/
Sharply3-transitivegroupsKatrinTentAugust6,2015AbstractWeconstructthe Sharply3-transitivegroupsKatrinTentAugust6,2015AbstractWeconstructthe

Sharply3-transitivegroupsKatrinTentAugust6,2015AbstractWeconstructthe - PDF document

test
test . @test
Follow
381 views
Uploaded On 2016-07-31

Sharply3-transitivegroupsKatrinTentAugust6,2015AbstractWeconstructthe - PPT Presentation

cxdrespectivelyItremainedanopenproblemwhetherthesameholdsforin nitesharply2and3transitivegroupsandmuchliteratureonthistopicisavailableseeRSTforbackgroundandmorerecentreferencesInRSTthe rstc ID: 427151

cx+d respectively.Itremainedanopenproblemwhetherthesameholdsforin nitesharply2-and3-transitivegroupsandmuchliteratureonthistopicisavailable see[RST]forbackgroundandmorerecentreferences.In[RST]the rstc

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Sharply3-transitivegroupsKatrinTentAugu..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Sharply3-transitivegroupsKatrinTentAugust6,2015AbstractWeconstructthe rstsharply3-transitivegroupsnotarisingfromanear eld,i.e.pointstabilizershavenonontrivialabeliannormalsubgroup.11IntroductionThe nitesharply2-and3-transitivegroupswereclassi edbyZassenhausin[Z1]and[Z2]inthe1930'sandwereshowntoarisefromso-callednear- elds.Theyessentiallylooklikethegroupsofanelineartransformationsx7!ax+borMoebiustransformationsx7!ax+b cx+d,respectively.Itremainedanopenproblemwhetherthesameholdsforin nitesharply2-and3-transitivegroupsandmuchliteratureonthistopicisavailable,see[RST]forbackgroundandmorerecentreferences.In[RST]the rstconstructionofsharply2-transitivegroupswithoutanynontrivialabeliannormalsubgroupisgiven.Howeverthequestionremainedopenwhetherthegroupsconstructedtherecanbeextendedtogroupsactingsharply3-transitively.Wehereuseadi erentapproachdirectlyconstructingsharply3-transitivegroupsusingpartialgroupactions.Thesearethe rstknownexamplesofsharply3-transitivegroupswhosepointstabilizershavenonon-trivialabeliannormalsubgroupandthusdonotarisefromnear- elds.ByresultsofTits[Ti]andHall[Ha]therearenoin nitesharplyk-transitivegroupsfork4,seee.g.[DM]. PartiallysupportedbySFB8781Keywords:permutationgroups,sharply3-transitiveactions,amalgamatedproducts,near eld1 2ThemaintheoremForbrevitywecallanelementoforder3a3-cycleandwesaythatagroupactionis3-sharpifall3-pointstabilizersaretrivial.Theorem2.1.LetG0beagroupinwhichall3-cyclesandallinvolutions,respectively,areconjugateandsuchthatthereexistsa3-cycleaandanin-volutiontinG0withha;ti=S3.AssumethatG0actsonasetX0insuchawaythat1.theactionis3-sharp;2.theinvolutiont2G0 xesauniquepointx02X0;3.the3-cyclea2G0is xedpointfree;4.wehave(x0;x0a;x0a2)=(x0;x0a;x0at);5.ifB=(x;y;z)isatripleinX0suchthatthesetwisestabilizerofBinG0isisomorphictoS3,thenthereissomeg2G0withAg=BwhereA=(x0;x0a;x0a2)=(x0;x0a;x0at).ThenwecanextendG0toasharply3-transitiveactionofG=�(haiF(U))haiG0hti((htiF(S)))F(R)onasuitablesetYX0,whereF(R);F(S);F(U)arefreegroupsondisjointsetsR;S;UwithjRj;jSj;jUj=maxfjG0j;@0g.Remark2.2.NotethatS3initsnaturalactiononthreeelementssatis estheassumptionsofTheorem2.1(asdoesPGL(2;2)=S3actingasasubgroupofPGL(2;23)ontheprojectivelineoverF23.)ThereforewehaveCorollary2.3.ThereexistgroupsGactingsharply3-transitivelyonsomesetXsuchthatforx2XthepointstabilizerGxofxhasnonontrivialabeliannormalsubgroup.Proof.ApplyingTheorem2.1toG0=S3=haiohtiweseethatnotwodistinctinvolutionsinGcommute.ThepointstabilizerGxactssharply2-transitivelyonXnfxg.SincetheinvolutionsinG0andhence(byconjugacy)2 alsoinGhaveunique xedpoints,theinvolutionsofGxintheiractiononXnfxgare xedpointfree,sothesharply2-transitivegroupGxissaidtohavecharacteristic2.By[Ne](seealsoe.g.[BN],11.46)anontrivialabeliannormalsubgroupofGxwouldhavetoconsistofelementsoforder2,eachbeingtheproductoftwoinvolutionsinGx.FromtheconstructionofG,itcanbeseenthatthisisimpossibleinG. 3TheconstructionInthissectionweproveTheorem2.1,i.e.weconstructGanditsactiononasetXfromG0andX0.Wecontinuetousethenotationintroducedintheprevioussection.Fortheconstructionweusepartialgroupactionsasin[TZ],consideredalsobyRipsandSegev.TheconstructionproceedsbyextendinginductivelyboththegroupG0andtheunderlyingsetX0insuchawaythattheassump-tionsofTheorem2.1arepreserved.Thisisdoneintwoseparatekindsofextensions:ontheonehandweextendthegroupG0inordertomaketheactionabitmore3-transitive.OntheotherhandweextendtheunderlyingsetX0inordertolettheextendedgroupact,forcingusinturntoextendthegroupagainetc.Inthelimit,thegroupGwillbesharply3-transitiveonasetXcontainingX0.De nition3.1.ApartialactionofGonasetXcontainingX0consistsofanactionofG0onXandpartialactionsofthegeneratorsinS[R[Usuchthat1.fors2Swehavex0s=x0andifxsisde nedforx2Xnfx0g,thensois(xt)sandwehave(xt)s=(xs)t.2.foru2U;x2X,ifxuisde ned,thensoare(xa)uand(xa2)uandwehave(xa)u=(xu)aand(xa2)u=(xu)a2.Wenowde nenormalformssuitableforourpurpose:Normalforms3.2.AnyelementofGcanbewritten(notnecessarilyuniquely)asareducedwordinthegeneratorsG0nf1g[S[S�1[R[R�1[U[U�1wherewesaythatawordisreducediftherearenosubwordsoftheformff�1forf2S[S�1[R[R�1[U[U�1,3 ghforg;h2G0nf1g;s1ts2wheres1;s22S[S�1;ts1sng(oritsinverse)wheresi2S[S�1;i=1;:::;n;g2G0nf1g;u1a1u2whereu1;u22U[U�1;a1u1ungoritsinversewhereui2U[U�1;i=1;:::;n;g2G0nf1g.Thewordwiscalledcyclicallyreducedifwandeverycyclicpermutationofwisreduced.Wesaythatforawordw=s1sninG0nf1g[S[S�1[R[R�1[U[U�1,theelementxwisde nedforx2Xifforallinitialsegmentsofwtheactiononxisde ned,i.e.xs1;:::;(:::(xs1):::)si;in,arede nedandwewritexw=(:::(xs1):::)sn.NoticethatforelementsfromG0theactiononXisde nedeverywhere.Henceifw;w0arereducedwordswithw=w0inGandxwisde ned,thenxw0isde nedaswellandxw=xw0.Thustheexpressionxg=ymakessenseforg2G;x;y2X.IfGactspartiallyonX,thenthereisacanonicalpartialactiononthesetoftriples(X)3=f(x;y;z)2X3jjfx;y;zgj=3g:TerminologyandnotationForatripleC=(x;y;z)wesaythatg2GshiftsCifCg=(y;z;x)orCg=(z;x;y)andwesaythath2G ipsCifCh=(x;z;y)orashiftofthis.Notethatiftherearesuchelementsg;h2GthenthesetwisestabilizerofCinGisisomorphictoS3.Wealsosaythatanelementg2GleavesatripleCinvariantifCgisde nedandisequaltoCasaset.InthiscasewecallCag-triple.Wecallatriplefreeiftheonlyelementleavingitinvariantistheidentity.WecalltwotriplesCandC0connectedifthereisw2GsuchthatCwisde nedandequalsC0.Ifw2GleavesatripleCinvariant,thenwritingw=s1:::sninreducedform,thetriples(C;Cs1;Cs1s2;:::;Cw)formacyclewhichwecallbraidedifCwisequaltoCasaset,butnotnecessarilyasanorderedtriple.De nition3.3.WecallapartialactionofGonXgood(andsaythatGactswellonX)if4 1.the3-cycleaactswithout xedpointonX;2.theinvolutionthasaunique xedpoint,namelyx02X;andforalltriplesC2(X)3andg;h2Gthefollowingholds:3.Cg=Cimpliesg=1.4.Ifh