/
362Duals,naturality,bilinearformsLetVbeanite-dimensional[1]vectorspac 362Duals,naturality,bilinearformsLetVbeanite-dimensional[1]vectorspac

362Duals,naturality,bilinearformsLetVbea nite-dimensional[1]vectorspac - PDF document

tatyana-admore
tatyana-admore . @tatyana-admore
Follow
358 views
Uploaded On 2016-03-18

362Duals,naturality,bilinearformsLetVbea nite-dimensional[1]vectorspac - PPT Presentation

1Someofthede nitionsanddiscussionheremakesenseforin nitedimensionalvectorspacesVbutmanyoftheconclusionsareeitherfalseorrequiresubstantialmodi cationtobecorrectForexamplebycontrasttothepropositio ID: 261200

[1]Someofthede nitionsanddiscussionheremakesenseforin nite-dimensionalvectorspacesV butmanyoftheconclusionsareeitherfalseorrequiresubstantialmodi cationtobecorrect.Forexample bycontrasttothepropositio

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "362Duals,naturality,bilinearformsLetVbea..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

362Duals,naturality,bilinearformsLetVbea nite-dimensional[1]vectorspace,withabasise1;:::;enforV.Adualbasis1;:::;nforV(andfeig)isabasisforVwiththepropertythatj(ei)=1(fori=j)0(fori6=j)Fromthede nitionaloneitisnotatallclearthatadualbasisexists,butthefollowingpropositionprovesthatitdoes.[1.0.2]Proposition:ThedualspaceVtoann-dimensionalvectorspaceV(withnapositiveinteger)isalson-dimensional.Givenabasise1;:::;enforV,thereexistsauniquecorrespondingdualbasis1;:::;nforV,namelyabasisforVwiththepropertythatj(ei)=1(fori=j)0(fori6=j)Proof:Provingtheexistenceofadualbasiscorrespondingtothegivenbasiswillcertainlyprovethedimensionassertion.UsingtheuniquenessofexpressionofavectorinVasalinearcombinationofthebasisvectors,wecanunambiguouslyde nealinearfunctionaljbyj Xiciei!=cjThesefunctionalscertainlyhavethedesiredrelationtothebasisvectorsei.WemustprovethatthejareabasisforV.IfXjbjj=0thenapplythisfunctionaltoeitoobtainbi=0@Xjbjj1A(ei)=0(ei)=0Thisholdsforeveryindexi,soallcoecientsare0,provingthelinearindependenceofthej.Toprovethespanningproperty,letbeanarbitrarylinearfunctionalonV.Weclaimthat=Xj(ej)jIndeed,evaluatingtheleft-handsideonPiaieigivesPiai(ei),andevaluatingtheright-handsideonPiaieigivesXjXiai(ej)j(ei)=Xiai(ei)sincej(ei)=0fori6=j.Thisprovesthatanylinearfunctionalisalinearcombinationofthej.===LetWbeasubspaceofavectorspaceVoverk.TheorthogonalcomplementW?ofWinVisW?=f2V:(w)=0;forallw2Wg [1]Someofthede nitionsanddiscussionheremakesenseforin nite-dimensionalvectorspacesV,butmanyoftheconclusionsareeitherfalseorrequiresubstantialmodi cationtobecorrect.Forexample,bycontrasttothepropositionhere,forin nite-dimensionalVthe(in nite)dimensionofVisstrictlylargerthanthe(in nite)dimensionofV.Thus,forexample,thenaturalinclusionofVintoitsseconddualVwouldfailtobeanisomorphism. 364Duals,naturality,bilinearformsitfollowsthatdimIm'=dimV.WeshowedabovethatthedimensionofVisthesameasthatofV,sinceVis nite-dimensional.Likewise,thedimensionofV=(V)isthesameasthatofV,hencethesameasthatofV.Sincethedimensionoftheimageof'inVisequaltothedimensionofV,whichisthesameasthedimensionofV,theimagemustbeallofV.Thus,':V�!Visanisomorphism.===[1.0.5]Corollary:LetWbeasubspaceofa nite-dimensionalvectorspaceVoverk.Let':V�!Vbetheisomorphismofthepreviouscorollary.Then(W?)?='(W)Proof:First,showthat'(W)(W?)?Indeed,for2W?,'(w)()=(w)=0Ontheotherhand,dimW+dimW?=dimVandlikewisedimW?+dim(W?)?=dimV=dimVThus,'(W)(W?)?anddim(W?)?=dim'(W)since'isanisomorphism.Therefore,'(W)=(W?)?.===Asanillustrationoftheecacyofthepresentviewpoint,wecanproveausefulresultaboutmatrices.[1.0.6]Corollary:LetMbeanm-by-nmatrixwithentriesina eldk.LetRbethesubspaceofknspannedbytherowsofM.LetCbethesubspaceofkmspannedbythecolumnsofM.LetcolumnrankofM=dimCrowrankofM=dimRThencolumnrankofM=rowrankofMProof:ThematrixMgivesalineartransformationT:kn�!kmbyT(v)=Mvwherevisacolumnvectoroflengthn.ItiseasytoseethatthecolumnspaceofMistheimageofT.Itisalittlesubtlerthattherowspaceis(kerT)?.Fromabove,dimkerT+dimImT=dimVandalsodimkerT+dim(kerT)?=dimVThus,columnrankM=dimImT=dim(kerT)?=rowrankMasclaimed.=== 2.Firstexampleofnaturality 366Duals,naturality,bilinearformsthediagramVV�!Vf##fWW�!Wcommutes.ThecommutativityofthediagraminvolvingaparticularMandNiscalledfunctorialityinMandinN.Thatthediagramcommutesisveri edverysimply,asfollows.Letv2V,2W.Then((fV)(v))()=(f(Vv))()(de nitionofcomposition)=(Vv)(f)(de nitionoff)=(f)(v)(de nitionofV)=(fv)(de nitionoff)=(W(fv))()(de nitionofW)=((Wf)(v))()(de nitionofcomposition)SinceequalityofelementsofWisimpliedbyequalityofvaluesonelementsofW,thisprovesthatthediagramcommutes.Further,forV nite-dimensional,wehavedimkV=dimkV=dimkVwhichimpliesthateachVmustbeanisomorphism.Thus,theaggregateoftheisomorphismsV:V�!Viscalledanaturalequivalence.[10] 3.BilinearformsAbstractingthenotionofinnerproductorscalarproductordotproductonavectorspaceVoverkisthatofbilinearformorbilinearpairing.Forpurposeofthissection,abilinearformonVisak-valuedfunctionoftwoV-variables,writtenvworhv;wi,withthefollowingpropertiesforu;v;w2Vand 2k(Linearityinbotharguments)h u+v;wi= hu;wi+hv;wiandh u; v+v0i= hu;vi+hu;v0i(Non-degeneracy)Forallv6=0inVthereisw2Vsuchthathv;wi6=0.Likewise,forallw6=0inVthereisv2Vsuchthathv;wi6=0.Thetwolinearityconditionstogetherarebilinearity.Insomesituations,wemayalsohave(Symmetry)hu;vi=hv;uiHowever,thesymmetryconditionisnotnecessarilycriticalinmanyapplications.[3.0.1]Remark:WhenthescalarsarethecomplexnumbersC,sometimesavariantofthesymmetryconditionisuseful,namelyahermitianconditionthathu;vi= hv;uiwherethebardenotescomplexconjugation.[3.0.2]Remark:Whenthescalarsarerealorcomplex,sometimes,butnotalways,thenon-degeneracyandsymmetryareusefullyreplacedbyapositive-de nitenesscondition,namelythathv;vi0andis0onlyforv=0.WhenavectorspaceVhasanon-degeneratebilinearformh;i,therearetwonaturallinearmapsv�!vandv�!vfromVtoitsdualV,givenbyv(w)=hv;wi [10]Moreprecisely,onthecategoryof nite-dimensionalk-vectorspaces,isanaturalequivalenceoftheidentityfunctorwiththesecond-dualfunctor. 368Duals,naturality,bilinearformsThus,dimW+dimW?=dimVasclaimed.Next,weclaimthatWW??.Indeed,forw2Witiscertainlytruethatforv2W?hv;wi=hv;wi=0Thatis,weseeeasilythatWW??.Ontheotherhand,fromdimW+dimW?=dimVanddimW?+dimW??=dimVweseethatdimW??=dimW.SinceWisasubspaceofW??withthesamedimension,thetwomustbeequal(fromourearlierdiscussion).===[3.0.7]Remark:Whenanon-degeneratebilinearformonVisnotsymmetric,therearetwodi erentversionsofW?,dependinguponwhichargumentinh;iisused:W?;rt=fv2V:hv;wi=0;forallw2WgW?;lft=fv2V:hw;vi=0;forallw2WgAndthentherearetwocorrectstatementsaboutW??,namely�W?;rt?;lft=W�W?;lft?;rt=WTheseareproveninthesamewayasthelastcorollary,butwithmoreattentiontothelackofsymmetryinthebilinearform.Infact,tomorescrupulouslyconsiderpossibleasymmetryoftheform,weproceedasfollows.Formanypurposeswecanconsiderbilinearmaps[11](thatis,k-valuedmapslinearineachargument)h;i:VW�!kwhereVandWarevectorspacesoverthe eldk.[12]Themostcommoninstanceofsuchapairingisthatofavectorspaceanditsdualh;i:VV�!kbyhv;i=(v)Thisnotationandviewpointhelpstoemphasizethenear-symmetry[13]oftherelationshipbetweenVandV. [11]Alsocalledbilinearforms,orbilinearpairings,orsimplypairings.[12]Notethatnowthesituationisunsymmetrical,insofarasthe rstandsecondargumentstoh;iarefromdi erentspaces,sothatthereisnoobvioussensetoanypropertyofsymmetry.[13]TheseconddualVisnaturallyisomorphictoVifandonlyifdimV1. 370Duals,naturality,bilinearformsThedimensionofthespanWofisstrictlylessthandimV,whichwe'veprovenisdimV=dimV.WemayalsoidentifyVVviathenaturalisomorphism.Withthatidenti cation,wemaysaythatthesetofsolutionsisW?,anddim(W?)+dimW=dimV=dimVThus,dimW?�0,sotherearenon-zerosolutions.===[25.2]Letkbea eld,andVa nite-dimensionalk-vectorspace.LetbealinearlyindependentsubsetofthedualspaceV.Let�!abeasetmap�!k.Showthataninhomogeneoussystemofequations(v)=a(forall2)hasasolutionv2V(meetingalltheseconditions).Letm=jj,=f1;:::;mg.Onewaytousethelinearindependenceofthefunctionalsinistoextendtoabasis1;:::;nforV,andlete1;:::;en2VbethecorrespondingdualbasisforV.Thenletv1;:::;vnbetheimagesoftheeiinVunderthenaturalisomorphismVV.(Thisachievesthee ectofmakingtheibeadualbasistothevi.Wehadonlyliterallyproventhatonecangofromabasisofavectorspacetoadualbasisofitsdual,andnotthereverse.)Thenv=X1imaiviisasolutiontotheindicatedsetofequations,sincej(v)=X1imaij(vi)=ajforallindicesjm.===[25.3]LetTbeak-linearendomorphismofa nite-dimensionalk-vectorspaceV.ForaneigenvalueofT,letVbethegeneralized-eigenspaceV=fv2V:(T�)nv=0forsome1n2ZgShowthattheprojectorPofVtoV(commutingwithT)liesinsidek[T].FirstwedothisassumingthattheminimalpolynomialofTfactorsintolinearfactorsink[x].Letf(x)betheminimalpolynomialofT,andletf(x)=f(x)=(x�)ewhere(x�)eistheprecisepowerof(x�)dividingf(x).Thenthecollectionofallf(x)'shasgcd1,sotherearea(x)2k[x]suchthat1=Xa(x)f(x)WeclaimthatE=a(T)f(T)isaprojectortothegeneralized-eigenspaceV.Indeed,forv2V,v=1Vv=Xa(T)f(T)v=Xa(T)f(T)v=a(T)f(T)vsince(x�)edividesf(x)for6=,and(T�)ev=0.Thatis,itactsastheidentityonV.And(T�)eE=a(T)f(T)=02Endk(V)sotheimageofEisinsideV.SinceEistheidentityonV,itmustbethattheimageofEisexactlyV.For6=,sincef(x)jf(x)f(x),EE=0,sotheseidempotentsaremutuallyorthogonal.Then(a(T)f(T))2=(a(T)f(T))(1�X6=a(T)f(T))=a(T)f(T)�0 372Duals,naturality,bilinearformsIfEwereanotherprojectortoVcommutingwithT,thenEstabilizesVPforallirreduciblesPdividingtheminimalpolynomialfofT,andEis0onVQforQ6=(x�),andEis1onV.Thatis,E=1Ex�+XQ6=x�0EQ=EPThisprovestheuniquenesseveningeneral.