PPT-Clustering, Dimensionality Reduction and Instance Based Learning

Author : tatiana-dople | Published Date : 2020-01-06

Clustering Dimensionality Reduction and Instance Based Learning Geoff Hulten Supervised vs Unsupervised Supervised Training samples contain labels Goal learn All

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Clustering, Dimensionality Reduction and..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Clustering, Dimensionality Reduction and Instance Based Learning: Transcript


Clustering Dimensionality Reduction and Instance Based Learning Geoff Hulten Supervised vs Unsupervised Supervised Training samples contain labels Goal learn All algorithms weve explored Logistic regression. . local. image . descriptors. . into. . compact. . codes. Authors. :. Hervé. . Jegou. Florent. . Perroonnin. Matthijs. . Douze. Jorge. . Sánchez. Patrick . Pérez. Cordelia. Schmidt. Presented. Dimensionality Reduction. Author: . Christoph. . Eick. The material is mostly based on the . Shlens. PCA. Tutorial . http://www2.cs.uh.edu/~. ceick/ML/pca.pdf. . and . to a lesser extend based on material . Kenneth D. Harris 24/6/15. Exploratory vs. confirmatory analysis. Exploratory analysis. Helps you formulate a hypothesis. End result is usually a nice-looking picture. Any method is equally valid – because it just helps you think of a hypothesis. Lecture outline. Distance/Similarity between data objects. Data objects as geometric data points. Clustering problems and algorithms . K-means. K-median. K-center. What is clustering?. A . grouping. of data objects such that the objects . Principle Component Analysis. Why Dimensionality Reduction?. It becomes more difficult to extract meaningful conclusions from a data set as data dimensionality increases--------D. L. . Donoho. Curse of dimensionality. Devansh Arpit. Motivation. Abundance of data. Required storage space explodes!. Images. Documents. Videos. Motivation. Speedup Algorithms. Motivation. Dimensionality reduction for noise filtering. Vector Representation. Aayush Mudgal [12008]. Sheallika Singh [12665]. What is Dimensionality Reduction ?. Mapping . of data to lower dimension such . that:. . uninformative variance is . discarded,. . or a subspace where data lives is . What is clustering?. Why would we want to cluster?. How would you determine clusters?. How can you do this efficiently?. K-means Clustering. Strengths. Simple iterative method. User provides “K”. Unsupervised . learning. Seeks to organize data . into . “reasonable” . groups. Often based . on some similarity (or distance) measure defined over data . elements. Quantitative characterization may include. John A. Lee, Michel Verleysen, . Chapter4 . 1. Distance Preservation. دانشگاه صنعتي اميرکبير. (. پلي تکنيک تهران). 2. The motivation behind distance preservation is that any . Chapter 3. . Data Preprocessing. Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign. , 2017. 1. 9/11/17. 2. Chapter 3: Data Preprocessing. Data Preprocessing: An Overview. Data . Cleaning. 1. Mark Stamp. K-Means for Malware Classification. Clustering Applications. 2. Chinmayee. . Annachhatre. Mark Stamp. Quest for the Holy . Grail. Holy Grail of malware research is to detect previously unseen malware. Produces a set of . nested clusters . organized as a hierarchical tree. Can be visualized as a . dendrogram. A tree-like diagram that records the sequences of merges or splits. Strengths of Hierarchical Clustering. What is clustering?. Grouping set of documents into subsets or clusters.. The Goal of clustering algorithm is:. To create clusters that are coherent internally, but clearly different from each other.

Download Document

Here is the link to download the presentation.
"Clustering, Dimensionality Reduction and Instance Based Learning"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents