/
Figure1:IEEE802.11DCFtiming.transmission,thisaddeddelaycandegradethequ Figure1:IEEE802.11DCFtiming.transmission,thisaddeddelaycandegradethequ

Figure1:IEEE802.11DCFtiming.transmission,thisaddeddelaycandegradethequ - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
383 views
Uploaded On 2017-11-25

Figure1:IEEE802.11DCFtiming.transmission,thisaddeddelaycandegradethequ - PPT Presentation

StateDuration SuccessTsucTfrmTSIFSTACKCollisionTcolTfrmTSIFSTACKDeferredTdefTfrmTSIFSTACKBacko TbkfrBOrTslot2CWrTslot Table1Durationcalculationsforthefourstatesof80211DCFframespacep ID: 609218

StateDuration SuccessTsuc=Tfrm+TSIFS+TACKCollisionTcol=Tfrm+TSIFS+TACKDeferredTdef=Tfrm+TSIFS+TACKBacko Tbkf(r)=BOrTslot2(CWrTslot) Table1:Durationcalculationsforthefourstatesof802.11DCF.framespacep

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Figure1:IEEE802.11DCFtiming.transmission..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Figure1:IEEE802.11DCFtiming.transmission,thisaddeddelaycandegradethequalityofreceivedvideowhenplayoutdeadlinesareviolated.There-fore,itisimportanttounderstandthetypesofdelayscausedbyDCFinordertoestimatenetworkconditionspertinenttotheoperationofDRAS.264.Thefollowingsubsectionsdiscussthesedetails.2.1802.11DCFOperationInDCF,eachstation(STA)monitorsthewirelessmediumforactivityinintervalsoftimeslots(Tslot)[4].Whenthemediumissensedtobeidleforaspeci edperiodofTDIFS,STAsarepermittedtotransmit.However,toavoidcollisionsduetosimultaneoustransmissionsfrommultipleSTAs,anexponentialbacko mechanismisemployedwherebyaran-dombacko (BO)timeslotischosenfromacontentionwindow(CW).ACWismadeupofanintegralnumberoftimeslots,whereitsinitialsizedependsonthestandard,anddoublesinsizeaftereachsuccessivecollision.WhentheCWreachesapre-de nedmaximumvalue,itremainsatthisvalueuntilasuccessfultransmissiontakesplaceortheretrylimitforthepacketisreached(i.e.,dropped).Fig.1showsanexampletimingoftheIEEE802.11DCFfromtheperspectiveofaSTAsharingthemediumwithotherSTAs.ASTAcanbeclassi edtobeinoneoffourstates:success,collision,backo ,anddeferred,whicharealsoindicatedinFig1.Initially,followingaDIFStimeperiod,theSTAobtainsarandombacko valueof11andstartsthecountdownprocess,whichrepresentsthebacko state.After5timeslots,anotherSTAissensedaccessingthemediumandthustheSTAmustdeferaccessandtransi-tionstothedeferredstate.WhenthemediumbecomesfreeandaDIFSintervalhaspassed,theSTAcontinuesinthebacko statefortheremaining6timeslots.TheSTAthengainsaccesstothemediumandtransmitswithoutacolli-sion,representingthesuccessstate.Followingasuccessfultransmission,thesameprocessforanewpacketbeginswithanewrandombacko valueof3.However,afteraDIFSintervalandadurationof3timeslots,theSTAseizesthemediumwhileanothernodeissimultaneouslyaccessingthemedium,puttingtheSTAinthecollisionstate.Table1providesthetimingcalculationsforeachstateundertheassumptionthatallpacketsareofequallength.Basedonthisassumption,thesuccess(Tsuc),collision(Tcol),anddeferral(Tdef)timesareequal.Thedurationsofthesestatescoverthetimeasenderbeginstransmissionofapackettothetimeitexpectstoreceiveanacknowledgement(ACK).AsshowninTable1,thisisthesumofthetimerequiredtotransmitaMAClayerdataframe(Tfrm),theshortinter- StateDuration