/
Using s::can probes to Using s::can probes to

Using s::can probes to - PowerPoint Presentation

tawny-fly
tawny-fly . @tawny-fly
Follow
411 views
Uploaded On 2017-08-25

Using s::can probes to - PPT Presentation

get realtime water quality data Martin Davis SOP Adv Field Methods in Hydrology Why monitor in the field Allows capture of data as notable events occur No need to transport samples back to the laboratory ID: 582122

water data part protocols data water protocols part quality instrument field monitoring site power precision installation interference spectroscopy nitrate

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Using s::can probes to" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Using s::can probes to get real-time water quality dataMartin DavisSOP – Adv. Field Methods in HydrologySlide2

Why monitor in the field?Allows capture of data as notable events occurNo need to transport samples back to the laboratory

Fewer concerns with contamination risk

Gives ability to more easily characterize changes and trends

Provides mobility for assessors without fixed locations

Allows for continuous monitoring of remote locations

Gives the ability to share data in real-time with collaborators

Provides rapid response ability for water contamination eventsSlide3

Who is using this technology?

USGS: Tracking Nitrate in the Mississippi RiverVienna Waterworks: Drinking water QC

Arizona Dairy Industry

: Reducing plant waste

Indian Government

:

Monitoring contamination in the Ganges river during Kumbh Mela festival

Virginia Tech: BSE department using it to track micronutrient levels in local streams

Slide4

A brief primer on spectroscopy

  Slide5

Protocols: Part 1 – Site Selection

SITE CHARACTERISTICSPotential for water-quality measurements at the site to be representative of the monitored system.Cross-section variation and vertical stratification.Unique constraints of channel configuration.

Range of stream stage (from low flow to flood) that can be expected over the measurement interval

Presence of existing monitoring or surveillance.

Water velocity.

Presence of turbulence.

Conditions that may enhance the rate of fouling, such as excessive fine sediments

or

algae

This is particularly important for spectroscopy

.

Range of values for water-quality field parameters.

Need for protection from debris damage.

Need for protection from vandalism.

Select an appropriate site: Factors to consider for site selection include:

MONITOR INSTALLATION

Type of state or local permits required

Safety hazards relevant to monitor construction

Optimal type and design of installation.

Consideration of installation challenges/costs.

LOGISTICS (MAINTENANCE REQUIREMENTS)

Accessibility of site.

Safe and adequate maintenance space.

Presence of conditions that increase the frequency of servicing intervals needed to meet data-quality.

For stream sites, proximity to an adequate location for making cross-section measurements.

Accessibility and safety of the site during extreme events (for example, floods or high winds).

Availability of electrical power or telephone service.

Need for real-time reporting.Slide6

Protocols: Part 2 – Instrument Choice

S::can instruments have many probes.All interface with a central control unit.Choice depends on things like cost & desired monitoring.

Spectrometer is the most robust, but the most difficult to configure & costly.

Slide7

Protocols: Part 3 – Installation Types

Pipes are convenient when there are existing monitoring stations in place at a survey site.Cages are easily transportable and inexpensive. They can provide some instrument protection, though not as much as fixed installations.Slide8

Protocols: Part 3 – Installation Types

Fixed-site pumped deployment is ideal if there is already a long-term installation available. It provides the maximum access control, and sensor protection. Costly.Buoys are mobile like cages and are more robust, but can be pushed off course if anchors break away. Slide9

Protocols: Part 4 – Port Access

Mounting Options and RequirementsWater must pass evenly through the instrument gap to be accurately measured by spectroscopy.Horizontal orientation decreases bubbles and sediment in the probe.

Secure installation prevents sensors from knocking into objects.

Vertical orientation is easier to put into place but cables must be

secured against damage.

For this type of monitoring to work, sensors must be clean & exposed:

Cleaning and Anti-Fouling Options

Screens may be used to prevent larger particles from entering the sensor. Certain metals such as copper also exhibit anti-fouling properties to prevent algal growth.

Polymer coats can inhibit deposition and microbial growth.

Wipers or brushes can be very effective at removing stubborn deposits but require power and maintenance.

Air blasts are easily automated and often have built in ports on the instruments.

Pumping water through a flow chamber at a gage house is ideal for controlling fouling and cleaning, but it is costly.Slide10

Protocols: Part 5 – Power & Cables

Power cable length, thickness, and quality of insulation are essential in achieving a steady input voltage necessary for continuous operation of the instruments.Degradation of battery terminals and sensor connectors is a common problem.Solar cells can provide a means to recharge a battery, but they are not perfect.

In permanent installations, wired power systems are an option.

Depending on the probe, output can be either analog or digital. Considerations like cable shielding are necessary for long cables with analog output.

Issues in controlling power to a field spectroscopy system

Left: An example of corroded battery terminals. Corrosion like this will impact instrument function. Periodic cleaning of contacts is necessary in the field, especially in sites with saltwater.Slide11

Protocols: Part 6 – Communications

Data from the probes is stored on a monitoring unit in one of two configurations:con::cubeOne box solution for data logging and instrument monitoring. Mini-PC with many I/O options.

Touch screen interface with plug and play options for s::can peripherals.

Data output via built-in USB, WIFI, Ethernet, or cellular modem (with SIM card and data plan).

