/
Basics of the parametric frailty model Basics of the parametric frailty model

Basics of the parametric frailty model - PowerPoint Presentation

tawny-fly
tawny-fly . @tawny-fly
Follow
419 views
Uploaded On 2016-04-23

Basics of the parametric frailty model - PPT Presentation

Luc Duchateau Ghent University Belgium Overview Frailty distributions The parametric gamma frailty model The parametric positive stable frailty model The parametric lognormal frailty model Frailty distributions ID: 289592

parametric frailty gamma theta frailty parametric theta gamma function ratio sij hazard conditional density list time population lwd fij udder results tau

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Basics of the parametric frailty model" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Basics of the parametric frailty model

Luc Duchateau

Ghent University, BelgiumSlide2

Overview

Frailty distributions

The parametric gamma frailty model

The parametric positive stable frailty model

The parametric lognormal frailty modelSlide3

Frailty distributions

Power variance function family

Gamma

Inverse Gaussian

Positive stable

General PVF

Compound Poisson

LognormalSlide4

Parametric gamma frailty model

Frailty density function (1)

Two-parameter gamma density

One-parameter gamma densitySlide5

Parametric gamma frailty model

Frailty density function examples

One-parameter gamma densitySlide6

Parametric gamma frailty model

Laplace transform of frailty density

Characteristic function

Moment generating function

Laplace transform for positive r.v.Slide7

Parametric gamma frailty model

Laplace transf. generates moments

Generate

n

th

moment

Use

nth derivative of Laplace transform

Evaluate at s=0Slide8

Parametric gamma frailty model

Gamma Laplace transform

Gamma Laplace transformSlide9

Parametric gamma frailty model

Joint survival function (1)

Joint survival function in conditional model

Now use notation

For cluster with covariates Slide10

Parametric gamma frailty model

Joint survival function (2)

Applied

to

Laplace

transform

of gamma distribution we

obtainSlide11

Parametric gamma frailty model

Population survival function (1)

Integrate

conditional

survival

function

Population

density functionPopulation hazard

function Slide12

Parametric gamma frailty model

Population survival function (2)

Applied

to

gamma

distribution

we have

Population hazard function Slide13

Graphically

#Set parameters

condHR

<-2;Ktau.list<-c(0.05,0.1,0.25,0.5,0.75)

Theta.list

<-2*

Ktau.list

/(1-Ktau.list);

Sij

<-

seq

(0.999,0.001,-0.001);

Fij

<-1-Sij

#Plot

population

/

conditional

hazard

plot(

Fij

,(

Sij

)^(

Theta.list

[1]),

xlab

="

Sx,f

(t)",type="n",

ylab

="

Population

/

conditional

hazard",

axes

=

F,ylim

=c(0,1.7))

box();

axis

(1,at=

seq

(0,1,0.2),

labels

=

seq

(1,0,-0.2),

lwd

=0.5);

axis

(2,lwd=0.5)

lines

(c(Fij,1),c((

Sij

)^(

Theta.list

[1]),0),

lty

=1,lwd=1)

lines

(c(Fij,1),c((

Sij

)^(

Theta.list

[2]),0),

lty

=2,lwd=1)

lines

(c(Fij,1),c((

Sij

)^(

Theta.list

[3]),0),

lty

=3,lwd=1)

lines

(c(Fij,1),c((

Sij

)^(

Theta.list

[4]),0),

lty

=4,lwd=1)

lines

(c(Fij,1),c((

Sij

)^(

Theta.list

[5]),0),

lty

=5,lwd=1)

legend(0,1.75,legend=c(

expression

(paste(

tau

,"=0.05, ",

theta

,"=0.105")),

expression

(paste(

tau

,"=0.10, ",

theta

,"=0.222")),

expression

(paste(

tau

,"=0.25, ",

theta

,"=0.500")),

expression

(paste(

tau

,"=0.50, ",

theta

,"=2.000")),

expression

(paste(

tau

,"=0.75, ",

theta

,"=6.000"))),

ncol

=2,lty=c(1,2,3,4,5))Slide14

Parametric gamma frailty model

Population vs conditional hazard

Slide15

Parametric gamma frailty model

Population hazard ratio

Using population hazard functions

For the gamma frailty distributionSlide16

Graphically

plot(

Fij

,(

Sij

^(-

Theta.list

[1]))/(1/

condHR+Sij

^(-

Theta.list

[1])-1)