===[25.4]LetTbeamatrixinJordannormalformwithentriesina eldk.LetTssbethematrixobtainedbyconvertingalltheo -diagonal1'sto0's,makingTdiagonal.ShowthatTssisink[T].ThisimplicitlydemandsthattheminimalpolynomialofTfactorsintolinearfactorsink[x].Continuingasinthepreviousexample,letE2k[T]betheprojectortothegeneralized-eigenspaceV,andkeepinmindthatwehaveshownthatVisthedirectsumofthegeneralizedeigenspaces,equivalent,thatPE=1.Byde nition,theoperatorTssisthescalaroperatoronV.ThenTss=XE2k[T]since(fromthepreviousexample)eachEisink[T].===[25.5]LetM=AB0Dbeamatrixinablockdecomposition,whereAism-by-mandDisn-by-n.ShowthatdetM=detAdetDOnewaytoprovethisistousetheformulaforthedeterminantofanN-by-NmatrixdetC=X2SN()a(1);1:::a(N);Nwherecijisthe(i;j)thentryofC,issummedoverthesymmetricgroupSN,andisthesignhomomorphism.ApplyingthistothematrixM,detM=X2Sm+n()M(1);1:::M(m+n);m+nwhereMijisthe(i;j)thentry.SincetheentriesMijwith1jmandmim+nareall0,weshouldonlysumoverwiththepropertythat(j)mfor1jmThatis,stabilizesthesubsetf1;:::;mgoftheindexingset.Sinceisabijectionoftheindexset,necessarilysuchstabilizesfm+1;m+2;:::;m+ng,also.Conversely,eachpair(1;2)ofpermutation1ofthe rstmindicesand2ofthelastnindicesgivesapermutationofthewholesetofindices.LetXbethesetofthepermutations2Sm+nthatstabilizef1;:::;mg.Foreach2X,let1betherestrictionoftof1;:::;mg,andlet2betherestrictiontofm+1;:::;m+ng.And,infact,ifweplantoindextheentriesoftheblockDintheusualway,we'dbetterbeabletothinkof2asapermutationoff1;:::;ng,also.Notethat()=(1)(2).ThendetM=X2X()M(1);1:::M(m+n);m+n 374Duals,naturality,bilinearformsAnd,atthesametimesubtractingA1j=A11timesthe rstcolumnofAfromthejthcolumnofAfor2jmdoesnotchangethedeterminant,andthenewmatrixisA110DAlsobythepreviousexample,detA=detA110D=A11detDThus,puttingthetwocomputationstogether,det(A B)=An11detBdet(D B)=An11detB(detD)n(detB)m�1=(A11detD)ndetB(detB)m�1=(detA)n(detB)masclaimed.Anotherapproachtothisistoobservethat,intheseterms,A Bis0BBBBBBBBBBBBBBBB@A110:::00A11......0A11:::A1m0:::00A1m......0A1m......Am10:::00Am1......0Am1:::Amm0:::00Amm......0Amm1CCCCCCCCCCCCCCCCA0BB@B0:::00B......0B1CCAwheretherearemcopiesofBonthediagonal.Bysuitablepermutationsofrowsandcolumns(withaninterchangeofrowsforeachinterchangeofcolumns,thusgivingnonetchangeofsign),thematrixcontainingtheAijsbecomes0BB@A0:::00A......0A1CCAwithncopiesofAonthediagonal.Thus,det(A B)=det0BB@A0:::00A......0A1CCAdet0BB@B0:::00B......0B1CCA=(detA)n(detB)mThismightbemoreattractivethanthe rstargument,dependingonone'stastes.===Exercises25.[4.0.1]LetTbeahermitianoperatorona nite-dimensionalcomplexvectorspaceVwithapositive-de niteinnerproducth;i.LetPbeanorthogonalprojectortothe-eigenspaceVofT.(ThismeansthatPistheidentityonVandis0ontheorthogonalcomplementV?ofV.)ShowthatP2C[T].