Can interface with third party sensors through expansion ports in industrial settings

con::nect

Allows use of a standalone computer to control the instrumentation and data collection. Allows flexibility in fixed installations and eliminates the need to transfer data to a PC for processing.

Both the con::cube and the con::nect use the moni::tool software, either running on the user’s PC or cube. An online demonstration of the moni::tool web interface is available at:

http://monitool.s-can.at/index.x

.

Collecting and sending data from a field unit to a central repositorySlide12

Protocols: Part 7 – Data Quality

Interference from dissolved constituentsDissolved constituents which absorb light at similar wavelengths to the desired analyte can disrupt measurements obtained through spectroscopy. Their presence will increase absorptivity.In nitrate, for example, dissolved organic carbon, bromide, hydrogen sulfide, and other types of compounds can produce this type of interference. Advantages of using an s::can spectrometer over a conventional single or dual wavelength sensor allows for more complex spectral filtering.

Interference from suspended particles

Suspended particles will scatter light and can result in overestimating absorbance.

This scattering can vary and change both magnitude and shape of a curve.

High turbidity values can prevent an instrument from functioning beyond a certain threshold.

Ensuring that data is useful and filtering out noise

and interferenceSlide13

Protocols: Part 7 – Data Quality

Interference from dissolved constituents Interference from suspended particles (Both actual nitrate concentrations are in 1mg/L as Nitrogen)

Ensuring that data is useful, and filtering out noise and other undesirable effectsSlide14

Protocols: Part 7 – Data Quality

This figure presents a spectral fingerprint example with both filtered and non-filtered spectra.Compensating is typically done at the hardware level on most control units.Algorithms are dependent on the contents of the water and must be updated for new sites.

In the Easton Lab, our work originally used calibrations for wastewater effluent which had to be adjusted by the company to function properly in a stream.

Reading a spectral fingerprint and compensating for background valuesSlide15

Protocols: Part 7 – Data Quality

Sampling Interval vs. Reporting IntervalHow often do you want the instrument to take each measurement? Additionally, when reporting this data, do you want instantaneous values or a mean over a short measurement interval (to account for moment-to-moment fluctuations in absorption values)

Understanding detection limitations for various instruments, algorithms, and media

Bias can occur as discussed before due to turbidity or dissolved solids. It can also occur due to wear on the instrument, a dirty aperture, and a lamp which no longer provides enough light.

Bias can be accounted for with correction algorithms.

For the S::CAN spectro::lyser probe, the maximum error for bias correction is:

±6% of reading plus 3/optical path length (in mm; mg/L).

Ranges of data validity

Other items worthy of consideration when processing field data

Turbidity: 0–50 NTU, precision 0.05 NTU

Nitrite (NO2-N): 0–7 mg/L, precision 0.005 mg/L abs/m

DOC: 0–6 mg/L, precision 0.003 mg/L

Ozone: 0 –10 mg/L, precision 0.005 mg/L

Nitrate (NO3-N): 0–7 mg/L, precision 0.005 mg/L

TOC: 0–8 mg/L, precision 0.005 mg/L

Spectral Absorption (SAC254): 0–25 abs/m, precision 0.015

Color: 0–250 Hazen, precision 0.1 HazenSlide16

Protocols: Part 9 – Troubleshooting

From the USGS guide to optical techniques for determination of nitrate in situ. These guidelines are applicable in many cases to a variety of target analytes when using s::can units.Slide17

Protocols: Part 8 – Maintenance

Remote AccessRegular review of data collected by the instrument.Regular checking of sensor indicators (lamp hours, noise levels, power, internal temperature).Regular checking of system indicators (storage remaining, data transmission).

Flagging abnormal data for review.

Modifying the data collection and processing parameters as necessary.

Field Access

Inspections for damage, fouling, and corrosion on instrument and all connections.

Cleaning and servicing sensors as needed.

Checking the battery, solar panels, inverters, or other power components.

Downloading data and diagnostic information as necessary.

Manual sample collection for comparison to ensure data validity.

Performing diagnostics and maintaining quality data collectionSlide18

References

Pellerin, B.A., Bergamaschi, B.A., Downing, B.D., Saraceno, J.F., Garrett, J.A., and Olsen, L.D., 2013, Optical techniques for the determination of nitrate in environmental waters: Guidelines for instrument selection, operation, deployment, maintenance, quality assurance, and data reporting: U.S. Geological Survey Techniques and Methods 1–D5, 37 p.Lane, S.L., and Fay, R.G., 1997, Safety in field activities: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A9, October 1997, accessed Nov. 1, 2013, at http://pubs.water.usgs.gov/twri9A9/.Wagner, R.J., Boulger, R.W., Jr., Oblinger, C.J., and Smith, B.A., 2006, Guidelines and standard procedures for continuous water-quality monitors—Station operation, record computation, and data reporting: U.S. Geological Survey Techniques and Methods 1–D3, 51 p.

Langergraber, G., N. Fleischmann, F. Hofstaedter, and A. Weingartner. 2004. Monitoring of a paper mill wastewater treatment plant using UV/VIS spectroscopy. Water science and technology : A journal of the International Association on Water Pollution Research 49(1):9.

U.S. EPA. Technology Evaluation Report, s::can Measuring Systems Spectro::lyser. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-12/065, 2012.