/
AdvancedApproximationAlgorithms(CMU18-854B,Spring2008)Lecture27:Algori AdvancedApproximationAlgorithms(CMU18-854B,Spring2008)Lecture27:Algori

AdvancedApproximationAlgorithms(CMU18-854B,Spring2008)Lecture27:Algori - PDF document

test
test . @test
Follow
373 views
Uploaded On 2016-08-05

AdvancedApproximationAlgorithms(CMU18-854B,Spring2008)Lecture27:Algori - PPT Presentation

Inlecture19wesawanLPrelaxationbasedalgorithmtosolvethesparsestcutproblemwithanapproximationguaranteeofOlognInthislecturewewillshowthattheintegralitygapoftheLPrelaxationisOlognandhencethisistheb ID: 433816

Inlecture19 wesawanLPrelaxationbasedalgorithmtosolvethesparsestcutproblemwithanapproximationguaranteeofO(logn).Inthislecture wewillshowthattheintegralitygapoftheLPrelaxationisO(logn)andhencethisistheb

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "AdvancedApproximationAlgorithms(CMU18-85..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

AdvancedApproximationAlgorithms(CMU18-854B,Spring2008)Lecture27:AlgorithmsforSparsestCutApr24,2008Lecturer:AnupamGuptaScribe:VarunGupta Inlecture19,wesawanLPrelaxationbasedalgorithmtosolvethesparsestcutproblemwithanapproximationguaranteeofO(logn).Inthislecture,wewillshowthattheintegralitygapoftheLPrelaxationisO(logn)andhencethisisthebestapproximationfactoronecangetviatheLPrelaxation.WewillalsostartdevelopinganSDPrelaxationbasedalgorithmwhichprovidesanO(p logn)approximationfortheuniformsparsestcutproblem(wheredemandsbetweenallpairsofverticesisij=1),andanO(p lognloglogn)algorithmforthesparsestcutproblemwithgeneraldemands.1ProblemDenitionandLPrelaxationreviewRecallthatthethesparsestcutproblemisdenedasfollows.WearegivenanundirectedgraphG=(V;E)withnon-negativeedgecosts(orcapacities)ce=cijforalle=fi;jg2V2,non-negativedemandsijbetweeneverypairofverticesfi;jg2V2.Withtheedgecapacitiesandthedemands,wecanassociatevectorsc;2(n2)(n=jVj).Thesparsestcutproblemseekstond=minSVcS S=cap(S;S) dem(S;S)(1)wherecap(S;S)=Pi2S;j2Scijdem(S;S)=Pi2S;j2SijandS2(n2)isthecutmetricassociatedwithS:Sij=(0ifi;j2Sori;j2S1otherwiseToformtheLPrelaxation,werelaxtherequirementofminimizingoverthecutmetricstomini-mizingoverallmetrics.Thatis,=minmetricsdcd d1 Theaboverelaxationissolvedbythefollowinglinearprogram:minPi;jcijdijsubjecttoPi;jijdij=1dij+djkdik8i;j;kdij08i;j(2)Clearly,.Inlecture19,weprovedO(logn)byembeddingthemetricreturnedbytheLPinto`1withdistortionO(logn).2IntegralitygapforsparsestcutLPrelaxationAnaturalquestiontoaskis,canwegetabetterapproximationratiothanO(logn)usingtheLPrelaxation?Inthissectionwewillseethattheanswerisno,sincetheLPrelaxationhasanintegralitygapofO(logn).Claim2.1.Theintegralitygapbetweenandis\n(logn).Toprovetheaboveclaim,wewillrsttakeasmalldigressionandintroducethemaximumconcurrentowproblemwhichtakesthesameinputasthesparsestcutproblem.WewillshowthattheoptimalvalueofthemaximumconcurrentowproblemisequaltotheoptimalvalueofthesparsestcutLPrelaxationonthesameinputgraph.Finallywewillprovethattheintegralitygapofand=is\n(logn).2.1ThemaximumconcurrentowproblemDenition2.2.GivenanundirectedgraphG=(V;E)withnon-negativeedgecapacitiesce=cijforalle=fi;jg2V2,non-negativedemandsijbetweeneverypairofverticesfi;jg2V2.themaximumconcurrentproblemseekstomaximize,suchthatwecansendijowbetweenverticesiandjsimultaneouslyforallfi;jg2V2whilesatisfyingtheedgecapacityconstraints.Letdenotetheoptimalvalueofthemaximumconcurrentowproblem.Considerapartition(S;S)ofV.Thetotalowcrossingthispartitionisdem(S;S)whereasthecapacityofthepartitioniscap(S;S).Sincewecan'thavemoreowthanthecapacity,dem(S;S)cap(S;S)8SVandhence,minSVcap(S;S) dem(S;S)=Infact,themaximumconcurrentowvalueisexactlythesameastheoptimumvaluefortheLPrelaxation.2 Capacity edges Figure1:Aninstanceofthesparsestcut/maximumconcurrentowproblem.Fact2.3.Givenaninstanceofthesparsestcutproblem,andmaximumconcurrentowproblemonthesameinputgraph,=.Proof.TheprooffollowsbyobservingthattheLPrelaxationofsparsestcutproblemandtheLPforthemaximumconcurrentowproblemaredualsofeachother.TheLPforthemaximumconcurrentowhasavariablef(P)foreachsimplepathintheinputgraph.minsubjecttoPpathsPbetweeni;jf(P)ij8i;jPpathsPcontaininge=fu;vgf(P)Cuv8u;vf(P)08PThedualhasvariables ijand uvcorrespondingtothetwosetsofcontraintsabove:maxPijCuv uvsubjecttoPfu;vg2P uv ij8pathsPbetweeni;jPijij ij1 ; 0Nowifweconsider ijtobethedistancebetweeni;jand uvtobetheedgelengthoftheedgefu;vg,thenthisLPcanbecheckedtobethesameas. 2.2IntegralityGapsForexample,considerthegraphinFigure1.Thesolidedgesrepresentedgeswithcapacity1.Thedottededgesrepresentpairsfi;jgwithij=1.Remainingcapacitiesanddemandsare0.NotethatthevalueofthesparsestcutinthegraphinFigure1is=1(chooseanysolidvertexasthesetS).Furthermore,3 4.Ifsendunitsofowbetweeneverydemandpair,thetotalvolumeoftheowis8,sinceeachpathbetweenademandpairhastwoedgesandtherearefourdemandpairs.Thetotalcapacityis6,andhence3 4.Infact=3 4,bysending1 4unitsofowoneachofthethreepathsbetweenthewhiteverticesand3 8unitsoneachofthetwopathsbetweeneverypairofsolidvertices.3 Theorem2.4.[7]Theintegralitygapbetweenand(=)is\n(logn).Proof.LetG=(V;E)beaconstantdegreeexpanderwithunitcapacityoneachedgeci;j=18fi;jg2E,andunitdemandbetweeneverypairofverticesij=18i=j.WewillshowthatGhasalargebutsmall.(A)=minScap(S;S) dem(S;S)=minjSjn 2cap(S;S) jSjjSj=minjSjn 2cap(S;S) jSjq21 n;2 n=\n(1)\n1 nwherethelaststepfollowssinceminjSjn 2cap(S;S) jSjistheedgeexpansionwhichis\n(1)foracon-stantdegreeexpander.(B)Recallthefollowingclaim,whichfollowsfromproblem7inhomework5:Claim2.5.Inaconstantdegreeexpander(saydegree=10),\n(n2)pairsofverticesareatadis-tancegreaterthan1 10logn.Sinceallijare1,atleast\nn2lognvolumeofowisneededtosendunitsofowbetweenthese\n(n2)pairs.However,sincethegraphisaconstantdegreeexpander,totaledgecapacityisO(n).Therefore,O1 nlogn:Thiscompletestheproofof\n(logn)gapbetweenand,andhenceofClaim2.1. 3SDPrelaxationforsparsestcutToobtaintheLPrelaxation,wehadrelaxedtherequirementofminimizingoverallcutmetricstominimizingoverallmetrics.ToobtaintheSDPrelaxationweconsiderthefollowingtighterrelaxation: =mind2metric\`22cd dRecallthatann-pointmetricdisin`22(itisa“squared-Euclidean”metric)ifthereexistpointsv1;v2;;vn2ksuchthatthedistancesaredij=kvivjk22:Notethattheconditionthatthesquareddistancesformametric(i.e.,satisfythetrianglein-equality)isequivalenttosayingthatinthespacek,noneofthetrianglesbetweenthesenpointshaveobtuseangles.Notethat`22\metricformsaconvexcone.Somemorepropertiesof`22\metric:4 1.Ifd2`1,thend2`22.(Why?)Thisiswhatwerequiresinceweneedtooptimizeover`1andhencethefeasiblesetoftheSDPrelaxationshouldbeasupersetof`1.2.Ink,wecanhaveatmost2kpointswith`22metric(infact,anynegativetypemetric).Thisisachievedbythehypercube.3.Givennpointsontherealline1withthe`1metric,the`22embeddingofthesepointsrequiresndimensions—anewdimensionforeachpoint.(Usethistoinferthatd2`1)d2`22.)TheSDPtocompute isgivenby:minPi;jcijkxixjk2subjecttoPi;jijkxixjk2=1kxixjk2+kxjxkk2kxixkk28i;j;kxi2t8i(3)TheapproximationratiooftheSDPrelaxationnaturallydependsonhowwell(lowdistortion)onecanembedan`22metricinto`1.ThefollowingtheoremsgiveupperboundsontheintegralitygapfortheSDPrelaxation(3).Theorem3.1(Goemans,unpublished).IftheSDPreturnsasolutionink,thentheintegralitygapisO(p k).Theorem3.2([2]).Fortheuniformsparsestcutproblem(ij=18i=j),theSDPintegralitygapisO(p logn).Theorem3.3.[1]Forgeneralsparsestcut,theSDPintegralitygapisO(p lognloglogn).ThetechniquesusedinprovingabovetheoremsareusefulastoolstoroundSDPrelaxationsinminimizationsproblems(earlierwehaveseenroundingtechniquesformaximizationproblems).Goemans,andindependently,LinialmadethefollowingconjectureontheintegralitygapoftheSDPrelaxation:Conjecture3.4.[4,8]Theintegralitygapbetweenand is(1).TheGoemans-LinialconjecturewasrstdisprovedbyKhotandVishnoi[5]whoprovedan\nloglogn)1=6integralitygapforthenon-uniformcase.Thiswasthenimprovedto\n(loglogn)byKrauthgamerandRabani[6].Foruniformsparsestcut,\n(loglogn)integralitygapwasshownbyDevanur,Khot,SaketandVishnoi[3].3.1FromSDPrelaxationtosparsecutsInthissectionwewillseeanimportantstructuretheoremandsomeintuitionofhowthisstructuretheoremcanleadtoaO(p logn)approximationforthesparsestcutproblem;theproofwillbegiveninthenextlecture.5 Lemma3.5.StructureLemma[2]:Letv1;v2;;vnbepointsintheunitballinksatisfyingdij=kvivjk2isametric.Supposethepointssatisfythefollowing“well-spread-outproperty”:1 n2Pi;jdij=\n(1)ThenthereexistdisjointsetsSandTsuchthatjSj;jTj\n(n)andmini2S;j2Tdij\n1 p logn IntuitionfortheO(p logn)approximationintheuniformcase.Sincealldemandsarethesame,wecanscalethedemandsandsetthemtoij=1 n28i=j.NowtheSDPensuresthatXijdij=Xijdij=1 n2Xdij=1:Nowsupposewegotlucky,andtheSDPembeddingliesontheunitball,sothatwecanusetheStructurelemma.(Thiswillnothappeningeneral:we'llgivearigorousproofnexttime.)IfnowwepicktheSandTsatisfyingtheStructureLemmaandcutatarandomdistancefromS,theprobabilityanedgeeiscutis:Pr[edgeeiscut]=de 1 p logn=dep lognThustheexpectedtotalcapacitycrossingthecutis O(p logn).Furthermore,sinceSandTareboth\n(n)andthedemandsareequal,weloseaconstantinthedemandcrossingthecut. S log n1cut at a random T 3.2TheStructureLemmaisTightAnaturalquestionis,canwetightentheStructureLemmatoobtainabetterapproximation?Theanswertothisisno:anexamplewheretheStructureLemmaistightisthehypercubef1 p K;1 p KgK6 whereK=log2n.The`22distancebetweentwoverticesviandvjisgivenby:dij=kvivjk2=4Hammingdist(i;j) KToprovethis,considertwosetsS;TwithjSj;jTj=sforsomeparameterstobespeciedsoon.Thevertex-isoperimetricinequalityforthehypercubesaysthatforallsetswithsizes,thesetXthathasthefewestneighborsoutsideX(i.e.,thesmallestjN(X)nXj)isaballaroundsomevertex.Therefore,onesuchsetXwiththesmallestvertex-expansionisthesetjXjcontainingexactlythespointsclosestto1 p Kf1;1;;1g.AndhencejS[N(S)jjX[N(X)jforalljSj=s=jXj.Nowsupposewechoose:s=PiK 2q Klog(1 )Kithens nviatailboundsonthebinomialdistribution.LetSbeanysetofthissize,then:jS[N(S)jjX[N(X)j=PiK 2q Klog(1 )+1KiIteratingthis,ifwedeneSttobeallelementsatHammingdistancetfromS,wewouldhavejStjPiK 2q Klog(1 )+tKiFort=p Klog(1= )thiswouldbeatleastn=2.Similarly,jTtjwouldbeatleastn=2forthesamevalue.Sinceboththesesetscontainatleasthalftheelements,StintersectsTt,andhenceSandTare2t-closeinHammingdistance.Butt=O(p K),whichmeansthatthe`22distancebetweenSandTis4O(p K) K=O(1 p logn),whichprovesthefactthattheStructureLemmaistightuptoconstants.3.3ProvingaSmallIntegralityGapintheUniformCaseWeendwiththefollowinglemmaduetoRabinovich[9].Lemma3.6.[9]Fortheuniformsparsestcutproblemij=18i=j,supposethemetricdgivenbytheSDPembedsinto2`1suchthat,1.d2.Pi;jijPijdij ,thentheintegralitygapfortheuniformsparsestcutSDPisatmost .7 Proof.TheproofisverysimilartotheproofwesawfortheSparsestCutprobleminLecture19thatanembeddinginto`1withdistortion impliesanintegralitygapof .Sinceherewearedealingwiththeuniformcase,weshowthattheaverageconditionabovesufces.Indeed,c cd Pijcd Pdij =cd d =  Inthenextlecture,wewillseeatechniquetoembedtheSDPmetricinto1(andhence`1).References[1]S.Arora,J.Lee,andA.Naor.Euclideandistortionandthesparsestcut.InProc.37thSymp.onTheoryofComputation(STOC),pages553–562,2005.[2]S.Arora,S.Rao,andU.Vazirani.Expanderows,geometricembeddingsandgraphparti-tioning.InProc.36thSymp.onTheoryofComputation(STOC),pages222–231,2004.[3]N.Devanur,S.Khot,R.Saket,andN.Vishnoi.Integralitygapsforsparsestcutandminimumlineararrangementproblems.InProc.38thSymp.onTheoryofComputation(STOC),pages537–546,2006.[4]M.Goemans.Semideniteprogrammingincombinatorialoptimization.MathematicalPro-gramming,79:143–161,1997.[5]S.KhotandN.Vishnoi.Theuniquegamesconjecture,integralitygapforcutproblemsandembeddabilityofnegativetypemetricsinto`1.InProc.46thSymp.onFoundationsofCom-puterScience(FOCS),pages53–62,2005.[6]R.KrauthgamerandY.Rabani.Improvedlowerboundsforembeddingsintol1.InProceedingsofthe17thannualACM-SIAMsymposiumonDiscretealgorithm,pages1010–1017.ACMPress,2006.[7]F.T.LeightonandS.Rao.Anapproximatemax-owmin-cuttheoremforuniformmulticom-modityowproblemswithapplicationstoapproximationalgorithms.InProc.29thSymp.onFoundationsofComputerScience(FOCS),pages422–431,1988.[8]N.Linial.Finitemetricspaces-combinatorics,geometryandalgorithms.InProc.Interna-tionalCongressofMathematiciansIII,pages573–586,2002.[9]Y.Rabinovich.Onaveragedistortionofembeddingmetricsintothelineandinto`1.InProc.35thSymp.onTheoryofComputation(STOC),pages456–462,2003.8