/
Probab.TheoryRelat.Field114,309–399(1999) Probab.TheoryRelat.Field114,309–399(1999)

Probab.TheoryRelat.Field114,309–399(1999) - PDF document

test
test . @test
Follow
379 views
Uploaded On 2017-11-24

Probab.TheoryRelat.Field114,309–399(1999) - PPT Presentation

RescaledcontactprocessesconvergetosuperBrownianmotionintwoormoredimensionsRichardDurrettEdwinAPerkinsDepartmentofMathematicsandORIE278RhodesHallCornellUniversityIthacaNY14853USAemailrtd1co ID: 608844

Rescaledcontactprocessesconvergetosuper-BrownianmotionintwoormoredimensionsRichardDurrett EdwinA.PerkinsDepartmentofMathematicsandORIE 278RhodesHall CornellUniversity Ithaca NY14853 USA(e-mail:rtd1@co

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Probab.TheoryRelat.Field114,309–399..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Probab.TheoryRelat.Field114,309–399(1999) Rescaledcontactprocessesconvergetosuper-BrownianmotionintwoormoredimensionsRichardDurrett,EdwinA.PerkinsDepartmentofMathematicsandORIE,278RhodesHall,CornellUniversity,Ithaca,NY14853,USA(e-mail:rtd1@cornell.edu)DepartmentofMathematics,1984MathematicsRd.,UniversityofBritishColumbia,Vancouver,B.C.V6T1Z2,Canada(e-mail:perkins@math.ubc.ca)Received:2February1998Revisedversion:28August1998Weshowthatindimensionstwoormoreasequenceoflongrangecontactprocessessuitablyrescaledinspaceandtimeconvergestoasuper-Brownianmotionwithdrift.AsaconsequenceofthisresultwecanimprovetheresultsofBramson,Durrett,andSwindle(1989)byreplacingtheirorderofmagnitudeestimatesofhowclosethecriticalvalueisto1withsharpasymptotics.MathematicsSubjectClassi cation(1991):Primary60K35,60G57;Secondary:60F05,60J801.IntroductionOurcontactprocessestakesplaceona nelatticez=M.Thestateoftheprocessattimeisgivenbyafunction,where.x/0indicatesthatisvacantattime.x/thatthesiteisoccupiedbyaparticle.Thedynamicsofthisright-continuouscontinuoustimeMarkovchaincanbedescribedasfollows:(a)Particlesdieatrate1andgivebirthtoonenewparticleatrate(b)Whenabirthoccursatthenewparticleissenttoasitechosenatrandomfromthewith01,where SupportedinpartbyNSFgrantDMS-93-01070andbyanNSERCcollaborativegrantSupportedinpartbyanNSERCresearchgrantandanNSERCcollaborativegrant 310R.Durrett,E.A.Perkins(c)Ifisvacantanewparticleestablishesitselfthere.Ifisoccupied,thebirthissuppressedandnochangeoccurs.1thenparticlesdiefasterthantheygivebirthandinadditionlosebirthsontooccupiedsites,sotheprocessdiesout.Tobeprecise,ifwestartwithallsitesoccupiedi.e.,considertheprocessstartingfrom.x/1thentheprobabilityofanoccupiedsite,.x/,whichdoesnotdependon,tendsto0as.Harris(1974)wasthe rsttoshowthatifislargeenoughthen(a).x/decreasestoapositivelimitas,and(b)thelimitofthede nesastationarydistribution,.Simplemonotonicityconsiderationstellusthatconclusion(a)willholdforalllargerthan.x/Self-dualityofthecontactprocess(seeTheoremVI.1.7ofLiggett(1985))showsthat:limP.isalsothecriticalbirthrateforsurvivalofthecontactprocessstartingwithasingleoccupiedsite.Harris'originalboundofwasverylargebutHolleyandLiggett(1978)showedthatinthenearestneighborcasethat4inalldimensions.Therehasbeenmuchworkonnumericalboundsinparticularcases,mostcommonlythenearestneighborone.SeeStacey(1994)andLiggett(1985,1995),butnotethatourparameteristhetotalbirthrateontoanysiteratherthanthantherateofbirthfromasitetoaparticularneighbouringsite.ChapterVIofLiggett(1985),andDurrett(1988),(1992b)aregoodplacestolearnaboutcontactprocesses.Bramson,Durrett,andSwindle(1989)consideredtheproblemoftheasymptoticbehaviorofthecriticalvalue.M/forthelongrangecontactprocessasTheoremA..M/.Furthermore.M/C=MM/=MC=MwheremeansifisasmalllargepositivenumberthentherighthandsideisalowerboundforlargeToexplaintheanswer,webeginbyconsideringaninverseproblem:given=N,where0,howlargedoesneedtobetoallowthecontactprocesstosurvive?Forthebranchingprocesswith Super-Brownianmotionintwoormoredimensions311(sothatnewparticlesareneverbornontooccupiedsites)themeannumberofparticlesattimeisexp.t=N/,sotheprocesswillneedtimeO.N/becomesigni cantlysupercritical.Itisawellknownfactthatforthebranchingrandomwalkwhenatypicalparticleattimecountsthenumberofitsrelativeswithindistance1,theexpectedvalueoftheresultwillbeisthetimethenearbyrelativebrokeofffromtheancestraltreeofourtypicalparticleandistheprobabilitythatitstaysneartotheoriginalparticle.Theexcessbirthrateabove1isonly=Ninthecontactprocess,soforthistocompensateforthesuppressedbirthsweneedbelargeenoughsothatthefractionofoccupiedsiteswillbeoforder1Thatis,wechoosesuchthatBramson,Durrett,andSwindle(1989)usedbranchingprocessestimatesandablockconstructiontoshowthatwiththischoiceofthecontactprocessdiesoutforsmall0andsurvivesforlarge.Toapproachtheproblemofgettingsharpasymptoticswewillset=N,compresstimebyafactorof,andscalespacebyafactoroftocompensateforthetimescaling.Thatis,wedeclarethat:(a)Particlesdieatrateandgivebirthtoonenewparticleatrate(b)Whenabirthoccursatthenewparticleissenttoasitechosenatrandomfromthewith0(c)Ifisvacantanewparticleestablishesitselfthere.Ifisoccupied,thenthebirthissuppressedandnochangeoccurs.Nowisa xedrealnumber(althoughweareprimarilyinterestedinandweonlyconsidersuchthatThecase1hasbeenpreviouslystudiedbyMuellerandTribe(1995).Tostatetheirresult,werewritethecontactprocessasasetvaluedprocessby.x/andconsidertheapproximatedensityprocess.t;x/ TocheckthisscalingnotethatforsothelatticeisandtheaboveneighbourhoodwillcontainsitesbutonlyaboutO.Nparticlesby(1.1)andourspatialscalingby.Letdenotethespace 312R.Durrett,E.A.Perkinsofcontinuousfunctionsfromto[0withcompactsupportequippedwiththetopologyofuniformconvergenceandletlet;1/;C0/betheSkorokhodspaceofcadlag-valuedpaths.AspecialcaseoftheirresultshowsTheoremB.Iftheinitialconditions;x/approach;x/.t;x/convergesweaklyintothesolutionofthestochasticpartialdifferentialequation 6u00Cu2p udWdenotesdifferentiatioinwithrespecttoisaspace-timewhitenoise(seeWalsh(1986)),andwehaveconsideredarestrictedclassofinitialconditionstoavoidtheissueofgrowthconditionsat.Toexplainthelimit,resultsfromdisplacementofparticleswiththe63dictatedbythefactthattheuniformdistributionon[1]hasvariance13.Thedriftcomesfromthe“excess”birthrate,reectsthelostbirthsontooccupiedsites,andthe fromthefactthatwehavebirthsanddeathseachatrate1perparticle.ToprepareforourdiscussionofourTheorem1,notethatinprovingTheoremB,MuellerandTribeshowedtightnessoftheapproximationsinaspaceofcontinuousfunctions.Thusforlargenearbysiteshaveanalmostidenticalnumberofoccupiedneighbors,i.e.,theratioofthenumberofneighborsattwonearbysitesiscloseto1.Withoutthetheequationin(1.3)isthestochasticpartialdifferen-tialequation(SPDE)forthedensityofone-dimensionalsuper-Brownianmotion(seeReimers(1989)orKonnoandShiga(1988)).Whensuper-BrownianmotionissingularwithrespecttoLebesguemeasuresoequationslike(1.3)aremeaningless.Analternateapproachistocharacter-izesuper-Brownianmotionasthesolutionofameasure-valuedmartingaleproblem.Tothisendweintroducethespaceofboundedcontin-uousfunctionswhosepartialderivativesoforderlessthan1arealsoboundedandcontinuous().Letdenotethespaceof nitemeasuresonwiththetopologyofweakconvergence,gence,;1/;MbetheSkorokhodspaceofcadlagvaluedpaths,andbethespaceofcontinuous-valuedpathswiththetopologyofuniformconvergenceoncompacts.Integrationofawithrespecttoameasureisdenotedby./.Anadapted-valuedprocess(0)onacomplete lteredprobabilityspace.;;P/isright-continuous)isan-super-Brownianmotionstartingatwithbranchingratediffusioncoef cient0anddriftifandonlyifitsatis esthe Super-Brownianmotionintwoormoredimensions313followingmartingaleproblem:Forall.MP/ ;./././1=/dsisan-martingalewithZ./. /ds:Thelawofisthenuniqueand.MP/ ;holdsforalargerclassoftestfunctionsincluding.SeeTheorem2.3ofEvansandPerkins(1994)forthelatter.TheuniquenessfollowsfromDawson'sGirsanovthe-orem(seeTheorem5.1ofDawson(1978))andtheuniquenessoftheabovemartingaleproblemwith0.ThislatterresultmaybefoundinDawson(1994)(Theorem6.1.3)foraslightlylargerclassoftestfunctionsbutasourclassoffunctionscontainsacoreforthegeneratorofBrownianmotionontheBanachspaceofcontinuousfunctionswithlimitsatin nity(EthierandKurtz(1986),Proposition5.1.1)uniquenessthenfollowsintheabove.Ifinsteadof(1.2)wechoose,thenthesetofoccupiedsitesattimeisabranchingrandomwalk.De neameasure-valuedprocessby./ .x/forallboundedmeasurablefunctions.ResultsinChapter4ofDawson(1993)(seeTheorem4.6.2)thengiveTheoremC.Iftheinitialmeasuresapproachthenthesequenceofmeasure-valuedprocessesconvergestosuper-Brownianstartingatwithbranchingratediffusioncoef cientanddriftThepuristmaynoticethatourbranchingmechanismisslightlydifferentthanthatinDawson(1993)(onlyoneparticlejumpsateachbirthtime)andDawsonworksontheone-pointcompacti cation.Thenecessarymodi ca-tionsarestraightforward,moreoverTheoremCwillalsofollowfromtheeasypartsofourproofofTheorem1below.Sincethecontactprocesscanbedominatedbythebranchingprocessthatresultsbyignoringrule(c)andallowingbirthsontooccupiedsites,wemusthaveasingularlimitfortherescaledcontactprocessin2.Weagainassigneachparticlemass1andlookatthemeasurevaluedprocess 314R.Durrett,E.A.Perkinsde nedby./.x/.Hereforreasonsthatwillbecomeclearinamomentwehavesuppressedthedependenceon.Tostateourlimitresultweneedade nition.In3weletbei.i.d.uniformon[de netherandomwalkCC,andletlet�1;1]d=2dIndD2wesetTheorem1.Supposethat.Iftheinitialmeasuresapproachawithnopointmassesthenthesequenceofmeasure-valuedprocessesconvergesweaklyontoasuper-Brownianmotionstartingatwithbranchingratediffusioncoef cientanddriftToexplainTheorem1,webeginwiththeeasiercase3andagainlookattheunscaledbranchingrandomwalkinwhichbirthsanddeathseachoccuratratesO(1).Acloserlookatthereasoningthatledto(1.2)tellsusgivesanupperboundontheexpectednumberofneighborsofaran-domlychosenparticleattimesuchthatthelastcommonancestorofwasatatimebefore.Herex;yareneighborsif1.Thisimpliesthatifthenthenumberofneighborsoftwoparticlesintheunitspeed(andunscaled)branchingrandomwalkare“almostindependent”.Toseethisnotethat(1.4)showsthat,uptoasmallerrorapproaching0asweonlyneedconsidercontributionstothenumberofneighborsoffromcousinswhichbranchoffinthelasttimeintervaloflength.AsthisshowsthatmoduloasmallerrorthenumberofneighborsofthetwopointsdependsonadisjointsetofrandomwalkincrementsinthebranchingBrowniantreeandsoare“almostindependent”.Rescalingtimeandspaceweseethatthenumberofneighborsoftwoparticlesarealmostindependent.Thisandthelawoflargenumbersimpliesthattheamountofmasslostnearapoint Super-Brownianmotionintwoormoredimensions315tobirthsontoanoccupiedsiteisjustthemeannumberofneighborsofarandomlychosenpoint,,timesthemassthere.ThereasoningdescribedinthelastparagraphjustbarelyworksinTakingin(1.4)givesloglogSorescalingtimeandspace,weseemostoftheneighborsofaparticleareitsrelativeswithmostrecentcommonancestorlessthan1backintime.Thus,ifthenumberofneighborsoftwoparticlesarealmostindependent.Againthelawoflargenumbersimpliesthattheamountofmasslostnearapointduetobirthsontoanoccupiedsiteisjustaconstanttimesthemassthere,where logNNXnD1P�Un2[�1;1]2=22D3 thelastbyalocalcentrallimittheorem(seeSection8).Toturntheheuristicsinthelasttwoparagraphsintoaproof,wewillde neasequenceofapproximatingprocesseswiththesameinitialcon-.Likethecontactprocess,,thesedependonbutwewillnotexhibitthedependenceinthenotation.The rstprocessinthesequenceisthebranchingrandomwalkwhichresultsifweignorerule(c)inthede nitionofthecontactprocessaboveandallowbirthsontooccupiedsites.Withoutthecollisionrule,mayhavemorethanoneparticleatasitesoweregardasa“multi-set,”i.e.,asetinwhichrepetitionsofelementsisallowed.Forexample,a;a;b;b;b;cwouldrepresenttwoparticlesatthreeatandoneatFor1weletbethebranchingrandomwalkwiththecollisionrulethatbirthsontositesinaresuppressed.isanunderestimateofthecontactprocesssinceitremovesparticlesthatcollidewiththelargerset.Intheotherdirectionisanoverestimatesinceitremovesonlyparticlesthatcollidewiththesmallerset.Theprocessesareanalternatingsequenceofupperandlowerboundsthat,for xed,areequaltothecontactprocessfor.!;t/,i.e.,thenumberofiterationsneededdependsontherealizationandthetimeofinterest.Wewillnotusethisfactandsoleaveitsveri cationtotheinterestedreader.Fromtheapproximatingprocesses0wecande nemeasure-valuedprocesses./.x/ 316R.Durrett,E.A.Perkinswheresitesarecountedaccordingtotheirmultiplicitiesin.In1,weconjecturethatastheseprocessesconvergetolimitsthatarealldistinct.However,wecanproveProposition1.UnderthehypothesesofTheoremthenforallasNNoteherethatsothisresultimpliesthetotalvariationofapproaches0asuniformlyin.Sincethecontactistrappedbetweenitfollowsthatisasymptoticallythesameas.Giventhis,wecanproveTheorem1bydemonstratingProposition2.UnderthehypothesesofTheoremconvergesweaklyintosuper-Brownianmotionstartingatbranchingratediffusioncoef cientanddriftTheprocessismucheasiertoanalyzethanthecontactprocesssinceitisjustthebranchingprocessminusparticlesthatarebornontositesinthebranchingprocess.However,itstilltakesquiteabitofefforttoproveProposition2.AnoutlineoftheproofcanbefoundinSection2.Thedetails llupSections3to10.OnereasonforinterestinTheorem1isthatitallowsustosharpentheconclusionofaresultofBramson,Durrett,andSwindle(1989).Letting1bethenumberofneighborsasitehas,andrecallingarerelatedby(1.2),wecannowre neTheoremAasfollows:Theorem2..M/M/=MV/=VwheremeanstheratioapproachesoneasapproachesTheblockconstruction,asdescribed,forexample,inSection4ofDurrett(1995b),makesthisafairlystraightforwardconsequenceofTheorem1.ThedetailsofthelowerandupperboundsneededtoproveTheorem2aregiveninSections11and12.1,MuellerandTribe(1994)haveshownthatthelimitingSPDEinTheoremBhasacriticalvalue,,belowwhichthereisa.s.extinctionandabovewhichthereislongtermsurvivalwithpositiveprobability.Inviewofthisitisnaturalto Super-Brownianmotionintwoormoredimensions317Conjecture..M/ Toprovethisseemsdif cult.OurproofofTheorem2makescrucialuseoftwofacts:(i)thesupercritical-subcriticalphasetransitioninsuper-Brownianmotioncanbeidenti edbybylookingatthemeannumberofparticles,and(ii)bycomputingsecondmomentswecanidentifyasuitableblockeventforthelimitingprocess.NeitheroftheseisavailablefortheFor2,Theorem2givesthefollowingasymptoticresultforthecriticalvalueofthecontactprocessforanneighbourhoodwith.V/ logV Toinvestigatethequalityofthisapproximationfor niterangewehavesimulatedtheprocesswith2,i.e.Forthesimulationitisconvenienttochangethetimescalesothatandthedeathrate,,istheparametersothatwecansimulatetheprocessforallvaluesofsimultaneouslyusingthemethodsofButtel,CoxandDurrett(1993).Inthegraphbelowwehaveplottedthefractionofoccupiedsitesattime5000asafunctionof,startingfromacon gurationofallsitesoccupiedinthe10001000gridandwithperiodicboundaryconditions.Theestimateoffromtheformulaisabout125whichleadstoanestimateof45forthecriticalvalueof.Thislatterestimateishigherthanthecriticalvalueof23obtainedfromthesimulation.Note,however,thatthestraightlinefromdoesamuchbetterjobofestimatingtheequilibriumdensityofparticlesthanTheorem2ofBramson,DurrettandSwindle(1989)which,whenrewrittenintermsof,says.x/InprincipleonecoulduseourmethodstosharpenTheorem3ofBramson,DurrettandSwindle(1989)andgivecorrectionsto(1.6).Weleavethistasktoanenergeticreader.2.OutlineoftheProofandconsideronly0.Webeginbyconstructingtheprocesseswhichliveontherescaledlattices 318R.Durrett,E.A.Perkins Figure1Wehaveseparatedthescalingintotwopiecessincethe rstcompensatesforthefactthatbirthsoccuratrate,whilethesecondincreasesthenumberofneighborsasitehas.Sincewewanttorelatethebehaviorofthelongrangecontactprocesstothatofabranchingprocess,wewilluseabranchingprocesstypeconstructionforthecontactprocessratherthantheusualgraphicalrepresentation.LetLetnD0�Nf0;1gnbethesetoflabelsfortheparticlesinourprocess.The rstterminthe,labelstheinitialparticlesThroughout,wewillASSUMEthattheinitialstateconsistsofa nitenumberofparticlesthatarelocatedatdistinctsitesandthat Toconstructthetimeevolutionweusuallysuppressdependenceonandworkonacompleteprobabilityspace.;;P/containingthefollow-ingindependentcollectionsofrandomvariables: Super-Brownianmotionintwoormoredimensions319arei.i.d.exponentialwithrate2arei.i.d.withP. P. arei.i.d.withP.eP.earei.i.d.uniformonDeathsoccuratrateandbirthsatrate,soisthetimeuntilabirthordeathaffectsparticle.Theeventisadeathif1andabirth1.Theparticle. ;eisdisplacedfromitsparentbyan,whiletheotherparticle. ;remainsatthelocationof. ;i/isanewmemberofobtainedfrombyaddingacoordinateattheend.)thenwesayisingenerationandwrite.Ifwewritefortheancestorofingeneration.If0thenweusetodenoteitsparent,i.e.,itsancestoringeneration1.If0thisisthe1generationwhichdoesnotexist,soweset,theemptystring.Fromthede nitionsaboveitshouldbeclearthatistheendofthelifeofparticle.Sinceisaparticlethatdoesn'texist,itisreasonabletodeclarethatitdiedattime,i.e.,D�1.Lett/.Twhichweassumehasbeencompletedbyaddingallthenullsets.Tocomputethepositionsofparticles,webeginbynotingthatthedisplacementofthejumpingparticleattime.Thefamilylineofismovedwhendiesif,sowede nethepositionofthefamilylineofattimehereismeanttosuggestBrownianmotion,astoppedversionofwhichisthelimitof(thestoppingtime). 320R.Durrett,E.A.PerkinsThebarisaddedheresothatitcanberemovedinthenextparagraphinthedisplacementprocessthatwewilluserepeatedly.Uptothispointwehaveignoredthedeaths.TotakethemintoaccountNotethatwhenthesetoftimesisempty,wehaveinf'sproducedeaths,thefamilylinediesoutattime(orceasestomakesenseattime)andwelettistheusualcemeterystateofMarkovprocesstheoryusedtoindicatethattheparticleisnolongeralive.Inanumberofinstanceswewillbeinterestedinthespatiallocationofparticle.Sinceisaliveon[andnevermoves,wecanwriteindicatesthatthelastquantityisashorthandwewilluseforthe rsttwo.WewritetT.Inwords,labelsaparticlebealiveattime.TriviabuffswillwanttonotethatifD�1,sotheparticlesintheinitialcon gurationareactuallyaliveatallnegativetimes.Wewilladopttheconventionthat.1/0,forallfunctionssothatdeadparticlesdon'tcontributetooursums.Countingonlytheparticlesthatareactuallyaliveleadstoour rstmeasure-valuedprocesses,thebranchingrandomwalk.Thisandallthesubsequentmeasure-valuedprocesseswillbede nedbyintegratingaboundedmeasurabletestfunctionwithrespecttotheprocess:./ .BNotethatdependsoneventhoughwehavenotrecordedthisde-pendenceinthenotation.Whenweneedtodisplaythe,wewillwriteisameasure,letsuppdenoteitsclosedsupport.Ifisameasure-valuedpathwhichiscadlag,recallthede nitionoffrom(2.4)andlet Super-Brownianmotionintwoormoredimensions321Inwordsthesecondtermidenti esthe rsttimethatajumpinthefamilylineoflandsonasitethatisalreadyoccupied,i.e.,in.Withthisnotationintroduced,wecande nethecontactprocesssimplyastheunique“strongsolution”of./ .B.X�/t/Theexistenceanduniquenessofthesolutionaretrivialforaninitial nitesetofparticlessincewecansuccessivelydecidewhattodoattheeventWecannowde nethesequenceofprocesses1introducedintheprevioussectionby:./ .BNotethatinthecase0thisreducestothede nitionofthebranchingrandomwalkgivenin(2.5).(Anyonewhoisconcernedthatisnotde nedwhen0canletthisprocessbe0.)asmeasures(i.e.,././forall0),comparing(2.6)and(2.7)shows,againasmeasures.RepeatingthisreasoninggivesThe rststepinourderivationofPropositions1and2istowritedownastochasticequationfor1,whichinthelimitwillapproachthemartingaleproblemcharacterizingthelimitingsuper-Brownianmotion.Wewillonlyhavetodothisfor1and2butformostoftheproofitwillbeeasiertowriteouttheargumentsforageneral.Toderiveourequation,westartwiththeobservationthataspassesthroughtimelosetheparticle,butifwehaveabirtheventthenanewparticlewillexistatthesamelocation,,andasecondparticlewillexistatifitdoesnotlandonanoccupiedsite:././ .BB.B.BTakingadvantageofthefactthatwecanrewritethelastexpressionas(justcheckthetwocases) 322R.Durrett,E.A.Perkins .B.B.Bbysubtractingitsexpectedvalue,wecande neandsplitthe rstterm(involving.B)intotwopieces: N1�n �B g C /=.anddosomearithmetictowritethesecondtermin(2.9)asthesumofthefollowingthreeterms: .B.B .B.B .BTocheckthiseasily,beginbycombiningthesecondandthirdterms.Summingin(2.9)over,telescopingthesum,recallingtheabovede nitionof,andintroducing.t/t;t;/;nasshorthandfor“wasaliveinbutdiedbeforetime,”wehave././ .t/.B .t/.B .t/h/h.B.B .t/.B.B .t/.BByintroducingnotationforthevariousterms,wecanrewritethelastequa-tionbrieyas Super-Brownianmotionintwoormoredimensions323./././././././Notethisisvalidfor0,inwhichcase0byourconventionthat./isthe“collisionterm”whichcountsthenumberofbirthsontooccupiedsites.Theanalysisofthistermwillbethehardpartoftheargument,sowebeginwiththeotherfourterms.Here,andinwhatfollows,./are“error”termsthatwillgoto0,theare“drift”termsthatwillhavenon-zerolimitswhicharelocallyofboundedvariation.ThroughoutthispaperwewillASSUMEthatandlet.x/Foranumberoftheresultsthisconditioncanbeweakenedto:isboundedandmeasurable(or:isLipschitzcontinuous).However,we nditcon-venienttouseonecollectionoftestfunctionsforalltheresults.Let=..InSection3weestablishthefollowingresultsforLemma2.1../isan-martingalewith./ /dr././ //drLemma2.2.Forall././drLemma2.3.Forall./.1=/drLemma2.4.Forall0lim./The rstthreeconclusionsarestraightforwardtoproveandarewhatoneshouldguessbycomparisonwiththecorrespondingpartsof(2.10),i.e.,the rst,second,andfourthlines.Tohandletheerrorterm./,notethatifweremovethemean-zerorandomvariablesfromthede nition,itisequalto././.Intuitively,if././staysbounded,thentheshouldcausecancellationsthatdrive./to0.Toturnthisideaintoaproofwebound./abovebythe“collisionterm”ofthebranchingrandomwalk. 324R.Durrett,E.A.PerkinsLemma2.5.Thereisaconstantsothat.t/C.XNoticeaboutconstants.Thisresulthasthe rstofalargenumberof'sthatwillappear.Alloftheseconstantsmaydependonthedrift,thetimeand(thoughitisvacuoushere)onthetestfunction.However,for xedourconstantC.;t/willbeboundedoncompactsubsetsofof;1/.Thisconditionisobviouslysatis edwhenever.;t/isacontinuousfunction.willneverdependon,orontheinitialconditionLemma2.5indicatesthatwehaveenoughneighborssothattheamountofmasslostduetointerferenceis.ThisresultisprovedinSection4,byprovingtworesults,Lemmas4.1and4.4thatinvestigatetheamountofinterferencebetween(i)unrelatedindividualsand(ii)individualswithacommonancestoringeneration0.InLemmas5.1and5.3,wesharpenthetwoboundsinSection4toshowthatiftheinitialconditionsameasurewithnopointmasses,then“collisionsbetweendistantrelativescanbeignored.”Heredistantmeansthattheirmostrecentcommonancestorwasmorethanunitsoftimeinthepastwhere(i)in(ii)inTheseobservationsarethekeytoourresultforthecollisionterm.Lemma2.6.Thenforandany././drToargueintuitively,notethatifislargethentwoindividualsthatarerelatedwithinunitsoftimeliewithin distanceinspacewithhighprobability.Fromthisweseethatthecollisiontermhasacorrelationlengththatvanishesinthelimit,andthenumberofcollisionsinaregionbecomesaconstanttimesthemassoftheprocessthere.AnoutlineoftheproofofLemma2.6canbefoundinSection6.TheretheresultisbrokendownintosevenlemmasthatareprovedinSections6–10.Ratherthandescribethosetechnicalitiesnow,wewillinsteadexplainwhyLemmas2.1–2.6areenoughtoprovePropositions1and2,andhenceTheorem1.ThenextstepinthatdirectionistheProofofProposition1.Subtracting(2.11)with1and2fromthesameformulawith1andusingLemmas2.1–2.6showsthat Super-Brownianmotionintwoormoredimensions325/dr.t/.t/0.Sinceisamartingale,takingexpectedvaluesandletting.t//X1t.1/�X2t.1/]0showsthat.t/.r/dr.t/.t/.t/.AformofGronwall'slemmaimpliesthat.s/.s/.t/andhenceE.X.t/0(2.14)Toputthesupremuminsidetheexpectedvaluewehavetolookatthemartingaledifference.Themaximalinequality(appliedto)combinedwiththefactthatisamartingalenullat0impliesthatUsingLemma2.1now,wehave //drCombining(2.14)–(2.16)wehavethatas.t/0(2.17)Returningto(2.13)now,wecanlet.t/notethatthedifferenceinsidetheabsolutevaluesisalwayspositive,and 326R.Durrett,E.A.Perkins.t/.t/.r/dr.t/Againifwelet.t/.t/.t//.t/.t/ TurningnowtoProposition2,wehavefromtheabovelemmas:Foreach./././1=/ds././isan-martingaleasinLemma2.1and./denotethelawof.!/!.t/denotethecoordinatevariableson.ToprovetightnessofweusethefollowingspecializedversionofJakubowski'sgeneralcriteriononon;1/;E/Polish(seeTheorem3.6.4ofDawson(1993)).Recallthatisaseparatingclassifftheintegrals./uniquelydetermineLemma2.7.beaseparatingclasswhichisclosedunderaddition.AsequenceofprobabilitiesistightiffthefollowingconditionsForeachT;�thereisacompactsetT;suchthatT;:(ii)lim&#x-277;/M/./thenforeachistightinin;1/;R/.Thederivationofthisresultfromthemoregeneralresultscitedaboveisstraightforward(seeTheorem3.7.1ofDawson(1993)fortheslightlysimplersettingoftheone-pointcompacti cationofRecallthatisthespaceofcontinuous-valuedpathswiththecompact-opentopology.SpecializingtheaboveresultfurtherwehaveLemma2.8.satisfyhypothesisofLemmaandforeachistightinandalllimitpointsaresupportedsupported;1/;Rd/.ThenistightinandalllimitpointsaresupportedonProof.Taking1,weseethatourassumptiononreadilyimplies(ii)inLemma2.7(seeTheorem3.10.2ofEthierandKurtz(1986)).Lemma Super-Brownianmotionintwoormoredimensions3272.7showsthatistighton.Letbealimitpoint.IfP.X./isalimitpointofandsoissupported.Letbeacountablesubsetofthefunctionsinwithcompactsupportwhichisdenseinthespaceofcontinuousfunctionswithcompactsupportin.Then./iscontinuousforalla:s:aseparatingclass,thisimpliesforalla:s: Lemma2.9.denotethelawofacontinuoustimerandomwalkstartingatwhichatratetakesastepuniformlydistributedover.IfisboundedandmeasurablethenE.X.//..B.dx/andthereisaconstantC.;t/suchthatE.XXX00.1/CX00.1/4]:Proof.Thisfollowsfromtheknownmomentmeasuresofabranchingran-domwalkstartingfromasingleparticle.SeeforexampleLemma2.2ofBramson,DurrettandSwindle(1989)(andset.=N/inthatresult).Afewsimplemomentinequalitiesforsumsofi.i.d.randomvariablesareneededtoderivethesecondresultfromthelemmainBramsonetal.whichassumesasingleinitialparticle. Lemma2.10.istightonandalllimitpointsaresupportedbyProof.WeapplyLemma2.8.Let/;T�0,andfor1choosechoose;1]suchthat;R/.x/.x/andallthederivativesofofordertwoorlessareuniformlybounded.x;r/.By(2.2),Lemma2.9andtheweakconvergenceoftherandomwalksinthatresulttoBrownianmotion,wemaychoosesuf cientlylargesothatE.X.B.;R///Theanalogueof(2.18)for(omitthekillingterm)gives:.h/ds 328R.Durrett,E.A.Perkinsisanmartingalesuchthat /ds0forallTherefore,applyingChebychevoneachtermandthen(2.19),weseethat�// E.X//ds E.X.B.;R///ds cT .cT/;wherethelastinequalityisvalidforsuf cientlylarge.As,(i)ofLemma2.7isnowobvious..Wewilluse(2.18)toverifytheotherhypothesisofLemma2.8.If0tu,then1=/dsc./E/dsc./E.Xc./.uwherewehaveusedLemma2.9inthelastline.Thisshowsthat.t/1=/dsde nesatightsequenceofprocesseson(e.g.byTheorem8.3ofBillingsley(1968)).Turningnowtothemartingaletermsin(2.18),arguingasaboveweseefromLemma2.1that./isatightsequenceofprocesses.Notethatbyde nition,sup./.TheoremVI.4.13andPropositionVI.3.26ofJacodandShiryaev(1987)nowshow./isatightsequenceinandalllimitpointsaresupportedby.Theseresultswith(2.18)andCorollaryVI.3.33ofJacodandShiryaev(1987)showthatistightinandthatalllimitpointsaresupportedon.Lemma2.8nowcompletestheproof. Super-Brownianmotionintwoormoredimensions329ItisnowstraightforwardtoproveProposition2.Letbealimitpoint.Thenisalawonandwemustshowitsatis esthemartingaleproblem.MP/fromSection1whichcharacterizessuper-Brownianmotionwiththeappropriateparameters.BySkorokhod'stheoremwemayassumethat(nowmakingdependenceonexplicit)a.s.Letandset./././1=/dsWemustshowthat././/ds,whereisthecanonicalright-continuous ltrationgenerated.Weonlyshowthelatterasitisslightlymoreinvolved.Fix0st,andletbeboundedandcontinuous.Write./forthemartingaletermin(2.18)withBytakinganothersubsequenceweseefrom(2.18)thatsup././0forall0a.s.UseLemma2.9forthenecessaryuniformintegrabilitytoconclude././/dr././ 0(by(2.18))ThiscompletestheproofofProposition2andhenceprovesTheorem1,moduloLemmas2.1–2.6.3.ThefoureasyconvergencesInthissection,wehavetwoaims.Firstwewillintroducesomeusefulmartingales.ThenwewillproveLemmas2.1–2.4.Lemma3.1.isaright-continuous ltration.ForeachForallare-stoppingtimes.ForallareTheseclaimsareintuitivelyobviousandformalproofsarenothardtoconstructsoweproceedto: 330R.Durrett,E.A.PerkinsLemma3.2.:[0beboundedand-predictableand.Thenthefollowingprocessisan .T;!// .r;!/drProof.bethenumberofarrivalsbytimeinaratePoissonprocess,andletbethetimeofthetharrival.Asiswellknownisamartingalewithrespectto.Tandsoisthestochasticintegral .r;!//dM .T;!// .r;!/drIfwetake1weobtainthedesiredresultforthe.Tandhencealsoforthelarger ltrationobtainedbyadjoiningtheindependentinformationin.tnotanancestorof.Asthisislargerthan,theresultfollows. OursecondclassofmartingalesisLemma3.3.beboundedandmeasurableandrecallwhere=..ThenthefollowingprocessisanJ.t/t;T.BProof.Recallthatisgeneratedbyaclassofsetsclosedunder niteintersections.ItisthenstraightforwardtocheckthatE.J.Tt;T.B/E.gJ.t/isconstantexceptforajumpat,equaltoJ.TitfollowsJ.t/isan BeforeextendingtheclassofmartingalesinLemma3.3,weneedatechnicalresultwhichwillenableustocomputeorboundvariousrandomvariables.Letr.;t/ Super-Brownianmotionintwoormoredimensions331Lemma3.4.foranyE.Nt;T/r.;t/XProof.Toprove(a)consider,thenumberofparticlesthatwouldcontributetoourbranchingrandomwalkifwestartwithindividualsandhavenodeaths.Thatis,ateacheventweignorethe'ssoanewparticleisbornandtheoldonedoesnotdie.Clearly,.Sinceisabranchingprocessinwhicheachparticlegivesbirthatrate2,itisaspeededupversionoftheYuleprocess.Ithaslongbeenknown,seee.g.,Kendall(1949),thathasageometricdistribution,soforallToprove(b)webeginbyobservingthat=..t/t;Tmultiplyingtheaboveequationby1,andsummingover,whichislegitimatebecauseof(a),wehave .t/g .t/The rsttermontheright-handsideisamartingalebyLemma3.3(part(a)provedabovejusti esintegrability).TakingtheexpectedvalueandusingLemma2.9givesfor.t/ /r.;t/XTheresultisnowalsoimmediatefor0bymonotonicityinoftheleft-handsideof(b)andcontinuityinoftheright-handside. Lemma3.5.AssumethatismeasurablewithrespecttoE.Gt/Gisan-martingaleandthereisasothat 332R.Durrett,E.A.PerkinsProof..t/t/G.WithourassumptionswecanfollowtheproofofLemma3.3toconcludethat.t/isamartingale.Summingupthesemartingaleswith(a)ofLemma3.4tocheckintegrabilityshowsthatisamartingale.Toprovetheboundwerecallthatsinceourmartingalehaspathsofboundedvariation,[.UsingtheinequalityformartingaleswiththefactthatthatM]tisamartingalethatisnullat0givesesM]t(3.1)Combiningthiswiththeformulafor[wehave t/G t;T r.;t/Xand(b)inLemma3.4.Theresultisnowimmediatebyourconventiononconstants. RecallfromSection2,that./ t;T/.Bandwehaveassumed,althoughthenextresultonlyrequirestobeboundedandmeasurable.Lemmas2.1–2.4fromSection2willnowbeproved.Werestatethemforthereader'sconvenience.Lemma2.1../isan-martingalewith./ /dr;././ /dr:Proof.Thefactthat./isan-martingalefollowsfromLemmas3.3and3.4(a)(thelatterforthenecessaryintegrability).Clearly,,Zn./t;T Super-Brownianmotionintwoormoredimensions333Toconvertthisinto./,wewillreplacebyitsmeanandthenthesumbyitscompensator.Recallingvariousde nitionsweseethatvar.EAsinLemma3.3onemayreadilycheckthatE.gsoanapplicationofLemma3.5impliesthefollowingisamartingale:t;TApplyingLemma3.2(andLemma3.4(a))with .r;!//.Bweseethat t;T NZt01 ;r/drisamartingale.Recallingthede nitionofandusingthefactthatisamartingalewehaveshown./ /drForthesecondassertionnotethat././ .Bandmakeminorchangesintheaboveargument. Wenextconsider:./ t;T/.BThefollowingresultagainonlyrequirestoboundedandmeasurable.WewillneedthisgeneralizationfortheproofofLemma2.3.Lemma2.2.Forall0lim././drProof.Lemma3.2with .r;!//.Band(b)ofLemma3.4,thelattertocheckintegrability,showthatthefollowingisamartingale(notethatrT 334R.Durrett,E.A.Perkins t;T/.B rT/.B/dr t;T/.B./drUsingthede nitionof[andreversingthelastsimpli cationwehave /dr t;T NCt01 rT/drisamartingale,whence /drUsingthemaximalinequalityformartingaleswiththefactthatisamartingalethatisnullat0givesCombiningthiswiththeformulaforandusingLemma2.9,weget /dr././dr,thedesiredresultfollows. ThethirdtermfromSection2thatwewillconsideris:./ t;T.B.BLemma2.3.Forall./.1=/drProof.Given,wecanapplytheone-dimensionalTaylor'stheoremwithremaindertof.t/.yt.zy//toget Super-Brownianmotionintwoormoredimensions335.z/.y/.y/.z .v/.zdenotepartialderivativesandisapointonthelinesegmentfrom.Usingthisresult,takingconditionalexpectation,andrecallingthatthevectorisindependentofE.W0and0forwehave.B.B /E.W.!/.!/ .v.!//.!/foreach,andfollowsthat.!/C.NNowas convergestoauniformdistributionon[whichhassecondmoment13,soifwelet.B.B 1.B.!/0as.ApplyingLemma3.5withiscertainlyLipschitzcontinuous)weseethatt/Gisamartingalewith Usingthemartingalewith(3.5)wecanwrite./ ./././ 2NCN�11 t;T 1.B./ t;T.!/ 336R.Durrett,E.A.PerkinsTohandle./weobservethatand(b)inLemma3.4imply./ r.;t/X.For./,wenotethatLemma2.2(whichonlyrequirestheboundednessof)implies./ N1 .1=/drTheresultisnowaneasyconsequenceoftheaboveestimatesandLemma Weturnourattentionnowtothefourthand nalterm:./ .t/h.B.B.t/t;T/=.Lemma2.4.Forall0lim./Proof.Lemma3.5impliesthat./isamartingale.ToapplyLemma3.5here, rstconditionthesummandwithrespectto.W.Usingmaximalinequality,(3.1),andthetrivialcomparison,wehave./CE..En;1./.t/.B.BSinceanyisLipschitzcontinuousand.B.B Using(b)ofLemma3.4,and.t/.t/,itfollowsthatthe rsttermin(3.6)isboundedby Super-Brownianmotionintwoormoredimensions337.t/Cr.;t/X0asThesecondtermin(3.6)ismorecomplicatedbecausewehavetoshowitissmallbyshowingthattheindicatorfunctionissmall,i.e.,itis0mostofthetime.TheproofofLemma2.4willbecompletedonceweestablishLemma2.5.Section4isdevotedtothattask.4.UpperboundsforthecollisiontermThissectionisdevotedtotheproofofLemma2.5.Tobeginwenotethatwhenacollisionoccurs,someparticlegavebirthatthetimeofitsdeath,,ontoasiteoccupiedbyatleastoneotherparticlewhomusthavebeenbornearlierandisstillalive.Insymbols,theexpectedvalueinLemma2.5canbeboundedaboveby ; t;TDe nethe- eldofalleventsinthefamilylineofstrictlybefore,plusthevalueof.t.tConditioningon ; ,wecanrewrite(4.1)as ; t;T .N//�N�1=2;N�1=2]d\ZN�f0gisthesetofneighborsof0, .N/isthenumberofneighbors.Herenotethattheinequalityimpliesthatisnotastrictdescendantofandsoonthis ; -measurablesetwehaveP.W2j ; P.WThereadershouldnotethatimpliesthatinparticularthat,i.e.,arealiveinthebranchingrandomwalk. 338R.Durrett,E.A.PerkinsOur nalbitofnotationbeforegettingdowntotheworkofdoingtheestimatesistolet ; .r/betheindicatoroftheeventthatarealiveattimeinthebranchingrandomwalkandtheyareneighbors.Withthisnotation,wecanuseLemma3.2with .r/ ; .r/(andwith(a)ofLemma3.4tojustifyintegrability)torewrite(4.2)as ; .N// ; .r/ .N/ ; ; .r/Toestimateestimate .r/]weneedtoconsiderthetimeandlocationofthemostrecentcommonancestorof.ThesimplestsituationiswhenLemma4.1.Thereisaconstantsothatforall ; ; .r//C4.NC/rBeforetacklingtheproofofthisresultweneedsomepreliminaries.betherandomwalkthatwithprobability1/2staysput,andwithprobability1/2takesajumpuniformlydistributedon.Wemultiplyheresothatasconvergesto,thatwithprobability1/2staysput,andwithprobability1/2takesajumpuniformlydistributedon[.ThelocalcentrallimittheoremforimpliesthatP.VV�1;1]d/Cm�d=2asm!1Thenextresultwhichis(4)inSection2ofBramson,Durrett,andSwin-dle(1989),givesanupperboundthatisuniformin.ItcomesfromaconcentrationfunctioninequalityofKesten(1969).Lemma4.2.ThereisaconstantindependentofsothatifP.VV�1;1]d/C.1Cm/�d=2ToconvertthediscretetimeestimateinLemma4.2tocontinuoustime,wewillusethefollowingeasilyprovedfactaboutthePoissondistribution. Super-Brownianmotionintwoormoredimensions339Lemma4.3..Thereisaconstantsothatif ProofofLemma4.3.Thetrivialinequality1andstandardlargedeviationsresultsforthePoissondistribution(seee.g.,Ex.1.4onpage82ofDurrett(1995a))implythat m!.1Cm/�pXmD0e�m forsome0.Thedesiredresultfollowssincewehave�m= m!.1Cm/�p1C �m= m!1C 2�p ProofofLemma4.1.4.1. ; .r/P.T1;T�1;1]d(4.4)Breakingthingsdownaccordingtothevaluesof,wecanwritethelastsumas /r/r/ P.NN�1;1]d/(4.5)The rstfactorgivestheprobabilityofnodeathalongeachline.Thesecondandthirdthenumberofchoicesfor.ThefourthgivestheprobabilitythatbotharealiveattimeChangingvariablestoandrecalling,wemayconvert(4.5)into /r/r/ n! 340R.Durrett,E.A.PerkinsP.NN�1;1]d/(4.6)DoingsomearithmeticandthenusingtheupperboundinLemma4.2weseethisisnomorethan/r/r/ /r/byLemma4.3.Thisboundholdsforeachpairofvalues.Multiply-ingbythesquareofthenumberofinitialparticles,,givesthedesiredconclusion. Tostatetheboundforthemoredif cultcaseinwhich,weneedtode neI.u/Thiswilloftenbecomparedwith.N/ .N/=N,sowenotenowthatthede nitionof .N/andalittlecalculusshowthatthereareconstantssothat.N/I.N/.N/1(4.7)denotesthemostrecentcommonancestorof,i.e.,theuniqueancestorofwhichmaximizes,andifLemma4.4.Thereisaconstantsothat ; ; .r//r/BeforewegetinvolvedinthedetailsoftheproofofLemma4.2,wewilldotheProofofLemma2.5.UsingLemmas4.1and4.4with(4.3)wemayboundtheexpectaioninLemma2.5byC .N/ /r/C .N//r/dr Super-Brownianmotionintwoormoredimensions341Changingvariables/rds=.inthe rstintegralandusingatrivialboundonthesecondwhichhasanincreasingintegrandweseetheaboveequals .N//tCte .N//t/TheintegralisboundedbyI../t/,sothedesiredresultfollowsfrom(4.7)(recallourconventionaboutconstants ProofofLemma4.4.Notethatisnot,or.Letsuchthat.Let1besuchthat.Onwehave/.r/.r .`�1/!NC C..`The rstfactorontheright-handsidereectsthefactthattheremustbeexactly1moregenerationsinthelineattime.Thesecondthattherecanbenodeathsalongtheway.Thethird,2,givesthenumberofwiththepropertiesstatedinthesum.ThefourthcomesfromLemma4.2.Summingthelastresultover1gives/.r/.r.NC/.r UsingLemma4.3now,itfollowsthat(4.8)isatmost/.r 342R.Durrett,E.A.PerkinsSummingover0wehavethatonH. ;r/H. ;r//C2.NC/.r.Since�rThaveH. ;r//C2.NC/.TH. /Summingoverweseethat ; ; .r/H. /Toestimate(4.10)wewillbreakthesumdownaccordingtothevalueof.(Notethatbytheremarksatthebeginningoftheproofwemusthave1.)Letbeindependentmean1exponentials,andletCC.Toexplainourchoiceofnotation,observethathasagammadistribution.Usingournewsymbols,wecanboundtheright-handsideof(4.10)(throughanowfamiliarargument)by /r//C0m�0kC1]�d=2!(4.12)Tochecktheindexingofthe'shere,notethatforisthetimeofthethdeathalongthelineofdescentofEvaluating(4.12)andthenthesumin(4.11)isasimple(thoughsome-whattedious)exerciseabouttherateonePoissonprocess.Tomaketheresultavailableforlateruse,werecall=.andthefunctionde nedpriortoLemma4.4,andstate Super-Brownianmotionintwoormoredimensions343Lemma4.5.ForallI.u//rinLemma4.5,andusing(4.10)–(4.12)givesLemma4.4.ThuswecancompleteitsproofbydoingtheProofofLemma4.5.Webeginbybitingoffasmallpartoftheproblem.Thereasonfordoingthiswillbecomeclearwhenwetacklethemainpiece.andtheterminthesumis11.LetP.0Summingthiscontributionofthe1termfor1wehaveP.0 expTobegintotacklethemainpiecewenotethat .m�2�yk k!D.xC�2 Summingover2nowwehave .m�2�yk y/.Usingthefactthathaveindependentgammadistributions,onecanwrite .m�k�2/!e�yyk dxdySummingthelastestimateandusing(4.15)givesdyey/. 344R.Durrett,E.A.PerkinsTheinsideintegralisdyey/.,sotherighthandsideof(4.17)isboundedbyAdding(4.18)to(4.13)givesthedesiredresult. Latertoestimatesecondmomentsofthecollisionterm,wewillneedanestimateforforC0m�0kC1]�d=2!29=;(4.19)Themethodsaresimilartotheproofjustcompleted,sowewillgivetheproofhere.Lemma4.6.ThereisasuchthatforallI.u/Proof.Wemayassume0(sothat0)becausetheresultforclearlyfollowsfromtheresultfor0.Reversingtheorderofthe rstincrementswecanbewriteWritingthesquareasadoublesumandcountingthediagonaltwice,theaboveisatmostkmMultiplyingby,summingoveranddoingsomerearrangementgives Super-Brownianmotionintwoormoredimensions345Toboundthiswebeginwiththeinnersum.Onwecanchangevariablestogetisindependentof,theaboveequals wherewehaveusedthehypothesis0inthelastinequality.Usingthisin(4.20)andisolatingthe0termswehaveu/.u/.u/.Since11,the rstsumontherightissmallerthanthesecond.Toboundthesecondsumin(4.21)wenotethatu/. dx;againusing0inthelastinequality.Usingthefactthathaveindependentgammadistributions,weseethatthedoublesumin(4.21)is 346R.Durrett,E.A.Perkins .j�1/!yk�j�1 Usinganaloguesof(4.14)and(4.15)nowwiththefactthat,weseethatthedoublesumin(4.23)issmallerthan.Replacingandenlargingthedomainofintegration,(4.23)isboundedbydy.I.u/Combining(4.21)–(4.24)givesLemma4.6. 5.CollisionsbetweendistantrelativescanbeignoredInthissectionwewillre netheboundsinLemmas4.1and4.4provingtheclaiminthesection'sname.Imitating(4.2),wecanboundthecollisiontermforunrelatedindividualsby.t/ N .N/ ; t;TIfwestartwithalltheparticlesinoneneighborhoodthenthistermwillnotbesmall.Thustohave.t/0,wemustassumethattheparticlesaresuf cientlyspreadoutintheinitialdistribution.Thenextresultgivesasimplesuf cientcondition.Lemma5.1.convergestowhereisanatomlessmeasurethenforanyE.J.t//Proof.Asweconverted(4.2)into(4.3),wecanboundE.J.t// .N/ ; ; .r/ Super-Brownianmotionintwoormoredimensions347TheboundonthisthatresultsfromLemma4.1is .N//C4.NC/rThisisalmostgoodenoughbyitself,butclearlyweneedtogetabetterestimateforsmall(i.e.,=N/)valuesofforwhichwewillusetheatomlessassumptionbelow.Repeatingthecomputationsin(4.4)–(4.6)weseethatifif ; .r/ /r/r/ P.NN�1;1]d/(5.3)UsingLemma4.2toboundthelastprobability,thenintegratingover[0andsummingover,weseethatthecontributionto.t/isatmost .N//r/r/ n!;N0.1/g2 .N/Thelastintegralisboundedby.Soconsideringthetwopossibilities:inwhichcase .N/,and2inwhichcase .N/weseethat0asThecontributionto.t/canbeboundedby .N//r/r/ �1;1]dChangingvariables/rds=intheintegral,andthennoticingthegammadensity!hastotalmass1,weseetheaboveisnomorethan .N/ 2NCNXnD0Xi6DjP�N1=2.xj�xi/CVNn2[�1;1]d(5.5) 348R.Durrett,E.A.PerkinsThisquantityiseasytoestimatein2.Usingthefactthat .N/andthenusingLemma4.2,wehavethat(5.5)islessthanorequalto.x;y/whereinthesecondtermwehaveusedthefactthatiftakesatleast1stepsoftogettoto�1;1]d.Sincef.x;y/isaclosedset,thelimsupofthe rsttermasisboundedbyC.X.x;y/Sincewehavesupposedthathasnoatoms,theaboveexpressionissmallis.Nowin2thesecondtermin(5.6)tendsto0forany0,sincethesumconverges.(5.5)offersmoreresistanceintheborderlinecase2.Using .N/.N/,andthenLemma4.2,butdecomposingthingsintothreepiecesnow,weseethat(5.5)isatmost .x;y/ N=. N=.Againthelimsupofthe rsttermasisboundedbyC.X.x;y/whichissmallifis.Boundingthesumofbytheintegralofweseethatthethirdtermisnomorethan 3loglogTohandlethesecondtermin(5.7)wewilluseastandardestimatefor“small”largedeviationsofrandomwalks. Super-Brownianmotionintwoormoredimensions349Lemma5.2.Thereareconstants;c;Csothatif=nexp=n/Proof.CCwherethearei.i.d.realrandomvariableswithmean0and1a.s.,and0thenP.S�z/exp.ATaylorexpansionshowsthatexp.2.Usingthisfactandtheinequalitywithz=nleadstoP.S�z/exp �e0=2]Applythistoeachcoordinateofandtheirnegativestoobtainthedesired Turnnowtothesecondtermin(5.7).LetN/nandusethefactthat1inthesecondsumin(5.7)toseethatN/=nN/=.Nforlarge,sotheconditionsofLemma5.2hold.PlugginginthechosenvalueofN/nexpToconvertthisintotheresultweneedfor(5.7)notethatN=.N/n soitfollowsthatifif�1;1]dCN�clogNThisismorethanenoughtosendthesecondtermin(5.7)to0.Thiscom-pletestheestimationof(5.5)inthecase2andwehaveestablishedLemma5.1. 350R.Durrett,E.A.PerkinsWeturnnowtothemoredif culttaskofestimatingtheprobabilityofcollisionforlineswith.Ifwe xanamountoftimethenwecande nethecollisionsofrelatedparticlesmoredistantlyrelatedthanJ.t;/ N .N/ ; t;Titisimpossibletosatisfyalltheconditionsinsidethesum,soJ.t;/Lemma5.3.ThereisaconstantdependingoncordingtoourusualconventionsothatforallE.J.t;// .N//t/dy.Proof.Asweconverted(4.2)into(4.3),wecanboundJ.t;/ .N/ ; ; .r/Now,andimplythatisnot,or.Let0besuchthatByconditioningonandusingLemma4.2wecanbound(5.9)by .N/;TTheconditionalexpectationisjusttheexpectednumberofchildrenattimeoftheparticle,andsobyLemma2.9itis.UsingthisandthenevaluatingP.B,webound(5.10)by .N/ P.T;T/dr Super-Brownianmotionintwoormoredimensions351,usingourstandardGammarandomvariables,and=.,(5.11)canbewrittenas .N/P.0/.r/;0/r0/dr1thelastprobabilityisjustP.0/.r//r0/.r /r1wehavetointegrateoutthevalueofandtheresultis/.rdxe /rdye /rInterchangingtheorderofsummation,setting2,whichruns1(for1)to,andusingtheaboveexpressions,wecanwritethedoublesumin(5.12)as/r/.r /r Doingthesumover,estimatingthesumoverusingLemma4.3,andthenabsorbingtheextraintotheweboundtheaboveby/r/.rdxe/rdyeAlittlecalculus(lefttothereader)showsthatLemma5.4.Thereisaconstantsothatif 352R.Durrett,E.A.PerkinsUsingthiswith/r,and,weseethat(5.14)isnomorethan/r/.r/r/rChangingvariables/r,wemaybound(5.13)by/r/Insertingthelastresultinto(5.12),wehaveanupperboundEJ.t;/ .N//t/whicheasilyconvertsintotheboundgiveninLemma5.3. 6.ConvergenceofthecollisiontermThegoalofthissectionistoanalyzethelimitingbehaviorofthecollision./ .t/.B.t/t;is1iftheparticlewasoncealiveinbutdiedbeforetime.Morespeci callywewillcommencetheproofofLemma2.6whichwenowrestateasTheorem6.1.Recallfrom(2.12)thatourtestfunctionsbelongtoTheorem6.1.Forandany././dr0(6.1)Wereallydomeanintheaboveandnot.OfcourseProposition1andtheorderingofthe's(see(2.8))showthedifferenceisunimportant.ToproveTheorem6.1,wewillslowlychange./intotheintegral.We rstoutlinethemainstepsinasequenceofLemmasandthenwillprovidetheproofsinthisandthenextfoursections.Inthe rststep,wetidyuptheexpressionalittlereplacing.B.B.Wealsomakea Super-Brownianmotionintwoormoredimensions353moresigni cantchangebyreplacingthecollisioneventsthemselvesbytheirconditionalprobabilitiesgiventheinformationavailablejustbeforethedisplacementoccurred.Recallthatthat�N�1=2;N�1=2]d\ZN�f0gdenotestheneighborsof0inourlattice .N/isthenumberofneighbors.Let. /Djfbethenumberofneighborsofoccupiedinattime.Writeisanancestorofanduse ifitisastrictancestor.ForfuturereferencenotethattheconditionsWede neour rstmodi cationofthecollisiontermby./ .t/.B. / .N/Lemma6.1.Foranyandany././Thecollisionterm./countsthenumberofoccupiedsites,. /foreachparticlewhodiedbeforetime.Lemmas5.1and5.3implythatmostofthethecollisiontermcomesfromcloserelatives.Tosayhowclosetheserelativesare,welookattheconclusionsofLemma5.3,andintroduceasequenceofcutoffsde nedbytherequirementsthat:(i)in(ii)in.(6.3)Ournextgoalistoshowthatcollisionsinvolvingtwoindividualsmoredistantlyrelatedthanintimecanbeignored.Tosaythisinsymbols,we ; Wethencande netheinterferencetermforcloserelativesby./ .t/.B .N/ ; wherewerecallthatisthemostrecentcommonancestorofD�1 354R.Durrett,E.A.PerkinsLemma6.2.Forany././MostoftheworkforthishasalreadybeendoneinSection5.However,noticethat. / ; sincetheleft-handsidecountsmultiplyoccupiedsitesonlyonce.Ournextstepistoreplacetherequirementsbythecondition1;andde ne./ .N/ .Bt;Lemma6.3.Forany././Toprepareforthenextstep,wenotethat.Thus,when1or2Atthispoint,weare nallyreadytoconvert./intoanintegral.Let.r/ .N/ Super-Brownianmotionintwoormoredimensions355.N/ .N/=NisintroducedtomakethisO(1).Notefromtheabovethatfor1or2./ t;.B./Thismotivatesthede nitionof./ .B.r/Notethathasbeenreplacedbythepositionofitsfamilylineattime.Moreimportantlyhasturnedinto.r/,andpassingfromthePoissonprocesstoitscompensatorviaLemma3.2hasremovedthefactorof1Lemma6.4.Forandany././dr.s/betheparticlesaliveattime.Thecontributionstothesumin./fromthevariousparticlesin,areindependent,soitisnaturaltolet ;Tbethesetofdescendantsthatarealiveattimeinthebranchingrandomwalk,anduseournewnotationtowrite./ .B.r/.r/.r/.Comparingwith./ .B .Bsuggeststhatwede ne(here1labelsthe rstindividualingeneration0)andconsider 356R.Durrett,E.A.Perkins././ .B.r/Bycomputingthevarianceofthelastdifference,wewillconcludethatLemma6.5.Forany././drRecallingnowthat./ rT.Bweseethatitremainstoremovethesuperscript'sfromandcom-pletetheproofofthelimittheoremforthecollisionterm.Thisisatwo-stepLemma6.6.Lemma6.7.Forany././drTheorem6.1,andhenceTheorem1,isanimmediateconsequenceofLemmas6.1–6.7(technicallyonealsoneedsthetrivialboundE.X//fromLemma2.9).TheproofsofLemmas6.1–6.7willkeepusoccupieduntiltheendofSection10.Therestofthissectionisdevotedtoproofsofthe rsttwooftheselemmas.ProofofLemma6.1.bede nedasbutwith.Binplace.B.Let.x.x//�N�1=2;N�1=2]d AnyisLipschitzcontinuous,so0as.Ifweletbetheindicatoroftheeventthatthesupportofishitbythebirthattimewecanwrite Super-Brownianmotionintwoormoredimensions357././ .t/byLemma2.5.Toestimatethedifferencebetweennow,wenotethat,asintheproofofLemma2.3,. / .N/soLemma3.5impliesthatthedifference./ 1C ./ .t/.B. / .N/isamartingale.Toestimatetherighthandsidenotethat(i)thesquaresofthejumpsofaresmallerthan. /= .N/,(ii).t/.t/,and(iii)since,var.Sowehavebythemaximalinequality,(3.1),(3.1),M]tCN�2E0@X a0 .t/ byLemma2.5.Thedesiredconclusionnowfollowsfrom(6.8)–(6.10)andtheinequality =N E.K0as(thelastbyLemma2.5again) ProofofLemma6.2.. /Djf 358R.Durrett,E.A.Perkinsbethenumberofneighborsofoccupiedinbycloserelativesofattime.Tobridgethegapbetween./ .t/.B. / .N/Lemmas5.1and5.3implythatforany././Toestimatethecontributiontothecollisiontermfrombirthsontomultiplyoccupiedsites,werecallthat.t/t;Bistheeventthatwasoncealiveinthebranchingrandomwalkbutdiedbeforetimeandlet.t/ .t/ .N/ ; ; Themotivationforthisde nitionisthat././.t/Tocheckthisobservethatifthereare2closerelativesofatonesitethentheleft-handsidecontributesatmost/.B / .N/buttherightcontributesatleastk.k N .N/.Thelatterinequalitycomesfromthefactthatthede nitionof.t/inadditionweakenstherequirementofcloserelativesfromthatofhavingarecentcommonancestorandofbeingaliveintojustbeingrelatedandaliveinToestimate.t/wewillhavetosumandintegrateoverallthepossi-bilities.The rststepistousethesymmetryof. ; /andsupposewithoutlossofgeneralitythat,i.e.,thatthelinedidnotsplitofffromthelineafterthelinedid.Justtokeepontopofthingsthereadershouldnotethattherearetwosomewhatdifferentsub-casesofthissituation:(a) ,or(b).Inwords,(b)saysthatthemostrecentcommonancestorofoccursaftertheircommonlineofdescentjoinsTotackle(6.11)webeginwiththeinsidesumandbreakthingsdownaccordingtothevalueofsothat,notingthattheindicatorfunctionsinvolvingruleoutandso ; bethe- eldgeneratedbyallthebranchingevents,andtherandomwalkeventsforthelinesonly,butomittingthevalueofthe(whichmighthavemovedtheortheline).Thenwehave Super-Brownianmotionintwoormoredimensions359 ; .N/ToprovethisweuseLemma4.2toconcludethat NfB �B .T jk/ �1;1]djH ; andobservethattheprobabilitythemissingwillhavetheexactvalueneededtomakeisatmost1= .N/Inordertouse(6.12),wewanttotaketheconditionalexpectationof(6.11)withrespectto ; .Unfortunately,nbr ; isnotmeasurablewithrespectto ; .Thisproblemiseasyto x.Let)betheposition)withthevalueofsubtractedifitappearsinthesum.Clearly, ; �3;3]dg(6.13)andtherighthandsideis ; Modifying(6.11)using(6.13)thentakingtheexpectationofthecon-ditionalexpectationofthesummandsin(6.11)withrespectto ; ,wehave.t/ .t/ .N/ �3;3]dgX : 6D ; .N/Toevaluatetheinsidesumwebreakthingsdownaccordingtothevalueofsothat,andthevalueof1.Sincetherebirthsinthelineafteritsplitsfrom,thereare2choicesforandeachofthemisalivewithprobability/=..Recallingtheremustalsobeexactlyarrivalsintherelevantrateprocess,wearriveat ; .N/ ; 360R.Durrett,E.A.Perkins 2NC`C .N/exp[ `!C .N/exp[.TbyLemma4.3.Pluggingthisinto(6.14)wemaybound.t/ N .N/ �3;3]dgj j�1XkD0.1C.T �T jk/.2NC2//UsingLemma3.2tochangefromthePoissonjumpstotheircompensator(thisintroducesafactorof2),andputtingbackinthevariableleftoutof,weseetheaboveisatmost .N/ N.BB�5;5]dgj j�1XkD0.1C.r�T jk/.2NC2//Ifwesumover rstandconditionon,andthenuse(4.9),weseethattheaboveisatmost .N///Recallingtherearechoicesfor,thenbreakingthingsdownaccordingtothevalueof,andusingthereasoningweappliedto(6.14),weboundtheaboveby Super-Brownianmotionintwoormoredimensions361 .N/ /r0/rUsingLemma4.6and(4.7)itfollowsthattheaboveisnomorethan .N//r/ .N//t/Recallingthat/t/= .N/C=Nitfollowsthat.t/ andtheproofofLemma6.2iscomplete. 7.ProofsofLemmas6.4and6.5ForthemomentwewillskipLemma6.3,closingtheloopwiththeproofofthatresultandthecloselyrelatedLemma6.7inSection10.ProofofLemma6.4.Recallthat.N/ .N/=N.r/ .N/./ .B.r/andthecollisiontermsofinterest,.Our rstobservationisthat./ /Nt;.Biscloselyrelatedto 362R.Durrett,E.A.Perkins./ .B.r/Inparticular,Lemma3.2(seealsoLemma3.4(a))impliesthat././drisamartingale(7.1)ToboundthesizeofthismartingalewenotethattheaboveLemmasalso .B.r//drFromtheformulafor,andverycrudebounds,wegetInthesecondequation,wehaveweakenedthesurvivalconditionstobeingaliveinthebranchingrandomwalk,sotheaboveisatmostT=NThelastinequalityisimmediatefromLemma2.9andHolder'sinequality.maximalinequality,(3.2),nowshowsthat/T=NItremainstoestimatethedifferencebetweenthetwointegrals.Tothisendwenotethat././ .B.B.r/Plugginginthede nitionof.r/thentakingtheconditionalexpectationwithrespectto(recallitsde nitionfromthebeginningofsection4),theaboveisnomorethan Super-Brownianmotionintwoormoredimensions363 .N/.B.BNotethatwehaveeliminatedandreplaced1by1.By(4.9),theaboveisboundedby .N/.B.B/.rOurnextstepistoconditionon.t.ttheinformationaboutthebranchingeventsinthefamilylineofplusthedeathtimeof.Breakingthingsdownaccordingtothevalueofandthenaccordingtothevaluesofthetimestheaboveisatmost .N/ .B.B/r0andthearethegammarandomvariablesintroducedintheproofofLemma4.5.UsingtheCauchy-SchwarzinequalityweconcludeE.6Wehavesupposedthat,andhenceisLipschitzcontinuous,soUsing(7.5)and(7.6)weseethat(7.4)issmallerthan 364R.Durrett,E.A.Perkins .N/ /r0UsingLemma4.6now,and(4.7)weseethattheaboveisboundedby .N/I../r/ThiscompletestheproofofLemma6.4. ProofofLemma6.5.Webeginbyrecallingformula(6.7):././ .B.r/Plugginginthede nitionof.r/fromSection6weget././ .B.r/Ifweconditionon,thenasimpleargumentusingtheMarkovprop-ertyandourbasicindependenceassumptionsshowsthattheindividualsum-mandsin(7.8)areindependent.Thede nitionofnowimpliesthattheir(conditional)meansare0.HereweuseanobvioustranslationinvariancetoseethatonP..Z.r/;2jP..ZToshowthatthedifferencein(7.8)issmallwewillcomputethevarianceofthisrandomsum.Forthisitisclearfromtheaboveindependenceandequivalenceinlawthatthefollowingtwolemmaswillbeneeded.Lemma7.1.ThereisasothatC.N/Lemma7.2.ThereisasothatforanysN/ Super-Brownianmotionintwoormoredimensions365ThesecondresultisastandardfactaboutcriticalbranchingprocessesandagainisacorollaryofLemma2.2inBramson,Durrett,andSwindle(1989).BeforeenteringintothesomewhatlengthydetailsoftheproofofLemma7.1,letuscheckthatit,andLemma6.6,willbeenoughto nishtheproofofLemma6.5.Conditioningthesumin(7.8)on,wehavefromtheaboveobservationsthatif././ CombiningLemmas7.1,7.2and6.6(thelattertoshowthatboundedas)andusingthefactthatwehavechosenwehaveCNsotheexpressionis(7.10)isboundedbybyLemma2.9.Fromthisitfollowsthat././././0asTohandletheintegralfrom0towenotethatif./.B.r/./.BUsingsometrivialinequalitiesandthenthede nitionof.r/,wehave 366R.Durrett,E.A.Perkins././//dr/dr .N/UsingLemmas2.9and6.6onthe rsttermandLemma4.4and(4.7)onthesecond,theaboveisboundedby0(7.12)Combining(7.11)and(7.12)weseethattheproofofLemma6.5willbecompletewhenwedothe(independent!)proofsofLemma6.6inSection8andLemma7.1inSection9.Thelatterresultconcernsthesecondmoment.s/,sowewill rstcomputethemean.s/,whichisneededtoproveLemma6.6.8.MeanoftheinterferencetermWeclaimthatfor.r/ .N/Toseethisnotethatforthecondition(appearinginthede nitionof.r/)holdsiff(whichappearsinthede nitionof.r/).Forthisequivalence,observeandsincearebothancestorsofthisforcesandso.Theconverseimpli-cationisobviousand(8.1)nowfollowsfromthede nitionsof.r/.r/.If,thenandso(8.1)with)impliesthat.N/EZ Super-Brownianmotionintwoormoredimensions367Notethatfora xedintheabovesumifthenthefollowingaremutuallyindependent;.t /;.t /;/;. Breakingthingsdownaccordingtothevalueof,usingtheaboveindependence,andconditioningon.tandthenshowsthat.N/EZk; 䀀 ; 䀀 ; P.TP.TT�1;1]d�f0g)(8.2)Startingatthebottomof(8.2),ifisuniformonanindependentrandomwalkthatwithprobability1/2staysputandwithprobability1/2takesastepuniformon,thenthen�1;1]d�f0gDP�WNCVN`Cm2[�1;1]d�f0gCombinethiswiththeusualPoissonprocessformulasfortheprobabilityarealiveattime,toequate(8.2)tok; /. /. 368R.Durrett,E.A.Perkins=..Changingvariablesfrom.`;m/.n;m/,givesk; 2NCnn! /. /.P.WW�1;1]d�f0g/)(8.3)Summing�nmoverfrom0togives2.Alittlearithmeticturnsthesumover./. /.P.WW�1;1]d�f0g/(8.4)Let.u/beaPoissonrandomvariablewithmeanthatisindependentof,andlet.u/.u/�1;1]d�f0gUsingournewnotationwecanwrite(8.4)as././/:Pluggingthisinto(8.3)weseethat(8.3)equals./.UsingLemma3.2andLemma3.4(a)forintegrability,wemayconverttheaboveto./.r// Super-Brownianmotionintwoormoredimensions369Summingovergivesalltheindividualsaliveinthebranchingprocessat,sousingLemma2.9,wehaveshown.N/EZ./.r///drWecansimplifyourcalculationsbynotingthat(indicatestheratioap-proaches1as.N/EZ/./dr /.s/dswhereinthesecondstepwehavechangedvariables/.beuniformover[.s/beanindependentcontin-uoustimerandomwalkthatatrate1/2takesastepuniformon[ElementaryweakconvergenceargumentsshowthatLemma8.1.thenash.s/.s//�1;1]dWenowwishtointerchangethelimitasandtheintegraloverin(8.6).In2thisiseasytojustify.Lemma2.4inBramson,Durrett,andSwindle(1989)gives.t//�1;1]dC.1Ct/�d=2(8.7)Sincetherighthandsideisindependentof,thesameboundholdswhenisputinplaceofontheleft.Thisgivesusthedominationweneedtoletin(8.6)andconcludethatif0then.N/EZ .s//�1;1]ddsIn�d2, .N/.N/.Fortheright-handside,wenotethatthecontinuoustimerandomwalk.s/staysineachstateforanexponentialamountoftimewithmean1/2beforemoving,so,recallingthede nitionofinSection1priortoTheorem1,wecanrewritethelastformulaasP.U 370R.Durrett,E.A.PerkinsThingsarealittlemoredelicatein2sincethelimitingintegralisdivergent.Fortunately,muchoftheworkhasbeendoneinLemma4.6ofBramson,Durrett,andSwindle(1989).HeredenotestheLebesguemeasureofLemma8.2.=.s=thenforanyBorel.s=P.V.s/.x/wheren.x/expisthenormaldensitywithvari-2comesfromthefactthatinBramson,Durrett,andSwindle(1989),whattheycalltakesjumpsatrate1whileour.s/takesjumpsatrate2,soweneedtosetintheirLemma4.6.Lemma8.3./=h.sProof.Usetheclassicallocalcentrallimittheoremtoseethat(Problem1inSection10.4ofBreiman(1968)andasimplecalculationwillsuf ce.)Notethatbyconditioningonon;1]dandusingLemma8.2and(8.7)tointegrateouttheconditioning,wegetTheresultfollows. CombiningthiswithLemma8.1,onecanconcludeeasilythatLemma8.4..Ifislargethen.s/=h.s//�;1C]forallProof.0andsupposethatthereisasequenceofexceptionstheinequality.Thereiseitherasubsequenceconvergingtoa nitelimitorthesequenceconvergesto.Inthe rstcasewecontradictLemma8.1,inthesecondwecontradictLemma8.3. FromLemma8.4itisimmediatethat/.s/ds/h.s/ds;thatis,theratioapproaches1as.Tocomputetheright-handside,weuse(8.9)(with2)toget Super-Brownianmotionintwoormoredimensions371h.s/.s= .N/4log,so(8.6),(8.10),theaboveasymptoticestimate,andthetrivialboundh.s/1implythatas 4log /=loglog 3 Formulas(8.11)and(8.8)givetheasymptoticbehaviorof2and2,respectively.TocompletetheproofofLemma6.6now,wenotethatbyLemma2.9andthefactthat1(8.12).Thereforefrom(8.8),(8.11)and(8.12)weseethatas andLemma6.6isproved.9.SecondmomentoftheinterferencetermInthissectionwewillproveLemma7.1.Wewillusetoindicatethat.Usingthisin(8.1)wecanwrite.N/whereeach1.Tosuppressnuisancetermslateritisusefultonote:(i)Sinceallthearealiveattimewecannothave(ii)Since0wemusthave(iii)From(i),(ii),and1itfollowsthat1forallThereareseveralcasesintheestimationof(9.1)dependingontherela-tiverelationshipofthethe.Tosorttheseoutweneedsomenotation.For 372R.Durrett,E.A.Perkinsa nitesetofpossibleindividualslet.33; withmax;D�1.Inwords,.3isthenumberofthelastgenerationinwhichhadanancestorincommonwithsomeindividualin.For3,letbethecontributiontothesumin(9.1)from.Thecontributionswehavede nedoverlapbutthetermsinthesumarenonnegativeso.N/whereinthesecondstepwehaveusedsymmetrytoconcludeToestimatetheright-handsideof(9.2)wehavetodoeachofthefoursumsin(9.1).Tostructuretheproofwewilldividethissectionintothecorrespondingsubsections.a.Sumover.For3,weletandnotethatconditioningonE.RBreakingthingsdownaccordingtothevalueofandusingLemma4.2,wehavethatE.R1isatmost Herethe1correspondstotheterm(whichcontributesifandwehaveused(i)tojustify.Ifu. //.thenontheaboveisnomorethan 2NCj 4j�k�1 Super-Brownianmotionintwoormoredimensions373 1andtakingintoaccountthenumberofpossiblewemayboundtheaboveon 2NC`.1C`/�e�u. jjjj .k//H. CH. byLemma4.3andade nitiongivenafter(4.9).Wecancombine(9.4)and(9.5)togetCH. ItistemptingtouseH. H. H. 1tosimplifytherighthandsidetoCH. butthatupperbounddoesnotworkwellinb.Sumon.Using(9.2),(9.3),and(9.6),thenconditioningon.N//CCH. CCH. Usingsymmetrywecanreplace1inthe rstsumby;.andputanotherfactorof2intothe.Todealwiththeright-handsideof(9.7)welet 374R.Durrett,E.A.Perkins;.H. ;.2.Separatingoutthepossibilityof rst,andplugginginthede nitionofH. ,weseethatE.RisboundedbyH. .. Cu. 3jj/]�d=2 H12CE1fT 3NT 3g H12k�1XjD0[1Cu. 2jj/]�d=2)(9.8)wherewehaveusedthefactthatforjk1,changingvariables,andusingourstandardgammarandomvariablesde nedintheproofofLemma4.5,the rstterminthesetbracesin(9.8)isatmost/.UsingtheusualPoissonreasoningwiththetrivialbound,andrecallingthede nitionofH. ,weseethatthesecondterminthesetbracesin(9.8)isboundedby H. Using(9.9)and(9.10)in(9.8),andcountingthenumberof'sforeachwehaveE.RH. /. H. Super-Brownianmotionintwoormoredimensions375Recallingthenotationfrom(4.12)weseethatthe rstterminsetbracesin(9.11)isatmost2/..Herethefactor2isusedtohandlethe0termwhichdoesn'tappearinthesumde ning.DoingthesumovernowandusingtheaboveandLemma4.5,withthetrivialbound0,weseethatthe rstterminsetbracesin(9.11)whensummedovercontributesatmostI../Thesecondterminsetbracesin(9.11)whensummedcontributesatmost H. expk//H. H. =./.Using(9.12)and(9.13)in(9.11),thenrecalling1by(iii),wehaveE.RI../H. Ournextstepistoconsider.WithH. beingreplacedby1in,theanalysisismucheasier.Imitating(9.8)wewriteforE.Q P.T1,weseetheaboveisatmost 2NC`e�u. jjjj u. k/=.,and(iii)tellsusthat(9.14)and(9.15)handlethe rstterminsquarebracketsin(9.7).Totakecareofthesecondtermthere,wenotethat 376R.Durrett,E.A.Perkinssousing(9.15),H. H. H. 1wehaveeCCH. H. Using(9.14)and(9.16),weseethat(9.7)isboundedbyI../H. H. Havingsummedoverandthen,ourthirdstepistoc.Sumover.Ifweconditiononin(9.17)thenwewillbeleftwithtwotypesofterms:R. Usingournewnotation,isnomorethanH. E.R. I../H. E.Q. (4.9)impliesthatE.Q. CH. TocopewiththeextrafactorofR. ,wenotethat,adaptingtheproofof(4.8),onecaneasilyshowE.R. 2NC`e�u. 2j2j `! Super-Brownianmotionintwoormoredimensions377Dividingthesuminto(a),where,and(b),andthenusingLemma4.3oneachpiece,weseethattheaboveislessthanorequaltok//k//ThesecondsumisatmostH. .Forthe rstweusek//whichholdsin2,andH. 1togetE.R. H. Atlast,wearereadyforthefourthand nalstep.d.Sumon.Using(9.19)and(9.20)weseethatthemeanvalueof(9.18)isatmostH. /I../H. Breakingthingsdownaccordingtothevalueofwemayboundtheaboveby(recallthenotationfrom(4.12)and(4.19)) /I../I..////andwritefortheabovesumwhenisrestricted.If,then,andsoLemmas4.5and4.6implyI.v/CNI.N/ 378R.Durrett,E.A.PerkinsUsingthetrivialbound0,weseethat I.v/`CI.v/.v/.v/!.Ifislarge,.v/=a.v/forall,so.v/.v/exponentiallyfastasbystandardlargedeviationsestimatesforthePoissondistribution.(Seee.g.,page82ofDurrett(1995a).)FromthelastresultitfollowsthatI.v/.v/Combining(9.24)with(9.22)andrecalling/,itfollowsthat(9.21),andhence.N/E.Z(recall(9.7)),isatmostI.N/CI.N/Nowuse(4.7)toobtaintheconclusionofLemma7.1. 10.ProofsofLemmas6.3and6.7FirstconsiderLemma6.3.Inthede nitionof.t/weimplicitlyusedthefactthatforsometoseethatThesamereasoningforshowsthatHenceinthede nitionofwecanreplacetheconditions.Takingdifferencesandreplacingwethereforehave././ / .N/ ;.B Super-Brownianmotionintwoormoredimensions379t;TUseLemma3.2(andLemma3.4(a)forintegrability)toboundthemeanvalueoftheaboveby .N/ ;r;whichisanicerformsinceplayexactlysymmetricroles.Subtractingandadding1r;andusingsymmetry,weseethatinordertodemonstrateLemma6.3,itisenoughtoestablishforall .N/ ;r�N;r] dr!0(10.1).Sincea.s.thisistrivialforTostarttoworkon1weintroduce.r/ .N/Herewedivideby.N/tomake.r/.Notethatandsotoestablish(10.1)itisenoughtoshowLemma10.1.Forany r�N;r];B 6D1g�I .r/Here,the1isnotneededforLemma6.3,butisincludedfortheProofofLemma6.7.Recallingthede nitionsgiveninSection6,andusingthefactthatourtestfunctionsareLipschitzcontinuous,andiffa.s.,wehave 380R.Durrett,E.A.Perkins././ The rsttermtendsto0byLemma10.1.Forthesecondterm,conditiononandusetheMarkovpropertyandLemma2.9with.x/toseethatif.t/isthecontinuoustimerandomwalkinLemma2.9thenthesecondtermisatmostdrE Combinetheselasttwoobservationswiththefactthat0tocompletetheproof. ItremainsthentodotheProofofLemma10.1.Nowifisaliveinthebranchingprocessattimebuthashasr�N;r]/,thenthereisasothat//;e .iInwordsthelastconditionsaysthatattimelineexperiencedthedispersaleventandcollidedwithaparticlealreadypresentin.Letdenotetheindexofoneoftheparticleswithwhichcollidesattime ;iasshorthandfortheawkward .i,andreadingthesymbolas“therewasadisplacementinthefamilylineofatthedeathof,”wecanboundthequantityofinterestinLemma10.1by ;i.r/The rststepinboundingthisistolet ; ,recallH. //.Tandgeneralizetheproofof(4.9)toshow Super-Brownianmotionintwoormoredimensions381Lemma10.2..r/ ; .N/H. /H. /Proof.Recallthat.On;T,set ; .r/ .N/r;B ; Sinceeithermustsplitofffromlast(itcanbeatieifthebranchesoffbeforethelinesseparate)wehave.r/ ; ; .r/ ; ; .r/ ; wherethesecondtermcanonlycontributeif.Thusitsuf cestoshowthatfor ; .r/ ; .N/H. /Breakthingsdownaccordingtothevalueof ; ;/,isolatethecase rst,andthenobservethatwhen.Thisgives.N/ ; .r/ ; ; ; ; .t.tisthe- eldgeneratedbythebranchingeventsinthefamilylineof.Letk;r//.randnotethatforthetermtocontributeintheabovesumwemusthave.UsingLemma4.2nowandsetting1,wemayboundtheabovebyk;r/k;r/ `! 382R.Durrett,E.A.PerkinsUsingLemma4.3nowwiththetrivialinequalitiesk;r//.T(fromouroriginalhypothesison),andk;r//r,theaboveisboundedby/r/.Tandthedesiredresultfollowsfromthede nitionofH. / Conditioning(10.2)on ; ,usingLemma10.2,andthrowingawaytheevent,weseethat(10.2)isatmost .N/.H. /H. //Doingtheintegralovernowandrecallingwemayboundtheaboveby t;B.N/.H. /H. //Togetridofthe,weconditionontherandomvariablesgenerating ; butwithout,andnotethatifisnotadescendantof(whichwemayassumeinlightofthecondition)thenthisinformationisindependentof.Wethusmayconcludethattheaboveisnomorethan t;BBC 0.N/.H. /H. // Super-Brownianmotionintwoormoredimensions383 ; ; butwithouttheinformationaboutthevalueof.Sinceatmostoneofthe .N/valuesofcanmakeaperfecthit,andnonewillhitunlessthesourceofthebirth,,isaneighbor,wehave ; .N/Tousethis,wecondition(10.3)on ; toseethatitisboundedby t;B .N//C 0.N/.H. /H. //Ournextstepistobreakthingsdownaccordingtothevalueofj;jD�1)whichmustbelessthan,andconditionon,where.tistheinformationaboutthebranchingtimesinthelineof.UsingLemma4.2,thelastdisplayisboundedby .N/ 2NCj jj j�1XiD01.T jiN/i�1XkD�1X ^ jD j1.Tji/.j NC H. /H. / .N/Toboundtheright-handsideof(10.4),wewillhandletheH. /= .N/and1H. /= .N/termsinthelastsquarebracketsseparately,andcalltheresultingsums(10.4a)and(10.4b).Forthe rstwewillconditiononandbreakthingsdownaccordingtothevalueof1.We0if1.Then /.TBytheusualPoissonreasoning,thisequals 384R.Durrett,E.A.Perkins/.T/.T.2NC/.T /.TbyLemma4.3.Pluggingthisboundinweseethat(10.4a)isnomorethan .N/ H. / .N//.TBreakingthingsdownaccordingtothevalueof1,writingoutthede nitionofH. /,andintroducingourstandardgammarandomvariables,weboundtheaboveby .N//t/ .N/Bounding(10.5)isaPoissonprocessexercise,whichwewillattendtolater,soweturnnowtotheotherpieceof(10.4).Tohandle(10.4b),webeginbyinterchangingtheorderofsummationstoget .N/H. / .N/ 2NCj jX ^ jD j1.TNC Conditioningon,andintroducing/.T,and/.T1then0asabove),wehave Super-Brownianmotionintwoormoredimensions385 P.0/t;u/,andputtingthecaseintothesecondterm,wemayboundthepreviousdisplayby/t;u/ .j�1/!y`�j�1 dxdy/t;u Usingtheidentity .j�1/!y`�j�1 .`�j�1/!D.xC�2 wecanrewritethedoublesuminsquarebracketsin(10.7)as /t.Evaluatingthesinglesuminthesameway,andthrowingawaythe rstrestrictiononweseethat(10.7)isatmost//dxdy/dxRecallthat/t,whereisthelifetimeof,andthatourchoicesin(6.3)implythat/,toboundtheaboveby//t 386R.Durrett,E.A.PerkinsUsingthelastinequality,weseethat(10.6)isboundedby .N/H. / .N/ //tAsbeforeonecanconditiononeverythingbutanduse/ttogetridofthatterm.Breakingthingsdownaccordingtothevalueof1,separatingoutthecontributionfrom0andnotingthatH. /0if0,using,and llinginthede nitionofH. /,weseetheaboveisboundedby N .N//t/ .N/Itremainstoshowthatthequantitiesin(10.5)and(10.9)approach0as.Webeginbyeliminatingthecontributionfromlarge.Standardlargedeviationsestimatesforthesumofexponentialmeanonerandomvariables(seeSection1.9ofDurrett(1995a))implythatLemma10.3.ischosenlargeenoughthenforall/tUsingthisresultwiththetrivialfactthatshowsthatthecontributionsto(10.5)and(10.9)from�`AN0as.Toestimatethecontributionsfrom,webeginwithasimpleestimateLemma10.4.thereisaconstantsothatifProof.ByasimpleapplicationofJensen'sinequalitywemayassumeisapositiveinteger.Clearly,E.0.IntegrationshowsthatE.0 .m�1/!e�x.m�1� .m�1/!Cp.1Cm/�p Super-Brownianmotionintwoormoredimensions387Let(10.9b)denotethepartof(10.9)thatcomesfrom.Recall=.andhence.UsingLemma10.4now,andthrowingawaytheindicatorof/t,weseethat(10.9b)isboundedby .N/.AN/ .N/Thequantityinsquarebracketsisboundedand.AN/.N/,sotheaboveisatmostwhichapproaches0as,andso(10.9)alsoapproaches0asLet(10.5b)denotethepartof(10.5)thatcomesfrom.Recallthat.N/ .N/=N.Discardingtheindicatorfunctionof/tasabove,wemaybound(10.5b)by .N//Toattackthiswewillusethefactthatifisanindicatorfunction(so)andarenonnegative,thentwoapplicationsoftheCauchy-SchwarzinequalityimplyE.XYZ/This,togetherwithLemma10.4,showsthat(10.10)isatmost .N/P.0/Thesumsoverareeachsmallerthan.AN/.N/,sotheaboveisboundedby P.0/Todealwiththisprobability,notethatastandardlargedeviationsresultforsumsofexponentiallydistributedrandomvariables(againseeSection1.9ofDurrett(1995a))implies 388R.Durrett,E.A.PerkinsLemma10.5.Thereareconstants ;CsothatifP.0FromthisitfollowsthatifP.0///Usingthisin(10.11),thendoingthesumover,whichgivesafactorof,weendupwithanupperboundofofNCe� .2NC/0asThisshowsthat(10.5)approaches0asandsocompletestheproofofLemma10.1andhencetheproofsofLemmas6.3and6.7.This nishesourtreatmentoftheinterferencetermandhencetheproofofourconvergencetheorem,Theorem1.11.Lowerboundonthecriticalvaluebandletdenotetherescaledcontactprocessstartingfromasin-gleparticleattheorigin.Fix0andletbethediscretetimebranchingrandomwalkinwhichindividualsingivebirthtoindependentcopiesandhencemultipleoccupancyofsitesisallowed.Weviewasaninteger-valuedmeasureon.Itiseasytocouplesothat.Herenotethatparticlesinthecontactprocessesunderlyingonlyhaveanoffspringsuppressediftheyjumpontoasiteoccupiedbyanoffspringofthesameparentinandthereisnosuchancestralre-strictioninthesuppressionofoffspring.If1,forsuf cientlylarge,thenthesubcriticalGalton-Watsonbranchingprocessdiesoutforlargena:s:andsothesameholdstruefor.Recallisthecriticalvalueofforwhichthereispositiveprobabilityofsurvivalasthecontactprocessstartingwithasingleoccupiedsite.Thus,toprovethelowerboundhalfofourasymptoticsforthecriticalvalueinTheorem2,itsuf cestoshowLemma11.1.Proof..i/;ii:i:d:copiesofstartingfromandlet.i/.Thendiffersfromstartingatinthat Super-Brownianmotionintwoormoredimensions389jumpsontoanoccupiedsitearesuppressedonlyifthetwocollidingparticlesdescendedfromthesameancestorat0andhencemultipleoccupanciesareallowed.Thisinfactsimpli estheproofofthemainconvergenceresult(Theorem1)asLemma5.1isnolongerneededsinceisnowincorporatedintothekillingterm.Asthisistheonlyplacethenon-atomicnatureofisusedwecandropthisrestriction,allowconvergesweaklyto,super-BrownianstartingatandwithdriftThis,combinedwiththefactthatE.YYX0;Nt.1/2jX0;N0D0]staysboundedas(seeLemma2.9),showsthat 12.UpperboundonthecriticalvalueThroughoutthissectionweassume�b.Toprovetheexistenceofanon-trivialstationarydistributionandhencederiveupperboundsonthecriticalvalue,wewillusearescalingargumenttocomparethelongrangecontactprocesswithorientedpercolation.Toestablishtheconnectionwebeginbyintroducingthelatticeonwhichpercolationtakesplace:.m;n/iseven,0and .LetLet�L;Lbethecubeofradius,andbethe rstunitvector.Itwillbeconvenienttoassumeandsowewillonlyconsiderandfor2replacebyitsintegerpartinthede nitionofandthroughouttheconvergencetheorem.ThiswillensurethatandinparticularGivenarealizationofthecontactprocess,andasite.m;n/willsaythatis“occupied”attimeifthecontactprocesswhenrestricted,andtranslatedinspacetobeafunctionon,liesinasetof“happy”con gurations.Inwords,thesetwillbechosensothat(i)ifisoccupiedattimethenwithhighprobability1and1willbeoccupiedattime1,and(ii)theeventsthatcause(i)tooccuraredeterminedbythebehaviorofthecontactprocessmodi edsothat 390R.Durrett,E.A.Perkinsparticleswhichlandoutsideof2KL;KL/arekilled,forsome xednaturalnumber.Thesetwillbede nedbelowbutfornowwenotethatthecon gurationwhichis0onisnotinwhilethecon gurationofall1'sonMoreformally,wewillcheckthecomparisonassumptionsonp.140ofSection4ofDurrett(1995b).Let/.x/.xdenotethetranslation(orshift)of.Foreach0andweintroduce.CA/ ;K:Foreachthereisanevent,measurablewithrespecttothecontactprocesswithkillingoutsideKL;KL//;T],andP.G,sothatonliesinandinHereweconsiderrescaled'swhicharethereforesubsetsof,orequivalently-valuedfunctionson,andidentifywiththemeasure./wichassignsmass1toeachsiteinLegalscholarsmayhavenotedthatpage140ofDurrettinsteadsays“measurablewithrespecttothegraphicalrepresentation,”whileinthispaperwehaveusedabranchingprocessconstruction.However,itiseasytoseethattheconstructionusedherehasthepropertythatifthespacetimeboxesaredisjointthenthesubprocessesthatresultfromthecontactprocessrestrictedtotheseboxesareconditionallyindependentgiventheirinitialconditions.ThisisenoughsothatwecanrepeattheproofofTheorem4.3giveninDurrett(1995b)inournewsetting,andconcludethatif.m;n/dominatesan2-dependentorientedpercolationprocess(see(4.1)ofDurrett(1995b)),,withinitialcon gurationanddensityatleast1,i.e.,forallIf,fora xedvalueof,wecancheck.CA/ ;Kforall0then.x/1(whichisinandhenceassuresthatistheentireintegerlattice)andusingTheorem4.2inDurrett(1995b)givesliminfFromthisandthefactthatthecon gurationwhichis0onisnotinfollowsthattheupperinvariantmeasuremustbenontrivial.Ifnot,then0andP..x/�0forsomeThustocompletetheproofoftheupperboundinTheorem2itsuf cestocheckthecomparisonassumption.Intuitively,toverify.CA/ ;Kforthelongrangecontactprocess,wewill rstverify.CA/forthelimitingsuper-Brownianmotionwith Super-Brownianmotionintwoormoredimensions3910andthenuseourconvergencetheoremtoconcludethatif�b.CA/ ;Kholdsforthecontactprocessforlarge.Thesetofthatwewillchooseforthesuper-Brownianmotion,andfortherescaledcontactprocesses,arethosethathaveenoughmassandarenottooconcentrated.Speci cally,ifthereisasubcon gurationwithcorrespondingmeasure.I.I/,andQ./,whereisaquadraticformde nedin(12.7)below,isanaturalnumberselectedinChoice3belowandisaconstantselectedinChoice4below.Clearlydoesnotcontainthecon gurationofall0's.Moreoveraswewillbeabletochooseaslargeaswelikeandafterthechoiceof(seeChoice4below),itisclearthatwillcontaincon gurationofall1's.Tocheckthecomparisonassumptionwehavetochooseourconstantstomaketheconstructionsuccessfulwithhighprobability.Tobegin,wenotethatthelimitingsuper-BrownianmotionwithdriftisaBrownianmotionwithvariance13perunittime.Easycal-culationswiththetransitionprobabilityofBrownianmotionshowthatliminf0(12.2)Thisbringsustothe rstofseveralchoicesofparameterswewillmake.Choice1.