PDF-Lecture14:10/27/200414-2LetparameterkdenotethesizeofW.Ifkissmall,wecan

Author : tatiana-dople | Published Date : 2015-11-18

AteachdepthwebranchintoatmosttwosubtreesandweremoveatmostnedgesfromthegraphThusthetimecomplexityofthealgorithmisO2knwhichisintheformthatwewantHencethevertexcoverproblemis xedparametertractabl

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Lecture14:10/27/200414-2Letparameterkden..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Lecture14:10/27/200414-2LetparameterkdenotethesizeofW.Ifkissmall,wecan: Transcript


AteachdepthwebranchintoatmosttwosubtreesandweremoveatmostnedgesfromthegraphThusthetimecomplexityofthealgorithmisO2knwhichisintheformthatwewantHencethevertexcoverproblemis xedparametertractabl.   arecalledtheleveragevalues.Becauseidempotent,itsrankequalsitstrace,andthustheaveragevalueofisbep/N.Valuesgreaterthan,say,3p/Nconsideredtohavehighleverageandmayhavehighin 2+"(n)8n;wheretheprobabilityistakenoverIR Gen(1n),XR DI,andthecointossesofA.2ExamplesRSAfunctionsUndertheRSAAssumption,theleastsignicantbitisahardcorebitforRSA:lsbN;e:ZN7!f0;1gGivenN;e;xemodN,wecan H(D)Pi2SDiforalli2S,whereH(`)istheharmonicnumber1+1=2++1=`.Proof.Renamethedemandpairssuchthatd(s1;t1)d(sk;tk).LetSibethesetf1;2;:::;ig.WeshowthatoneoftheseSi'swillsatisfytheconditionsoftheclai (I1)foreachproofofAinwecan ndannsuchthatA(n)0isveri able,(I2)foreachproofof:Ainandeachnwecan ndasubstitutioninstancewhichmakesA(n)0false.Thereisalsoanobviousthirdconditionwhichrelatestheinterpretati th .Wecan’twaittosee allofourcampfriendsandgetthe2014summerseasonunderway. APRILBIRTHDAYS 4/1VIVIANFRITZ,HALEYMENIHAN4/2ETHANGROW,AUSTINMARPLE4/3ANTHONY MANCARUSO,JOSEPHMANZELLA4/4BRIANNACAIN4/6J 4M.MUSTATAu1;:::;un2O(U)formanalgebraicsystemofcoordinatesonUifdu1;:::;duntrivialize XoverU.SinceXisnonsingular,wecan ndsuchasystemofcoordinatesintheneighborhoodofeverypointinX.Analgebraicsystemofco p0=T T0g0 R=1+H T0g0 RorH=T0  p p0R g01!:(1.2.1)So,basedonthepressure,wecan ndthepressurealtitude.Thepressurecansimplybemeasuredusingananeroid:astaticairpressuremeter.Itshouldbenotedtha @z2=k21;(9.15)whichhassolutions1(z)/exp(kz)and1(z)/exp(kz).However,thelattersolutioncanbediscardedbecauseofboundaryconditions,sinceforz!1weneedtohaveanunperturbedstatewith1!0.Inasimilarway,wecan PartIPropositionalLogic3 xunassignediftherearenot.Is\xisaprimenumber"astatement?Answer:(todate)wecan'ttell!Butthisexampleissilly(thecontextwehavesetupishighlyarti cal)andquiteo thepathofwhatwewillbedo Today'soutline FoundationsofstaticsPreviewofstatics.Foundations.Equivalencetheorems.Lineofaction.Poinsot'stheorem.Wrenches. Lecture14.FoundationsofStaticsFoundationsofstaticsPreviewofstatics.Foundatio

Download Document

Here is the link to download the presentation.
"Lecture14:10/27/200414-2LetparameterkdenotethesizeofW.Ifkissmall,wecan"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents