/
!(tP.TheeigenvaluesofParereal(sinceitissymmetric),andbyPerron !(tP.TheeigenvaluesofParereal(sinceitissymmetric),andbyPerron

!(tP.TheeigenvaluesofParereal(sinceitissymmetric),andbyPerron - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
365 views
Uploaded On 2016-03-24

!(tP.TheeigenvaluesofParereal(sinceitissymmetric),andbyPerron - PPT Presentation

Pij0 maxSVProbSProb ID: 268163

Pij=0 ( =maxS#V!!!Prob!(S)&Prob

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "!(tP.TheeigenvaluesofParereal(sinceitiss..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Pij=0,( !(tP.TheeigenvaluesofParereal(sinceitissymmetric),andbyPerronÐFrobeniustheory,nomorethan1inmagnitude.Wewilldenotetheminnonincreasingorder:1="1(P)%"2(P)%ááá%"n(P)%&1.P:µ( =maxS#V!!!Prob!(S)&Prob÷!(S)!!!=12"i|#i&÷#i|(see,e.g.,[13,section4.1.1]).Wehavethefollowingboundonthetotalvariationdistancebetween 1andthedistributionconvergestouniformasymptoticallyasµt.Wecallthequantitylog(1/µ)themixingrate,and$=1/log(1/µ)themixingtime.Themixingtime$givesanasymptoticmeasureofthenumberofstepsrequiredforthetotalvariationdistanceofthedis-tributionfromuniformtobereducedbythefactore.IftheSLEMisverycloseto1,themixingratelog(1/µ)isapproximately1&µ,whichisoftenreferredtoasthespectralgapintheliterature.Themixingrate,mixingtime,andthespectralgapcanallserveasthemeasureforfastmixing.SincetheyareallmonotoneintheSLEM,wewillfocusontheSLEM dibethedegreeofvertexi Prwji)/ i,k)$Emax{0,1/di&1/dk rithmcanresultonlyifthenumberofsimulationstepsisreasonablysmall,whichusuallymeansdramaticallylessthanthesizeofthestatespaceitself.Forexample,aMarkovchainiscalledrapidlymixingifthesizeofstatespaceisexponentialinsomeinputdatasize,whereasthemixingtimeisboundedbyapolynomial.MostpreviousworkfocusedonboundingtheSLEM(orthespectralgap)ofaMarkovchainwithvarioustechniquesanddevelopingsomeheuristicstoassigntran-sitionprobabilitiestoobtainfastermixingMarkovchains.Somewell-knownanalyticapproachesforboundingtheSLEMare:couplingmethodsandstrongstationarytimes[1,16],conductance[29],geometricbounds[20],andmulticommodityßows[48,30].DiaconisandSalo!-Coste[19]surveyedwhatisrigorouslyknownaboutrunningtimesoftheMetropolisÐHastingsalgorithmÑthemostcelebratedalgorithmforconstruct-ingMarkovchainsinMonteCarlomethods.Kannan[31]surveyedtheuseofrapidlymixingMarkovchainsinrandomizedpolynomialtimealgorithmstoapproximatelysolvecertaincountingproblems.MorebackgroundonfastmixingMarkovchainscanbefoundin,e.g.,[13,4,44]andreferencestherein. 1.4.Outline.Insection2,weshowthattheFMMCproblemcanbecastasaconvexoptimizationproblem,andevenmorespeciÞcally,asasemideÞniteprogram "1(P1,wecanexpressthesecondlargesteigenvalueas"2(P)=sup{uTPu|'u' (P)=max{"2(P),&"n( ,and'á'2denotesthespectralnorm,ormaximumsingularvalue.(Inthiscase,sincethematricesaresymmetric,'á'2isthelargesteigenvaluemagnitude.)Theformula(4)givesµ(P)asthenormofana"nefunctionof P&(1/n)11T (i,j)/#E.