/
OptimalWavebandSwitchinginWDMNetworksLi-WeiChen,PoompatSaengudomlert,E OptimalWavebandSwitchinginWDMNetworksLi-WeiChen,PoompatSaengudomlert,E

OptimalWavebandSwitchinginWDMNetworksLi-WeiChen,PoompatSaengudomlert,E - PDF document

tatyana-admore
tatyana-admore . @tatyana-admore
Follow
362 views
Uploaded On 2015-12-05

OptimalWavebandSwitchinginWDMNetworksLi-WeiChen,PoompatSaengudomlert,E - PPT Presentation

fiber 1 fiber 2 fiber N Nx NNx NNx N Fig1SwitchingrequirementsforanodewithdegreeThenodehasinput ID: 214817

fiber 1 fiber 2 fiber N .

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "OptimalWavebandSwitchinginWDMNetworksLi-..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

OptimalWavebandSwitchinginWDMNetworksLi-WeiChen,PoompatSaengudomlert,EytanModiano—Switchingtrafctogetherinbundlesofwavelengthswavebandscangreatlyreducetheswitchingcostsofthenet-work.Weconsidertheproblemofpartitioningwavelengthsintowavebandsforstarnetworksusingtheminimumnumberoftotalwavebands.Weprovideagreedyalgorithmforwavebandparti-tioningandshowthatitisoptimalinthatitrequirestheminimumnumberofwavebandssubjecttousingtheminimumpossiblenum-berofwavelengths.Wealsogiveanalgorithmforallocatingcallsfromanyadmissibletrafcsettothewavebandsinanon-blockingmanner.Finally,weshowthattheincreaseinthenumberofwave-bandsrequiredislogarithmicinthenumberofcallsandpolyno-mialinthesizeofthenetwork.I.INTRODUCTIONWithtrafÞcdemandscontinuingtoincreaserapidlyeachyear,wavelength-divisionmultiplexing(WDM)hasemergedasanattractivesolutionforincreasingcapacityinopticalnet-works.WDMallowsmultipledatastreamstobecarriedusingthesameÞberlink,aslongaseachdatastreamoccupiesadif-ferentwavelength[1].MuchoftheworkcurrentlyintheRWAliteratureconsidersroutingatthewavelengthlevel([2],[3],[4],[5],[6],[7],[8],[9]).Asthenumberofwavelengthsincreases,thecostofac-cessingandmanagingallthesewavelengthsateachnodegrowsrapidly,makingthisapproachdifÞculttoscale.Inparticular,eachnodeneedstobeabletoswitcheachwavelengthindepen-dently,increasingtheswitchingcomplexityrapidlyasthesize fiber 1 fiber 2 fiber N . . . . . . . . .. . .. . .. . .. . . . . . . . .. . .. . . . . .. . .. . . Nx NNx NNx N Fig.1.Switchingrequirementsforanodewithdegree.ThenodehasinputÞbersandoutputÞbers,andneedstobeabletoswitchanyofthewavelengthsoneachinputtoanyoutput.ThisrequiresWeconsidertheproblemofmultiplesourceanddestinationnodesinastartopology.Weexaminetheclassofwavelength-efÞcientbandingalgorithmsthatusenomorethantheminimumnumberofwavelengthsrequired,andprovideanoptimalband-ingalgorithmthatminimizesthetotalnumberofwavebandsrequiredsubjecttothisminimum-wavelengthconstraint.Wealsoderivethenumberofwavebandsrequiredasafunctionofthenumberofnodesandthenumberofcalls,andanalyzetheincreaseintherequirementsasafunctionofthetwoparame-A.SystemModelWeconsideranetworkconsistingofnodeswhereeach 1604 canconsideronlymaximaltrafÞc,sinceforanynon-maximalset,wecaninsertÞctitiouscallstoobtainamaximalset.Thesesetsarethecasesofinterestsincetheysendthemaximumpos-sibletrafÞcintothenetwork.[8]showedthatforsucha-nodetopologywithnowavebanding(or,alternatively,whereallwavebandsareofsizewavelengthsarebothnecessaryandsufÞcienttosupportanymaximaltrafÞcset.Thereforeaminimumofwave-lengthsarealsorequiredbyanywavebandpartitioningscheme.Wesaythatawavebandcanbefullyutilizedifitispossibletoassignenoughcallstothatwavebandsuchthateverywave-lengthinthewavebandisutilizedoneverylinkinthenetwork.NotethatforamaximaltrafÞcset,iftheminimumnumberofwavelengthsaretobeused,theneverywavebandmustbefullyutilized;otherwise,therewillexistalinkthatdoesnothavesufÞcientlymanywavelengths.ThisfollowsfromthefactthatmaximaltrafÞcsetshavecallsoneachlink,andonlyatotalwavelengthsareavailable.InSectionII,weaskthequestionofhowlargethelargestwavebandcanbebeforewecannotguaranteethatitcanbefullyutilizedbyanyadmissibletrafÞcset.ThiswillbeusefulinSec-tionIII,whereweshowthatoncewehaveanexpressionforthelargestwavebandsizethatcanbefullyutilized,agreedyalgo-rithmcanbeusedinconjunctionwiththisexpressiontorecur-sivelypartitionthewavelengthsintowavebands.Thegreedyapproachwillbeshowntobeoptimalinminimizingtheresult-ingnumberofwavebandssubjecttousingtheminimumnum-oftotalwavelengths.SectionIVdescribeshowtoassigncallsfromatrafÞcsettowavebandsgivenawavebandparti-tion,andprovidesanupperboundonthenumberofwavebandsrequiredbythegreedyalgorithm.TheboundwillshowthatthisnumbergrowsonlylogarithmicallywiththetotalnumberofwavelengthsII.MAVEBANDRecallthatformaximaltrafÞcsets,everywavebandmustbefullyutilizedifwearetouseonlytheminimumnumberofwavelengths.Inthissection,weconsidertheproblemofde-N,P,thelargestwavebandthatcanbefullyutilizedbyallmaximaltrafÞcsets,forgeneral-porttrafÞcin-nodestar.Theapproachwewilluseistoshowanequiv-alencebetweenamaximallyutilizedwavebandandamaximalbipartitegraphmatching,andthenrelyongraphtheoreticre-sultstoprovidenecessaryandsufÞcientconditionsforobtain-ingmaximalmatchings.WecanrepresentanytrafÞcsetonastartopologybyabi-partitegraph.Thegraphhastwosetsofnodeseach,denoted.Nodesinrepresentsourcesofcalls,whilenodesrepresentdestinations.Anedgeexistsbetweenanodeandanodeifthereisacallfromnodeinthestar.Theedgeisgivenaweightbasedonthenumberofcallsbetweenthatsource-destinationpair.DenotethesetofalledgesbyDeÞneamaximalmatchingtobeasetofedgessuchthatexactlyoneedgeisincidentoneverynodeinthebipartitegraph.Allcallsinamaximalmatchingcanusethesamewaveband,sinceeverycallleavingagivensourcenodegoestothesamedestination,andviceversa.Callsfromthemaximalmatching 1 4 2 3 1 2 3 4 1 2 3 4 21322123 Fig.2.A4-nodestarwithatotalof8calls,asdenotedbytheweightedarrows.Thecallscorrespondtoamaximalmatchingonthebipartitegraph,andcouldallÞtonasinglewaveband.Thewavebandcouldconsistofatmostasinglewavelength,sincemorecallsfromnode1to3cannotbefoundtofullyutilizealargerwaveband. 1 2 3 4 1 2 3 4 vN(v) 1 2 3 4 1 2 3 4 vN(v) Fig.3.ToapplythetestgivenbyHallÕsTheorem,asubsetofthesourceisÞrstchosen.Inthiscase,consistsof2nodes,andtheneighbor-contains4nodes.ThereforethetestispassedforthischoiceofThistestmustberepeatedforallpossiblechoicesofcanbeassignedtofullyutilizeawavebandofsizeatmostequaltothesmallestedgeweightinthematching.(Ifalledgesarenotofthesameweight,somecallsinthematchingwillnotbeassigned,andmustbeallocatedtosubsequentwavebands.)ThisisillustratedinFigure2.Therefore,theproblemofÞndingN,PcanbereducedtoÞndingthelargestwavebandsizeforwhichwecanstillbeguaranteedtoÞndamaximalmatchingwherethesmallestedgeisatleastequaltothatsize.Conveniently,atheoremexistswhichprovidesnecessaryandsufÞcientconditionsfortheexistenceofmaximalmatchings.Hall’sTheoremem:Inabipartitegraph,deÞnetheneighborhoodofasubsettobethosenodesinwhichareconnectedviasomeedgeintosomenodeinThenthereexistsamaximalmatchingifandonlyif,forevery,itsneighborhoodhassizeHallÕsTheoremthereforeprovidesthebasisfordeterminingtheexistenceofmaximalmatchings.Thefollowingtestisap-plied:asubsetofthesourcenodesischosen.Iftheneigh-borhoodofthesubsetisofsizegreaterthanorequaltothesizeofthesubsetitself,thetestispassed.ThisisshowninFigure3.Thetestisthenrepeatedforallpossiblesubsets.Ifthetestispassedforallsubsets,thenamaximalmatchingexists.Ifatleastonetestisfailed,thennomaximalmatchingexists.WecandetermineifawavebandofagivensizecanbefullyutilizedbyagiventrafÞcsetasfollows.DeterminethebipartitegraphcorrespondingtothetrafÞcset,anddeleteanyedgeswithweightlessthan.(Thisguaranteesthatanymaximalmatch-ingfoundwillhaveminimumedgeweightatleast.)ThetestsgivenbyHallÕsTheoremcanthenbeappliedtothisgraphtodetermineifamaximalmatchingexiststhatissufÞcientlylargetofullyutilizethewaveband.Ifthetestfails,thenawavebandofsizeistoolargetobesufÞcientlyutilized.ThistestshouldbeappliedtoallmaximaltrafÞcsetstoguaranteethatimalsetcanfullyutilizethewaveband. 1605 nm mP nm mP N-m (n-m)P (b)(a) Fig.4.Atmostcallscanbesenttonodesin,andhencecallsmustgotonon-neighborhoodnodes.Inprinciple,theprecedingapproachcouldbeusedtode-N,Pnumericallybybruteforce.However,wewillseethataclosed-formsolutioncanbeobtained.Themethodforobtainingtheclosed-formexpressionforN,PreliesonattemptingtoconstructabipartitegraphwhichcausesthetestgivenbyHallÕsTheoremtobefailed.(Inaslightabuseofnotation,wecallsuchabipartitematchingaÒcounterexampleÓ.)N,Pisthenthelargestwavebandsizeforwhichnocounterexampleexists.Inorderforthetesttobefailed,amaximaltrafÞcsetmustbefoundforwhichwecanchooseasuchthatthesizeoftheissmallerthanthesizeof.Wethereforewishtoconstructacounterexamplewhere,if,then,whereUnderthe-portmodel,thenodesincansendatmostcallstonodesin.Theremainingresidualtrafcthereforeatleast.Thesecallsaresenttonodesoutsidetheneighborhood,andhencemustbelongtoedgesadjacenttoanon-neighborhoodnode.Calltheseedgesneighborhoodedges.Non-neighborhoodedgeshaveweightlessthanN,Pandareremovedfromthegraphbeforethesearchformaximalmatchingsbegins,sincetheydonotcontainenoughcallstofullyutilizethewaveband.Thisisil-lustratedinFigure4.Thereareatmostneighborhoodedges.WecanthereforeconstructacounterexampleifandonlyiftheresidualtrafÞccanbedividedamongthenon-neighborhoodedgessuchthatnonon-neighborhoodedgehasweightgreaterthanorequaltoN,P.Sincetherearecallsandnon-neighborhoodedges,thereisatleastonenon-neighborhoodedgewithweightatleast N,Pischosentobeatmostthisnumber,thennocounterexampleexistsforthegivenvaluesof.WecanN,PtoguaranteethatcounterexampleexistsbyminimizingoverandchoosingN,Patmostthisminimum: =min nP WeÞxforthemomentandconsidertheminimizationover.Since,theminimizationissubjecttotheconstraint.Equation1isminimizedbychoosingsmallaspossible.Sincearebothintegerquantities,weshouldchoose;conversely,Makingthissubstitution,theminimizationbecomes: NŠ(nŠ1)](2)Sincetheceilingfunctionismonotonic, n[NŠ(nŠ1)]=minnP NŠ(nŠ1)]Ignoringintegralityconstraints,theright-handsizeiseasilyshowntobeminimizedat .Ifisodd,then anintegerandhenceisavalidchoicefor.Wesubsequentlyobtainavaluefor N+1 2N+1 2=4P +1)oddiseven,thensinceP/n isconvex,theminimizingvalueofmustbeoneoftheintegersadjacentto ,namely 2=N 2orN+1 2=N .Itiseasytoverifythateithercaseresultsinthesamevalueof N 2N 2+1=4P +2)evenInsummary, even III.OAVEBANDARTITIONINGThegoalofwavebandpartitioningistoassigneachwave-lengthtoawavebandsuchthat(1)foranyadmissibletrafÞcset,allwavelengthsinagivenwavebandcanberoutedtogetherwithoutbeingdemultiplexed,and(2)thetotalnumberofwave-bands(subjecttotheminimum-wavelengthconstraint)ismini-mized.Wewillshowinthissectionthattheoptimalmethodofaccomplishingthesegoalsistouseagreedyalgorithm.Thegreedyalgorithmforwavebandassignmentlooksatthewavelengthsrequiredtosupport-porttrafÞcanddeter-minesthelargestwavebandsizethatcanalwaysbefullyuti-lizedbyanyadmissibletrafÞcset.Itthencreatesawavebandofthislargestsize,andrepeatsthisprocessrecursivelyusingtheremainingwavelengths.Supposethesizeofthelargestwavebandis.Sincethelargestwavebandcanalwaysbeallocatedwithoutwaste,ithan-callstoandfromeachnode.TheremainingtrafÞc 1606 20 wavelengths14 wavebandswaveband partitioning Fig.5.Thewavebandpartitioningfora20-port5-nodestar.thereforeformsa-porttrafÞcset.Thegreedyalgo-rithmdeterminesthesizeofthelargestwavebandforthisresid-ualtrafÞcsetbyrepeatingtheaboveprocess,proceedingrecur-sivelyuntilallwavelengthshavebeenpartitionedintowave-Aformalstatementofthealgorithmisasfollows:1)Initializetobethenumberofportsandtobethenumberofnodes.2)Using(3),determine,themaximumsizeofwave-bandfora-nodestarsuchthatnowavelengthsinthebandarewastedregardlessofthetrafÞcset.3)Let4)Ifgoto1.NotethatthenumberofwavebandsN,Gusedbythegreedyalgorithmisnondecreasingin;thatis,N,GN,G.Thispropertywillproveusefullater.Example1:Considera5-nodestarwith=20.Usingthegreedyalgorithm,wewoulddeterminethatthelargestwave-bandshouldbe (N+1)2\f= (4)(20) Afterthisstep,17wavelengthsremaintobepartitioned.Repeating,wedeterminethenext-largestwavebandtobe .Thisleaves15wavelengthstobepartitioned.Iteratingthroughthisprocedureproducesawavebandparti-tioningof.Noticethatthere wavebandsconsistingofasinglewavelength.Therearealways single-wavelengthbandsforlarge .TheÞnalwavebandpartition-ingisshowninFigure5.Wewillnextshowthattheapproachofthegreedyalgo-rithmisoptimal,inthatitresultsinthecreationofthemini-malnumberofwavebandssubjecttotheminimum-wavelengthconstraint.Wedosoviaaninductionproof.Foranodestar,lettheminimumnumberofwavebandsrequiredbedenotedbyStep1:BaseCase Considerthecaseof=1.Thenthereisonlyasinglewave-length,andthemaximumbandsizeistriviallyequalto1.Thereforethegreedyalgorithm,whichwouldproduceasinglebandofsize1inthiscase,isoptimal.Step2:InductionStep Intheinductionstep,weconsidera-portstarandassumethatforanyvalueof,wearegiventhatthegreedyalgorithmisoptimal.WethenwishtoprovethatthegreedyalgorithmisoptimalforLetthenumberofwavelengthsassignedtotheÞrstwave-bandbythegreedyalgorithmbe,andletthenumberofwavelengthsassignedbyanyotheralgorithmbe.ThenwecanexpressthetotalnumberofwavebandscreatedbythetwoalgorithmsasN,GN,O,respectively.TheÞrstquantitycanbewrittenas:N,G)=1+N,G=1+withthesecondequalityresultingbecausebytheinductionhy-pothesisthegreedyalgorithmisoptimalfor.Thesecondquantityis:N,O)=1+N,OwherethesecondinequalityresultsfromthefactthatBytheinductionhypothesis,sincethegreedyalgorithmisoptimalfor,andthegreedyalgorithmisnon-decreasinginisalsonon-decreasingforComparingequations4and5andnotingthat,weconcludethatsinceisnon-decreasing,N,GN,Oandhencethegreedyalgorithmisoptimalforaswell,concludingtheproof.IV.RWAUAVEBANDSA.WavebandRWAAlgorithmThepartitioningofwavelengthsintowavebandsisaprocessthatisdoneonlyonceforanygivennetworkwithÞxed.ThewavebandsarereusedforanyadmissibletrafÞcsetsimplybyreconÞguringtheswitchatthehub.Whatnowre-mainsistheproblemofwavelengthassignmentandthesub-sequentswitchingofthewavebandsforeachadmissibletrafÞcset.Oncethisproblemissolved,whenthereisanewcallar-rival,thewavelengthassignmentandswitchsettingsaresimplyreconÞguredtosupporttheresultingnewtrafÞcset.Wecanusethesameapproachasinthedevelopmentandproofofthegreedyalgorithmforwavelengthassignment.Giventhewavebandpartition,wechoosethelargestwavebandandÞndasetofcallsthatfullyutilizethatwaveband.WeareguaranteedtoÞndsuchasetbyourchoiceof.Removingthosecallsfromconsideration,weproceedtothenext-largestwaveband,andrepeatrecursivelyuntilallcallsareassigned.Formally,giventhewavebandpartition,theprocedureforas-signingcallsfromanyadmissibletrafÞcsettowavelengthsinthosebandsisasfollows:ObtainasetofcallswhichfullyutilizesthelargestfreeThiscanbeaccomplishedbydrawingthebi-partitegraphcorrespondingtoalltrafÞccarryingmorecalls.FromSectionII,weknowissuf-Þcientlysmallthatamaximalmatchingwithminimumedgeweightatleastcanalwaysbefound.Assigncallsfromthatmatchingtofullyutilizethewaveband.Removeassignedcalls,andrepeat.RemoveallcallswhichhavebeenassignedwavelengthsfromthetrafÞcset.IfthetrafÞcsetisnowempty,stop.Otherwise,re-turntoStep1.Weemphasizethattheproblemofpartitioningthewave-bandsisdisjointfromthewavelengthassignmentforcallsinthetrafÞcset.ThewavebandpartitionisforagivenandanyadmissibletrafÞcsetusesthesamewavebandpartition;onlythewavelengthassignmentandswitchingchanges. 1607 B.UpperBoundonNumberofWavebandsHavingobtainedanoptimalalgorithmforallocatingwave-bands,itisnaturaltoaskhowmanywavebandsarerequiredforgivenvaluesof.Thequestionisrelevantbe-causeifroutingisdoneatthewavebandlevel,thenthenumberofwavebandsdeterminestheswitchingcost.Inprinciple,thenumberofwavebandscouldbedeterminednumericallybyit-eratingthroughthegreedyalgorithm(aprocedurethatisnotcomputationallydifÞcult)foreachsetof.Inthissection,analternateapproachbasedonrelaxingtheintegralityconstraintsassociatedwithisusedtoobtainaclosed-formupperboundontheoptimalnumberofwavebands.Considerthecaseofchoosingthelargestwavebandtobe ,wheretheintegralityconstraintsonhavebeenrelaxed.Wethenusethistoobtainanupperboundonthevalueofthelargestwavebandinthegreedyalgorithm,andtrackthevalueofthrougheachiteration.Letbethevalueofafterrunningtheiterationofthegreedyalgorithm.Itcanbeshownthattheseriesprogressedaccordingtotherelation: +1) ,thenthenumberofbandsissimplyequal sinceeachbandiscomposedofonlyasinglewave-length.Thereforeconsider anddeterminethenumberofbandsrequiredtoreducethenumberofunassignedwavelengthsto .Thenthetotalnumberofwavebandswouldbe .WeÞrstsolveforasfollows:+1) 4\r1Š4 +1)+1) 4k=log(N+1)2 4P log1Š4 Thisgivesanupperboundonthenumberofwavebands 4+log(N+1)2 4P log1Š4 (N+1)2�,P(N+1)2 P,P Toobtainasenseofhowquicklythenumberofwavebandsincreaseswith,weusetheapproximationthat,forlarge log1Š4 +1) whichgivesus+1) 1+log +1) 0 100 200 300 400 500 600 700 800 900 1000 0 20 40 60 80 100 120 140 PbandsNumber of bands for a 10node star actualbound Fig.6.Acomparisonoftheactualnumberofwavebandsrequiredfora10-nodestartotheupperbound.Fromthis,wecanseethatthenumberofwavebandsgrowswithorderlog(P/N.Figure6plotstheboundcom-paredtotheexactnumberofwavebandsrequired.V.CWeconsideredtheproblemofpartitioningwavelengthsintowavebandsforstarnetworks.Weprovideagreedyalgorithmforwavebandpartitioningandshowthatitisoptimalinthatitrequirestheminimumnumberofwavebandssubjecttousingtheminimumpossiblenumberofwavelengths.WealsogiveanalgorithmforallocatingcallsfromanyadmissibletrafÞcsettothewavebandsinanon-blockingmanner.Finally,weshowthatnumberofwavebandsrequiredgrowsaslog(P/Nisthenumberofportspernodeandisthenumberofnodes.