh1(B;OB(F) OB(�Cred))=0i.e.,theexactsequence0!OB(F) OB(�Cred)!F!OCred(F)!0isexactonglobalsections.ThismeansthatwecanpickasubspaceWH0(C;F)suchthatWisisomorphictoH0(Cred;F)(henceofdimensionr+13)andWyieldsabasepointfreesubsystemofjFj(sinceitisbasepointfreeonCred).Moreover,(!C H�1 F) 2num!C,i.e.deg(!C H�1 F)j�i=pa(�i)foreveryi.Thusbytheparticularcon gurationofCred(itisachainofcurves),applyinganinductionargumentonthenumberofcomponentswegeth0(Cred;!C H�1 F)=h0(C;!C H�1 F)=1.Finally,byLemma13everysectionofH0(C;!C H�1 F)doesnotvanishonanycomponentofCred.ThusH0-Lemmaappliesandthenthetheoremfollows.Q.E.D.forTheorem16ProjectivelynormaltricanonicalembeddingsofalgebraicsurfacesInthissectionweprovethattheimageofthetricanonicalembeddingofasurfaceofgeneraltypeisprojectivelynormal.14 References[1]G.Castelnuovo,Suimultiplidiunaserielinearedigruppidipuntiap-partenentiadunacurvaalgebrica,Rend.Circ.Mat.Palermo7(1893),89{110[2]F.Catanese,M.Franciosi,K.HulekandM.Reid,EmbeddingsofCurvesandSurfaces,NagoyaMath.J.154(1999),185{220[3]C.Ciliberto,Sulgradodeigeneratoridell'anellocanonicodiunasuper cieditipogenerale,Rend.Sem.Mat.Univ.Pol.Torinovol.41,3(1983),83{111[4]C.Ciliberto,P.Francia,M.MendesLopes,Remarksonthebicanonicalmapsforsurfacesofgeneraltype,Math.Z.,224(1997),no.1,137{166[5]M.Franciosi,Adjointdivisorsonalgebraiccurves,AdvancesinMathemat-ics186(2004),317{333[6]M.Green,Koszulcohomologyandthegeometryofprojectivevarieties,J.Di .Geom.19(1984),125{171[7]K.Konno,1-2-3forcurvesonalgebraicsurface,J.reineangew.Math.533(2001),171{205[8]M.MendesLopes,Adjointsystemsonsurfaces,BollettinoU.M.I.(7)10-A(1996),169{179[9]D.Mumford,Varietiesde nedbyquadraticequations,in'Questionsonalgebraicvarieties',C.I.M.E.,IIICiclo,Varenna,1969,Ed.Cremonese,Rome,(1970),30{100[10]F.Oort,Reducibleandmultiplealgebraiccurves,VanGorcum&Comp.N.V.,H.J.Prakke&H.M.G.Prakke,Leiden,(1961)16