SuccessTsuc=Tfrm+TSIFS+TACKCollisionTcol=Tfrm+TSIFS+TACKDeferredTdef=Tfrm+TSIFS+TACKBacko Tbkf(r)=BOrTslot2(CWrTslot) Table1:Durationcalculationsforthefourstatesof802.11DCF.framespaceperiod(TSIFS),andthetimerequiredtotrans-mitanACKframe(TACK).Thetimingcalculationforthebacko state(Tbkf)onlydependsontherandomtimeslotthatischosenfortherthretry,BOr.2.2TheH.264CodecH.264isahighlyecientcodingstandardthatusespredic-tivemethodstoreconstructvideosequences.Anencodedvideoconsistsofasequenceofgroupofpictures(GOP),whichisasetofcodedpicturesthatspeci estheorderofI-,P-,andB-frames.TheinterdependenciesbetweenframescanleadtoerrorpropagationwithinaGOPsequencewhenpacketlossoccurs.Framescancontainamixtureofdi erentmacroblock(MB)types,whereeachMBisa1616-pixelre-gion.MBsarelabelledaccordingtotypesofreferencesmadeforprediction.Forexample,aB-frameholdsMBsthatarebi-predicted;however,itmayalsocontainintra-predictedMBs.AP-framecontainsMBsthatarepredictedfrompastframesandmayalsocontainintra-predictedMBs.I-framescontainonlyintra-predictedMBsanddonotreferenceotherframes.AnHDvideoframeencodedusingH.264istypicallysubdi-videdintomultipleslices.Slicesareclassi edbythetypesofMBstheycontain.The veslicetypessupportedbytheH.264standardareI(andIDR),P,B,SP,andSI.AnIDRorInstantaneousDecoderRefreshsliceisanI-slicethatpre-ventsthedecoderfromreferencingearlierslicesandalwaysoccursatthestartofanewGOP[12].SPandSIarespe-cialtypesofslicesthatareenabledthroughtheExtendedPro leoftheH.264standard.OurdiscussionisfocusedontheI/IDR-,P-,andB-slicesastheyaresupportedbynearlyallH.264pro les,andtherefore,readilyavailableinencodedvideos.H.264o ersabstractionofthebitstreamintwolayers:theVideoCodingLayer(VCL)andtheNetworkAbstractionLayer(NAL).TheVCLreferstotheactualcompressedvideothatresultsfromapplyingH.264compressiontech-niques(prediction,motioncompensation,variablelengthcoding,etc.).TheNALwasintroducedtosupportthepacket-basednatureofexistingnetworksanddictateshowtheoutsideworld(i.e.,routers,NICs,networkprotocols)workswithH.264-encodedvideo,withoutneedingtoknowthedetailsandspeci cationsofthecompressedvideobeingtransported[8].WhentheH.264syntaxismappedtoframesequences,eachslicecorrespondstoaparticularregionofaframe.Fig.2showsanexampleframethatcontainssomemissingslicesduetopacketloss.Sliceboundariesareindicatedbythesolidbluelines,anditcanbeclearlyseenthatthereare8slices.Notethatdecoderstypicallyperformerrorconceal-ment(EC)techniqueswheninformationismissingtohide Figure6:ActualMAClayerend-to-enddelayandpredicteddelaysfordi erentretryattempts.andincludingtheretryattemptinquestionsuchthateachpredictiontakesintoaccountdelaysofpreviousattempts.Fig.6showshowthepredicteddelaysfromEq.4fordi er-entretryattemptscomparetotheactualMAClayerend-to-enddelays(indicatedinblue).ThedelaysareforMAClayerframestransportinga10MbpsH.264bitstreamwiththreeadditionalconstantbitrateinterferencestreams.Asareference,thenumberofretriesneededforsomeoftheactualend-to-enddelaysarepointedoutonthe gure.Thepre-dicteddelaysinFig.6showthatEq.4tendstounder-predictrealdelaysexperiencedattheMAClayer.Forexample,incaseswherefourretriesareneeded,thecorrespondingpre-dicteddelays(indicatedbysolidblacklines)arealwayslessthantheactualdelayexperienced.Theonlycasewherethedelayisover-predictedisfor