[1]R.RamaswamiandK.N.Sivarajan,OpticalNetworks:APracticalPer-.MorganKaufmann,1998.[2]ÑÑ,ÒRoutingandwavelengthassignmentinall-opticalnetworks,ÓIEEE/ACMTrans.Networking,vol.3,pp.489Ð500,October1995.[3]L.LiandA.K.Somani,ÒDynamicwavelengthroutingusingcongestionandneighborhoodinformation,ÓIEEE/ACMTrans.Networking,vol.7,pp.779Ð786,October1999.[4]D.BanerjeeandB.Mukherjee,ÒWavelength-routedopticalnetworks:linearformulation,resourcebudgetingtradeoffs,andareconÞgurationstudy,ÓIEEE/ACMTrans.Networking,vol.8,pp.598Ð607,October2000.[5]A.Narula-Tam,P.J.Lin,andE.Modiano,ÒEfÞcientroutingandwave-lengthassignmentforreconÞgurableWDMnetworks,ÓIEEEJ.Select.AreasCommun.,vol.20,pp.75Ð88,January2002.[6]O.Gerstel,G.Sasaki,S.Kutten,andR.Ramaswami,ÒWorst-caseanal-ysisofdyanmicwavelengthallocationinopticalnetworks,ÓIEEE/ACMTrans.Networking,vol.7,pp.833Ð845,December1999.[7]P.Saengudomlert,E.Modiano,andR.G.Gallager,ÒOn-lineroutingandwavelengthassignmentfordynamictrafÞcinWDMringandtorusnet-works,ÓinProc.IEEEINFOCOM,April2003.[8]ÑÑ,ÒDynamicwavelengthassignmentforwdmall-opticaltreenet-works,ÓinProc.Allerton,September2003.[9]L.-W.ChenandE.Modiano,ÒEfÞcientroutingandwavelengthassign-mentforreconÞgurableWDMnetworkswithwavelengthconverters,ÓinProc.IEEEINFOCOM,April2003.[10]X.Cao,V.Anand,Y.Xiong,andC.Qiao,ÒPerformanceevaluationofwavelengthbandswitchinginmulti-Þberall-opticalnetworks,ÓinProc.IEEEINFOCOM,April2003.[11]R.Izmailov,S.Ganguly,V.Kleptsyn,andA.C.Varsou,ÒNon-uniformwavebandhierarchyinhybridopticalnetworks,ÓinProc.IEEEINFO-,April2003.[12]M.N.S.SwamyandK.Thulasiraman,Graphs,Networks,andAlgo-.NewYork:Wiley,1981. 1608 s.Inthisregion95%ofallrealizationsdonotreachspeedupsgreaterthan0:8s,andsomemayevendropbelow0:6s.As increases,however,the5%quantilerapidlyimprovestovaluesabove0:8s,andthemedianseemstogrowmonotonously.Ne where is the channel coefficient between the th transmit antenna and the th receive antenna. i,j’s are assumed to be In the literature, many research studies on survivability in WDM optical networks have focused on the recovery of point-to-point (unicast) traffic [4]-[9]. Yet, few research studies have focused on multicast traffic using concepts such as dedic x x2 x3 x4 x5 x6 x7 x8 x9 x First, the RF signal is downconverted to IF. Then a bandpass filter with a center frequency of i is employed to select the channel and suppress high frequency components. At this point, A/D conversion is performed, followed by quadrature downconversion of the IF signals to baseband and lowpass filtering. After some manipulations, the baseband signal observations are obtained as: X(n) = =AS(n). (4) INPUT STAGEOUTPUT STAGEnxmrxrmxn Fig.1.Schematicofathree-stageClosswitchwithinput/outputports.asabackuppathformostcircuitssothatbercutsandcomponentfailuresdonotleadtodisruptionofservicefortheir Wireless Broadband System

Related Contents


Next Show more