,

xlab

="

Sx,f

(t)",type="n",

ylab

="

Population

hazard ratio",

axes

=

F,ylim

=c(1,2.5))

box()

axis

(1,at=

seq

(0,1,0.2),

labels

=

seq

(1,0,-0.2),

lwd

=0.5)

axis

(2,at=

seq

(1,2.5,0.5),

labels

=

seq

(1,2.5,0.5),

srt

=90,lwd=0.5)

lines

(c(Fij,1),c((

Sij

^(-

Theta.list

[1]))/(1/

condHR+Sij

^(-

Theta.list

[1])-1),1),

lty

=1,lwd=1)

lines

(c(Fij,1),c((

Sij

^(-

Theta.list

[2]))/(1/

condHR+Sij

^(-

Theta.list

[2])-1),1),

lty

=2,lwd=1)

lines

(c(Fij,1),c((

Sij

^(-

Theta.list

[3]))/(1/

condHR+Sij

^(-

Theta.list

[3])-1),1),

lty

=3,lwd=1)

lines

(c(Fij,1),c((

Sij

^(-

Theta.list

[4]))/(1/

condHR+Sij

^(-

Theta.list

[4])-1),1),

lty

=4,lwd=1)

lines

(c(Fij,1),c((

Sij

^(-

Theta.list

[5]))/(1/

condHR+Sij

^(-

Theta.list

[5])-1),1),

lty

=5,lwd=1)

legend(0,2.5,legend=c(

expression

(paste(

tau

,"=0.05, ",

theta

,"=0.105")),

expression

(paste(

tau

,"=0.10, ",

theta

,"=0.222")),

expression

(paste(

tau

,"=0.25, ",

theta

,"=0.500")),

expression

(paste(

tau

,"=0.50, ",

theta

,"=2.000")),

expression

(paste(

tau

,"=0.75, ",

theta

,"=6.000"))),

ncol

=2,lty=c(1,2,3,4,5))Slide17

Parametric gamma frailty model

Population hazard ratio example

Slide18

Parametric gamma frailty model

The conditional frailty density (1)

Assuming no covariate information

which corresponds for gamma with

~Gamma( , )Slide19

Parametric gamma frailty model

The conditional frailty density (1)

~Gamma( , )Slide20

Quadruples of correlated event times

Cluster of fixed size 4

Example: Correlated infection times in 4 udder quartersSlide21

Exercise

Fit gamma

frailty

model

with

Weibull

baseline hazard to time to infection data at udder quarter

levelSlide22

R Program gamma frailty model

setwd

("c://docs//onderwijs//survival//Flames//notas//")

udder <-

read.table

("udderinfect.dat", header =

T,skip

=2)library(parfm)

cowid<-as.factor(udder$cowid);timeto<-udder$timekstat<-udder$censor;heifer<-udder$LAKTNR

udder<-data.frame(cowid=cowid,timeto=timeto,stat=stat,heifer=heifer)parfm

(Surv(timeto,stat)~heifer,cluster="cowid",data=udder,frailty="gamma")Slide23

Parametric gamma frailty model

Example – parameter estimates

Udder quarter infection dataSlide24

Population and

con

ditional

hazards

Exercise

Depict

the

population hazard together with the

conditional hazards for frailties equal to the mean, median

and the 25th and 95th percentile of the frailty densitySlide25

Population and

conditional

hazards

R

program

lambda

<-0.838;theta<-1.793;alpha<-1.979;beta<-0.317time<-seq(0,4,0.1)condhaz

<-function(t){frail*alpha*lambda*t^(alpha-1)}marghaz<-function(t){(alpha*lambda*t^(alpha-1))/(1+theta*lambda*t^(alpha))}frail<-1;condhaz.frailm<-sapply(time,condhaz);marghaz.marg<-sapply

(time,marghaz);lowfrail<-qgamma(0.25,shape=1/theta,rate=1/theta);upfrail<-qgamma(0.75,shape=1/theta,rate

=1/theta)frail<-lowfrail;condhaz.fraill<-sapply(time,condhaz)frail<-upfrail;condhaz.frailu<-sapply

(time,condhaz)Slide26

Population and

conditional

hazards

Graph

miny

<-min(

condhaz.frailm,condhaz.fraill,condhaz.frailu)maxy<-max(condhaz.frailm,condhaz.fraill,condhaz.frailu)

par(cex=1.2,mfrow=c(1,2))plot(c(min(time),max(time)),c(miny,maxy),type='n',xlab='Time (year quarters)',ylab='hazard function')

lines(time,condhaz.frailm,lty=1);lines(time,marghaz.marg,lty=1,lwd=3)lines(time,condhaz.fraill,lty=2);lines(time,condhaz.frailu,lty=3)Slide27

Population

and

conditional

hazards

Plot

Udder quarter infection data

Heifer

Multiparous

cowSlide28

Population and

con

ditional

hazard ratio -

Exercise

Depict

the population and conditional hazard ratio as a

function of the poulation survival functionSlide29

Population and

con

ditional

hazard ratio -

R-program

#

Set parameterscondHR<-exp(0.317);theta<-1.793;Sij<-

seq(0.999,0.001,-0.001);Fij<-1-Sijpar(mfrow=c(1,1))#Plot population/conditional hazard ratioplot(Fij,(Sij

^(-theta))/(1/condHR+Sij^(-theta)-1),xlab="Sx,f(t)",ylab="Population hazard ratio",type="n",axes=F,ylim

=c(1,2.5))box()axis(1,at=seq(0,1,0.2),labels=seq(1,0,-0.2),lwd=0.5)axis(2,at=seq(1,2.5,0.5),labels=

seq(1,2.5,0.5),srt=90,lwd=0.5)lines(Fij,(Sij^(-theta))/(1/condHR+Sij^(-theta)-1))segments(0,condHR,1,condHR)Slide30

Population

and

conditional

hazard ratio

- plot

Udder quarter infection data

Multiparous cow versus heiferSlide31

The frailty density

mean

and

variance

time evolution - ExerciseDepict the frailty

density mean and variance time evolutionSlide32

The frailty density

mean

and

variance

time evolution - R-program#Plot E(u)plot(

Fij,(Sij^(theta)),xlab="Sx,f(t)",ylab="Conditional mean",type="l")Slide33

The frailty

density

mean

and

variance time evolution – plotUdder quarter infection dataSlide34

Parametric gamma frailty model

Kendall’s tau

Dependence measures developed for binary data. Take two random clusters

i

,

k

with event times

Position gives also covariate informationKendall’s tau is

or alternativelySlide35

Parametric gamma frailty model

Kendall’s tau for gamma frailties

Kendall’s tau can be expressed in terms of the Laplace transform (without proof)

Using the Laplace transform of the gamma frailty, we obtain

Slide36

The cross ratio

function

a

local

version

Kendall’s tau

We only consider bivariate data such as time to

reconstitutionConsider the bivariate risk set for two pairs and

This bivariate risk set takes values between its

maximal size s (number of clusters) and 2

Slide37

The cross ratio

function

definition

We

then

define

the local

measure as We can now

consider this local dependence measure for different

values of r, where r/s is a proxy for time in terms of

survival for uncensored data Slide38

The cross ratio

function

estimation

Consider

all

pairs

with

particular value r = ra and take ratio of concordant

and discordant pairs Often, we rather take a group of adjacent r

a’s due to low sample size We will work

this out of uncensored data, otherwise we need som further approximations

Slide39

The cross ratio

function

R

programme

#Read data

timetodiag

<-

read.table

("timetodiag.csv",header=T,sep=";")timetodiag<-timetodiag[timetodiag$c2!=0,];t1<- timetodiag$t1;t2<- timetodiag$t2numobs<-

length(t1);limit.low<-(seq(0,10)*10)+1;limit.up<- limit.low+9numpairs<-choose(numobs,2)

res<-cbind(limit.low,limit.up,NA);results<-matrix(NA,nrow=numpairs,ncol

=8) Slide40

The cross ratio

function

R

program

#Put

values

pairwise in

results sectioniter<-0for (i in 1:(numobs-1)){ for

(j in (i+1):numobs){ iter<-iter+1 results[iter,1]<-t1[i]

results[iter,2]<-t2[i] results[iter,3]<-t1[j] results[iter,4]<-t2[j]

}} Slide41

The cross ratio

function

R

program

#

determine

the

size of the risk set

for each pairfor (iter in 1:numpairs){ minval1<-min(results

[iter,1],results[iter,3])minval2<-min(results[iter,2],results[iter,4])temp<-timetodiag

[t1>=minval1 & t2>=minval2,]m<-length(temp$t1)results[iter,6]<-m}

Slide42

The cross ratio

function

R

program

#

determine

the cross ratio

function

for each group of ra valuesfor (i in 1:10){low<-

limit.low[i]up<- limit.up[i]temp<-results[results[,6]>= low &

results[,6]<= up,]conc<-0;discord<-0for (j in 1:length(temp[,1])){ signcomp<-

sign((temp[j,1]-temp[j,3])* (temp[j,2]-temp[j,4])) if (signcomp==1) conc<-conc+1

if (signcomp==-1) discord<-discord+1}res[i,3] <-conc

/

discord

}

Slide43

The cross ratio

function

Plot

and

add

model

based g(r)

resrplot((resr[,1]+ resr[,2])/(2*numobs

),resr[,3],xlim=c(1,0),xlab="Estimated survival function",ylab

="Cross ratio function")theta<-1.793cr<-theta+1segments(0,cr,1,cr)

Slide44

Parametric

gamma

frailty

model

Cross ratio

function

from modelThe cross ratio

function, a local measure:Interpretation: time

to recovery from mastitis Positive experience: constitution at time t

2For positively correlated data, we assume that hazard in numerator

>hazard in denominator Slide45

Parametric gamma frailty model

Cross ratio function example

Cross ratio for gamma density is constant

For the reconstitution data, we have

=0.47

=2.793Slide46

Parametric positive stable (PS) frailty model

The positive stable distribtion

Laplace transform

Infinite mean!Slide47

Parametric PS frailty model

Frailty density function examples

Positive stable density functionsSlide48

Parametric PS frailty model

Joint survival function

Joint survival functionSlide49

Parametric PS frailty model

Marginal likelihood (1)

Example: Udder quarter infections, quadruples, clusters of size 4

Five different types of contributions, according to number of events in cluster

Order subjects, first uncensored (1, …, l)

Contribution of cluster

i

is equal to

=0

>0Slide50

Parametric PS frailty model

Marginal likelihood (2)

Derivatives of Laplace transformsSlide51

Parametric PS frailty model

Marginal likelihood (3)

Marginal likelihood expression cluster

iSlide52

Parametric PS frailty model

Population survival function

Integrate conditional survival function

Population density functionSlide53

Parametric PS frailty model

Population hazard function

Population hazard function

Ratio population/conditional hazard Slide54

Parametric PS frailty model

Population vs conditional hazard

Slide55

Parametric PS frailty model

Population hazard ratio

Using population hazard functions

For the PS frailty distributionSlide56

Parametric PS frailty model

Population hazard ratio example

Slide57

Parametric

PS

frailty

model

R

programmeSlide58

Parametric PS frailty model

Example – parameter estimates

Udder quarter infection data

Cond. HR=

Pop. HR=Slide59

Parametric PS frailty model

The conditional frailty density

Assuming no covariate information, conditional density not PS, still PVF

Slide60

Parametric PS frailty model

Dependence measures

Kendall’s tau is given by

Cross ratio function

=0.47Slide61

Parametric PS frailty model

Dependence measures

Cross ratio function – two dimensional

Slide62

Parametric lognormal frailty model

Introduced by McGilchrist (1993) as

Therefore, for frailty we have

Slide63

Parametric lognormal frailty model

Frailty density function examples

Lognormal density functionsSlide64

Parametric lognormal frailty model

Laplace transform

No explicit expression for Laplace transform … difficult to compare

Maximisation of the likelihood is based on numerical integration of the normally distributed frailtiesSlide65

Parametric lognormal frailty model

Example udder quarter infection (1)

Numerical integration using Gaussian quadrature (nlmixed procedure)

Difficult to compare with previous results as mean of frailty no longer 1

Convert results to density function of median event time Slide66

Parametric frailty model

udder infection: lognormal/gamma