(6)HerethevariablesarethematrixPandthescalars 2/2!2/2!2/2,-1 ,wherer#Znr+c#Znc+Xasthevertexset.Wesaythattwotables(matrices)Xand÷XX)areadjacent(connectedbyanedge)ifX&÷X=(ei&ej)( 2each.ThismodiÞcationdoesnÕtchangetherowandcolumnsums.IfthemodiÞcationresultsinnegativeentries,wediscardit(andstayatthecurrenttable);otherwise,weacceptthemodiÞcation(jumptoanadjacenttable).Wethenrepeattheprocess,byselectingnewpairsofrowsandcolumns.ThisdescribesaMarkovchainonX,anditcanbeshownthatthischain(graph)isconnected.Actu-ally,thisispreciselythemaximum-degreeMarkovchainonthegraphofcontingencytables,anditgeneratesuniformsamplingofthetablesinthesteadystate.See[17]forareviewofthebackgroundandapplicationsofcontingencytables.Whilethemaximum-degreechainseemstobetheonlypracticalmethodthatcanbeimplementedtocarryoutuniformsamplingonasetofcontingencytables,itisofacademicinteresttocompareitsmixingratewiththatoftheMetropolisÐ usethemaximum-degreeheuristictogetauniformdistribution.Wehopetoapplyourmethodstotheseproblemstogetfasteralgorithms.3.3.ARandomFamily.Wegenerateafamilyofgraphs,allwith50vertices,asfollows.FirstwegenerateasymmetricmatrixR#R50"50,whoseentriesRij,fori(j,areindependentanduniformlydistributedontheinterval[01].Foreachthresholdvaluec#[0,1]weconstructagraphbyplacinganedgebetweenverticesiandjfori*=jifRij(c.Wealwaysaddeveryself-looptothegraph.Byincreasingcfrom0to1,weobtainamonotonefamilyofgraphs;i.e.,thegraphassociatedwithalargervalueofccontainsalltheedgesofthegraphassociatedwithasmallervalueofc.Weonlyconsidervaluesofcabovethesmallestvaluethatgivesaconnectedgraph.Foreachgraph,wecomputetheSLEMsofthemaximum- Ð0.8Ð0.6Ð0.4Ð0.200.20.40.60.8102468maximum-degree chain .Thesumofthesingularvaluesofasymmetricmatrixisanorm;indeed,itisthedualnormofthespectralnorm,sowedenoteitby'á'&.ThedualFMMCproblemisconvex,sincetheobjective,whichismaximized,islinear,henceconcave,andtheconstraintsareallconvex. Y,zaredualfeasible,then1Tz(µ(P).(9)WeprovethisbyboundingTrY(P&(1/n)11T)fromaboveandbelow.BythedeÞnitionofdualnorm,wehaveTrY* TrY*P&(1/n)11T+=TrYP="i,jYijPij%"i,j(1/2)(zi+zj =1Tz.TheÞrstequalityusesthefactthatY1Pij=0for(i,j)/#Eand(1/2)(zi+zj)(Yij .11/,Y P#isoptimalifandonlyifthereexistdualvariablesz#andY# (i,j)/#E.¥Dualfeasibility.Y# G=vvTisasubgradientofµ(PvT1=0.BythevariationalcharacterizationofthesecondeigenvalueofPand÷P,wehaveµ(P)="2(P)= µ(P)v, ++TrY'=1 E(l E(m)u6,withcomponentsgl( p))andvisauniteigenvectorassociatedwiththeeigenvalue"n( pl:=p pontoonehalf-spaceatatime,andeachprojectionisveryeasytocompute.Duringeachexecutionoftheinnerloop(thewhileloop),(13)updatesI(iiwithstrictlypositivetransitionprobabilities,and|I(i)|isitscardinality.Ifpsum=)l$I(i)pl�1,wewouldliketoprojectpontothehalf-space)l$I(i)pl ontothehalf-space"l$I(i)pl(psum&'|I(i)|,(17)where'ischosentoavoidnegativecomponentsoftheprojection;see(14).Theprojectionstep(15)isverysimple.Theright-handsideof(17)isatleast1,anditiseasytoverifythatthewhileloopterminatesinaÞnitenumberofsteps,boundedbythedegreeofthenode.Moreover,everyhalf-spaceoftheform(17)containsthefeasibleset{p|p%0,Bp(1}.Thisimpliesthatthedistancefromanyfeasiblepointisreducedbyeachprojection.OncethesumprobabilityconstraintissatisÞedatanode,itwillneverbede-stroyedbylaterprojectionsbecausetheedgeprobabilitiescanonlydecreaseinthesequentialprojectionprocedure.Letpdenotetheprobabilityvectorafterstep1,andp+denotethevectorafterstep2.Itisclearthatp+producedbythesequentialprojectionmethodisalways Pandtherank-1propertyof11Tfore"&k=1/)kandstartthetransitionmatrixattheMetropolisÐHastingschain.TheprogressofthealgorithmisplottedinFigure4,whichshowsthemagnitudeofthetwoextremeeigenvalues"2and"n ProgressofthesubgradientmethodfortheFMMCproblemwithagraphwith #P=PT#,whichmeansthatthematrix#1/2 0.20.40.60.8 values±µforeachMarkovchain.ofcourse,hasthesameeigenvaluesasP).Theeigenvectorof#1/2P#'1/2associatedwiththemaximumeigenvalue1isq=()!1,...,)!n).TheSLEMµ(P#1/2P#'1/2or,equivalently,itsspectralnormrestrictedtothesubspaceq%.Thiscanbewrittenasµ(P)='(I 1/2P#'1/2&qqT'2.ThusthefastestmixingreversibleMarkovchainproblemcanbeformulatedasminimizeµ(P)='#1/2P#'1 ,asin(6).7.Extensions.7.1.ExploitingSymmetry.Inmanycases,thegraphsofinteresthavelargesymmetrygroups,andthiscanbeexploitedtosubstantiallyincreasethee"ciencyofsolutionmethodsoreven,insomecases,tosolvetheFMMCproblemanalytically.Thisisexploredinfarmoredetailin[10,42];herewedescribeaverysimplecasetoillustratethebasicidea.WeÞrstobservethatifagraphissymmetric,thenwecanassumewithoutlossofgeneralitythattheoptimaltransitionmatrixP#isalsosymmetric.Toseethis,letP# underthesymmetrygroup. dmax=n.Analysispresentedin[10]showsthat1&µ(Pmd)=2n'2+O( (EP,"(f,f)Var"(f)!!!!!Var"( !-diagonalentriesofP.Inparticular,sincePmhij%Pmdiji*=j,wealwayshave"2(Pmh)("2(Pmd),"n(Pmh)( foranysymmetrictransitionprobabilitymatrixPdeÞnedonthegraph.Thus,thespectralgapoftheoptimalchainisnomorethanafactordmax+1largerthanthespectralgapofthemodiÞedmax-degreechain.7.3.Optimizinglog-SobolevConstants.Wehaveusedthespectralgapasa &=inf(EP,"(f,f)L"(f)!!!!!L"(f) "(f)="i|fi|2log9 ,IntroductiontoMarkovChains,withSpecialEmphasisonRapidMixing,Adv.LecturesMath.,Vieweg,Weisbaden,Germany,2000.[5]A.Ben-TalandA.Nemirovski,LecturesonModernConvexOptimization:Analysis,Al-gorithms,andEngineeringApplications,MPS/SIAMSer.Optim.2,SIAM,Philadelphia,2001.[6], P.Br ,Math.ProgrammingStud.,3(1975),pp.35Ð55.[16]P.Diaconis,GroupRepresentationsinProbabilityandStatistics,InstituteofMathematicalStatistics,Hayward,CA,1988.[17]P.DiaconisandA.Gangolli Eigenvalueoptimization,ActaNumer.,5(1996),pp.149Ð190.[35]J.Liu [48]A.Sinclair,ImprovedboundsformixingratesofMarkovchainsandmulticommodityßow,Combin.Probab.Comput.,1(1992),pp.351Ð370.[49]A.Sinclair,AlgorithmsforRandomGenerationandCounting:AMarkovChainApproach,Birkh¬auserBoston,Boston,1993.[50]D.Stroock,LogarithmicSobolevinequalitiesforGibbsstates,inDirichletForms(Varenna,1992),LectureNotesinMath.1563,Springer-Verlag,Berlin,1993,pp.194Ð228.[51]J.F.Sturm,UsingSeDuMi1.02

Related Contents


Next Show more