veretries(indicatedbysolidpinkline).Sinceover-predictionsresultintheselectionofaretrylimittoolowforsuccessfuldelivery,DRAS.264em-ployssomeleniencyintheretryassignmentprocess.Thus,ratherthanusingthehardlimitresultingfromthecompar-isonTpktdly(r)Nslcpkt�DfrminFig.4,DRAS.264assignsonehighervaluetor.5.SIMULATIONSTUDYOursimulationstudywasconductedusingtheOpenEvalua-tionFrameworkforMultimediaOverNetworks(OEFMON)developedattheKoreaAdvancedInstituteofScienceandTechnology(KAIST)[9].OEFMONisbuiltuponamul-timediacomponentDirectShowandanetworksimulatorQualNet[13].Together,theyprovidevisualizationoftheunderlyingnetworkdetailsandon-the- ydisplayofsentandreceivedvideos.OEFMONrequiresthefollowinginputs:Arawvideo leinYUVformat,aQualNetscenario le,aQoSmappingparameter le,andaDirectShowgraph.Thethreeoutputsgeneratedarethereceivedrawvideo le,asenderlog,andareceiverlog,whichareusedforoineanalysistocomputePSNR,throughput,delay,andpacketlossratioamongothermetrics.Thesimulationsetupinvolvesnodalarrangementsofwhatwouldnormallybefoundamongstneighboringapartments.Fig.7showsthistypeofarrangementwithfourpairsofstreamingSTAs.Alldistancesbetweenstreamingpairsfall Figure7:Experimentalsetup.within3m,whichisareasonableviewingrangeinhomenetworks.Notethatthisviewingrangecanvary;however,thisdoesnotimpactperformance.Aslongastransmitandreceivepairsresidewithinthecarriersenserangeofeachother,whichcanbeasmuchas100m,therewillbeinterfer-enceamongvideostreams.ThestreamingpairshowninredrepresentstheprimaryvideostreamforwhichDRAS.264isimplemented.Allremainingstreamssimulatebackgroundtracasaconstantbitrate(CBR).An802.11a/gnetworkwithbandwidth54MbpsinQualNet5.0.2isusedforsimulation.Threetestclips(SonyBravia,Heliboarding,andAfricanCats)areusedtorepresenttheprimaryvideostreams.Theseclipsareencodedusingthex264opensourceH.264encoder[3]MainPro le,Level4.1at1080p@30fpswithanaveragebitrateof10Mbps.Thelengthoftestclipsrangefrom315framesto372frames.Inaddition,thestreamingprotocolusedisRTPoverUDP,andallCBRtracis10Mbpsresultinginatotalaggregatebitrateof40Mbpstoinducecongestioninthenetwork.Thebackgroundstreamsstartonesecondaftertheprimaryvideostreamisinitiatedandcontinueuntiltheendofsimulationwhenallthepacketsfromtheprimaryvideostreamhavebeensent.Furthermore,thecurrentversionofOEFMONislimitedtosingle-sliceencoding,thusanentireframeisencompassedinasinglesliceforthetestvideo.Notethatthesevideoclipshavecertaincharacteristicsthatneedtobeconsideredforproperstreaming.Forexample,whenstreamedona54Mbpswirelesslinkwithoutconges-tion,theinitialstartupdelaysare58ms,85ms,and260msfortheclipsSonyBravia,Heliboarding,andAfricanCats,respectively,toavoidmissedplayoutdeadlines.Thesere-quirementsareadirectresultofthebitratevariability(andthusjitter)oftheencodedbit-streams,whereframesizevariesfrom73.9Kbto3.3Mb.ThehighstartuptimeforAfricanCatsisduetoit'shighframesizecoecientofvari-ation(CoV)[14].5.1ResultsFig.8showsPSNRvaluesofthereceivedvideosinreferencetotheoriginalundistortedvideoforDRAS.264(redlines)andthedefault802.11MACprotocol(bluelines).Themax-imumPSNRvalueof111dBrepresentsaperfectlyreceivedframe.APSNRvalueof37dBisconsidered\excellent"quality[7]andisdepictedbyadashedgreenlineineachgraph.