�bwecanpicklargeenoughsothat 5(12.3)Toachievea niterangeofdependenceinourdominatedpercolationpro-cess,weneedtoimposeacutoffinspace.InBramson,DurrettandSwindle(1989)thiswasdonebyconsideringamodi edcontactprocessinwhichparticlesarekillediftheymoveoutofa nitestrip.However,havingworkedforninesectionstoprovetheconvergenceoftherescaledcontactprocessinthefullspacetosuper-Brownianmotion,wedonotwanttorepeattheproofforprocesseswithkillingoutsideofastrip,oraskthereadertobelievewecandoso.Thuswewilltakeanapproachthatonlyrequiresuseoftheconvergencetheoremonthewholespace.Letbethethrescaledcon-tactprocessmodi edsothatparticlesbornoutsideofKL;KL/areimmediatelykilled.Nowthenumberofparticlesthatarelostfromthecontactprocessbythistruncationisatmostthenumberthatarelostinthedominatingbranchingprocess(with“drift”Thelatterlossiseasytoestimate.Letbethethbranchingran-domwalk,modi edsothatnoparticlesareallowedtobebornoutsideof 392R.Durrett,E.A.PerkinsKL;KL/.Forthisitiswellknown,see,e.g.,Sections2and6ofBramson,Durrett,andSwindle(1989),thatthecounterpartofLemma2.9withkilling.Namelyistherandomwalkthattakesjumpsuniformonatrateandiskilled(i.e.,senttothestate)whenitleavesKL;KL/Usingthemaximalinequalityonthe rstcomponentofitiseasytoseethatChoice2.islargeenoughthenforall1(12.5)Having xedourtimehorizonandourspatialtruncationwidth,ournextstepistomakethesuccessprobabilityhighbyusinginitialmeasureswithlargetotalmass.Wedothisbothforourbranchingrandomwalksandsuper-BrownianmotionLemma12.1.Thereisasothatforallnaturalnumbers.I/C=J:.I/P.XC=JProof.(a)Aneasycalculationusing(12.4)withinplaceofand(12.5)showsthat.I/Turningtosecondmoments,wehaveE...X...XN�2X TX T1.0 �T;�T/KL;KL/forsomes;sThecontributionfromindicessatisfyingisatmostmostE..X.Thecontributionfromindicessatisfyingistriviallyboundedby Super-Brownianmotionintwoormoredimensions393�T;�T/ wherewehaveusedawell-knownexpressionforthesecondmomentofabranchingrandomwalkinthelastline(seeLemma2.2ofBramson,Dur-rettandSwindle(1989)).TheabovecalculationsboundthevarianceofC.T/X.TheresultnowfollowsbyCheby-chev'sinequality.(b)ThisfollowsbyasimilarChebychevargumentusing(12.3)togetalowerboundonthemean,andthefactthatthevarianceofisboundedbyaconstanttimestheinitialmass(seeProposition(2.7)ofFitzsimmons WithLemma12.1inmindandleavinglotsofroomforerrorstoaccu-mulate,wecannowmakeChoice3.beasinLemmaandpickanaturallargeenoughsothatC=JInorderforthecontactprocesstobesuccessfulatavoidingextinctionwithhighprobability,itisnotsuf cientthattheinitialnumberofparticlesislarge.Considerforconcretenessthesituationin3.InthiscasetheO.N/particles.Ifwelettheinitialstateconsistofallthesitesinoneormoreneighborhoodsthenthemasslostduetobirthsontooccupiedsiteswillresultinadevastatingdecrease.Sincewewillnotneedtoknowthedetails,weleaveittothereaderto gureouthowmuchmassislostandhowquickly.Toavoidthisproblem,welet`.z/for00if0orde nethequadraticform.dx/.dy/`.yandthenconsiderinitialconditionsforthecontactprocessthataresupported,have.I/,and,ofcourse,atmostoneparticlepersite.Notethatwehaveset0toavoidthein nitiesonthediagonalwhenwearedealingwithpointmassmeasures.UsingourconvergencetheoremnowwithLemma12.1andourchoicewehave 394R.Durrett,E.A.PerkinsLemma12.2..If.M/.I/P.XProof.Ifnot,thenthereisasubsequenceofintegersandasso-ciatedinitialconditionswheretheprobabilityexceeds2.Sincethehavesupportinandtotalmassthereisaweaklyconver-gentsubsequence.ThelimitmustbeatomlessbyFatou'slemma,thebound,andthelowersemicontinuityof.Ourconvergencetheoremshowsthat(recallisde nedtobeopen)limsupwhichcontradicts(b)ofLemma12.1andthechoiceof Lemma12.3..If.M/thenforall.I/wehaveProof.Asnotedabovewecanboundtheamountofmasslostinthecontactprocessbythemasslostinthebranchingprocess,so(a)ofLemma12.1C=JThedesiredresultnowfollowsfromLemma12.2andthechoiceof Havingimposedtheconditionontheinitialcondition,wearenowobligedtoshowthatwithhighprobabilityitholdsattime.TodothisitisenoughtoshowthefollowingresultforthedominatingbranchingrandomwalksLemma12.4.ForanynaturalnumberthereisaT;JsothatifthenforallwehaveEQ.XT;JThisshouldmotivatethe nalChoice4.PicklargeenoughsothatT;J Super-Brownianmotionintwoormoredimensions395Toverify.CA/ ;K,forasinthede nitionofasameasure)andletbetheeventthat,startingwith,ourmodi edcontactprocesswithkilling,,satis es,and.HerewechoosesothatLemmas12.3and12.4areavailablewith,respectively.Thismodi edcontactprocessusesthesameexponentialvariablestojumpordieasthefullcontactprocessstartingfromandsoitisreadilyseenthatthemodi edprocessisdominatedby.Byusingthecollectionofsitesinasourchoiceof,wethereforeseethatthat�2Le1H.FinallyLemmas12.3and12.4showthatP.GE.Q./=qT;J andso.CA/ ;Kholds.ThusthelastdetailistocompletetheProofofLemma12.4.asshorthandfor,wehaveEQ.X ; T; Firstconsiderthe.Imitating(4.4)–(4.6)wecanwrite(recallT; /T/T/ istherandomwalkthatstaysputwithprobability1/2andwithprobability1/2takesajumpuniformlydistributedoverForallwehave`.z/solargedeviationsresultsforthePoissondistributionimply/T/T/T/ n!!0asN 396R.Durrett,E.A.PerkinsForthesumover/Tnotethat,sothatpartisboundedby/T/T/ E`.x../T/.u/0isaPoissonprocesswithrateone.bethetimeofthe rstjumpof.u/.Using(8.7)wecanestimate/;V../T//�1;1]dCN�d=2SinceP.T�T.///T,consideringvalueofthe rstjumpshowsP.N../T/ .N/isconstantonanddecreasingfor01,themaximumvalueofE`.x../T/subjecttotheconstraintontheprobabilitiesin(12.11)canbeboundedbyx/d.x/d.y/istheuniformdistributiononthepointsofin[.Thiseasilygives../T//�1;1]2d`.y�x/dxdyWenotethatasusualthevalueofchangesfromlinetolineintheabove.Summingovernowgives ; T; Turningtothetermswith,weletandnotethatas0,wetakeandsointheabovesum.1besuchthat1besuchthatArguingasinLemma4.4,wehave Super-Brownianmotionintwoormoredimensions397 ; T; T/`.B/.T/.T T;TSummingoverthepossiblevaluesof,changingvariables2,andnoting .n�mC1/!.m�1/!D2n wehave ; T; T/`.B/.T/.T T;TAsin(12.10),largedeviationsresultsforthePoissondistributionimplythatthesumover/TisboundedbyT;Tforsome0.Continuingtoreasonasinthecaseweseethatthesumover/Tisboundedby../.TRepeatingtheproofof(12.11)nowshowsthat .N//.TAgainmaximizingwithrespecttothisconstraintontheprobabilities,gives/`.x/ .N/ 398R.Durrett,E.A.Perkins/.TSummingovernowgives ; T; T/`.BT;TItfollowsfromLemma3.4(b)thattheaboveequalss///dsCombiningthiswith(12.13),wehavethedesiredboundon(12.8).ThiscompletestheproofofLemma12.4. ReferencesBillingsley,P.:ConvergenceofProbabilityMeasures.JohnWiley,NewYork,(1968)Bramson,M.,Durrett,R.,Swindle,G.:Statisticalmechanicsofcrabgrass.Ann.Prob.,444–481(1989)Breiman,L.:Probability.Addison-Wesley,Reading,Mass(1968)ButtelL.,Cox,T.,Durrett,R.:Estimatingthecriticalvaluesofstochasticgrowthmodels.J.Appl.Prob.,,445–461(1993)Dawson,D.A.:Geostochasticcalculus.Can.J.Statistics,,143–168(1978)Dawson,D.A.:Measure-valuedMarkovprocesses.Pages1–260inEcoled'edeProba-esdeSt.Flour,XXILectureNotesinMath1541,Springer,NewYork(1993)Durrett,R.:LectureNotesonParticleSystemsandPercolation.[Chapters4and11]WadsworthPub.Co.(1988)Durrett,R.:Anewmethodforprovingtheexistenceofphasetransitions.Pages141–170inSpatialStochasticProcessesEditedbyK.S.AlexanderandJ.C.Watkins.Birkhauser,Boston(1992a)Durrett,R.:Thecontactprocess:1974–89.Pages1–18inMathematicsofRandomMediaEditedbyW.KohlerandB.White.AmericanMath.Society,Providence,RI(1992b)Durrett,R.:Probability:TheoryandExamples.DuxburyPress(1995a)Durrett,R.:Tenlecturesonparticlesystems.Pages97–201inEcoled'edeProbabilitdeSt.Flour,XXIIILectureNotesinMath1608,Springer,NewYork(1995b)Ethier,S.,Kurtz,T.:MarkovProcesses:CharacterizationandConvergence.JohnWiley,NewYork(1986) Super-Brownianmotionintwoormoredimensions399Evans,S.N.,Perkins,E.:Measure-valuedbranchingdiffusionswithsingularinteractions.Can.J.Math.,,120–168(1994)Fitzsimmons,P.J.:Constructionandregularityofmeasure-valuedMarkovbranchingpro-cesses.IsraelJ.Math.,,337–361(1988)Harris,T.:Contactinteractionsonalattice.Ann.Prob.,,969–988(1974)Holley,R.,Liggett,T.:Thesurvivalofcontactprocesses.Ann.Prob.,,198–206(1978)Kendall,D.:Stochasticprocessesandpopulationgrowth.J.oftheRoy.Stat.Soc.,230–264(1949)Kesten,H.:AsharperformoftheDoeblin-Levy-Kolmogorov-Rogozininequalityforcon-centrationfunctions.Math.Scand.,,133–144(1969)Jacod,J.,Shiryaev,A.N.:LimitTheoremsforStochasticProcesses.Springer-Verlag,BerlinKonno,N.,Shiga,T.:Stochasticdifferentialequationsforsomemeasure-valueddiffusions.Prob.TheoryRel.Fields,,201–225(1988)Liggett,T.:InteractingParticleSystems.Springer-Verlag,NewYork(1985)Liggett,T.:Improvedupperboundsforthecontactprocesscriticalvalue.Ann.Prob.,697–723(1995)Mueller,C.,Tribe,R.:AphasetransitionforastochasticPDErelatedtothecontactprocess.Prob.TheoryRel.Fields,,131–156(1994)Mueller,C.,Tribe,R.:StochasticPDE'sarisingfromthelongrangecontactprocessandlongrangevotermodel.Prob.TheoryRel.Fields,,519–546(1995)Reimers,M.:Onedimensionalstochasticpartialdifferentialequationsandthebranchingmeasurediffusion.Prob.TheoryRel.Fields,,319–340(1989)Stacey,A.:Boundsonthecriticalprobabilitiesinorientedpercolationmodels,Ph.D.Thesis,CambridgeU(1994)Walsh,J.:Anintroductiontostochasticpartialdifferentialequations.Pages265–439inEcoled'edeProbabilitesdeSt.Flour,XIVLectureNotesinMath1180,Springer,NewYork(1986)