ipsC,thenhisaconjugateoft.5.IfgshiftsC,thengisaconjugateofa.6.IfgshiftsCandh ipsC,thenthereissomeg02GsuchthatCg0=AwhereA=(x0;x0a;x0a2)=(x0;x0a;x0at).NotethattheoriginalactionofG0onX=X0isgoodandthatAistheuniquetripleofX0invariantunderbothaandt.Inordertomaketheaction3-transitiveitsucestoconnectAtoanyothertripleoftheunderlyingset.Noticethatsinceadoesnot xanypoint,wehave(x;xa;xa2)2(X)3forallx2X.Intheremainderofthesectionweextendagoodpartialactionintwoways:bylettingfreegeneratorstakethe(distinguished)tripleAtoalla-,t-andfreetriplesinordertoeventuallymaketheaction3-transitive,andbyextendingthedomainofthepartialactionofafreegeneratorinordertoeventuallymaketheactiontotal.Westartwiththelastone:Lemma3.4(Extendingthefreegenerators).AssumethatGactswellonXandthatforsomex2Xandf2S[S�1[U[U�1[R[R�1theexpressionxfisnotde ned.(Thenxtfisnotde nediff2S[S�1andxaf;xa2farenotde nedincasef2U[U�1.)Letx0G0=fx0g0jg02G0gbeasetofnewelementsonwhichG0actsregularlyandextendthepartialoperationofGtoX0=X[x0G0byputting1.xf=x0iff2R[R�1;2.xf=x0and(xt)f=x0t(andx0f=x0)iff2S[S�1;3.xf=x0,(xa)f=x0aandxa2f=x0a2iff2U[U�1.ThenGactswellonX0.5 Proof.Firstobservethatthisclearlyde nesapartialactioninthesenseofDe nition3.1andthattheactionsofaandtstillsatisfyconditions1.and2.ofDe nition3.3.Fortheremainingconditionsof3.3itsucestoprovethatifacyclicallyreducedwordwleavesatripleCinX0invariant,thenw2G0(andhencewisconjugatetoaortbyassumption)orCandthe(possiblybraided)cycledescribedbywappliedtoCarecontainedinX.Sincethepreviousactionwasgood,thisisenough.Supposeotherwise:letw2GnG0becyclicallyreduced(inthesenseof3.2)leavingthetripleCinvariant.AssumethatatleastonetripleofthecyclegivenbyapplyingwtoCdoesnotbelongtoX.FirstassumethatthereisatripleinthecyclewhichdoesnotbelongtoX,butbothitsneighboursdo.Thiseasilyimpliesthatacyclicpermutationofwcontainsthesubwordff�1asfistheonlyelementtakingatriplefromXtoatriplenotentirelybelongingtoX.Sowisnotcyclicallyreduced,acontradiction.NextassumethattherearetwoneighbouringtriplesC1;C2inthecyclewhichdonotbelongtoX.Thenbythepropertiesofacyclicallyreducedwordandthede nitionofX0,C1andC2areconnectedbyanelementg2G0n1.Sothecyclecontainsasegment(B;C1;C2;D)wherethetriplesB;DarecontainedinXandnecessarilyBf=C1;C1g=C2andC2f�1=D.Thenf=2R[R�1asG0actsregularlyonx0G0.Iff2S[S�1,wemusthaveg=tsinceonx0G0theelementf�1isonlyde nedonx0t.Soacyclicpermutationofwcontainsthesubwordftf�1,acontradiction.Similarly,iff2U[U�1,wehaveg=a1andacyclicpermutationofwcontainsthesubwordfa1f�1,againacontradiction.ThisshowsthatifatripleCbecomesinvariantundersomeg2Gundertheextendedaction,thisisinducedbyconjugationunderthepreviousaction.HenceCondition4.of3.3ispreservedaswell. WenextshowhowtoextendthegroupactioninordertoconnecttheuniquetripleA=(x0;x0a;x0a2)withx0at=x0a2toatripleBwhereBiseitherana-triple,at-tripleorafreetriple:Lemma3.5(ConnectingAtoothertriples).AssumethatGactswellonX,letA=(x0;x0a;x0a2)=(x0;x0a;x0at)beasbeforeandletBbeana-,t-orafreetripleforwhichthereisnog2GwithAg=B.Letf2R[S[Ubeanelementwhichdoesnotyetactanywherewith6 1.f2UifBisana-triple;2.f2SifBisat-triple;3.f2RifBisafreetripleExtendtheactionbysettingAf=B.ThenthisactionofGonXisagaingood.Proof.Againitisclearthatthisde nesapartialactioninthesenseofDe nition3.1andthat1.and2.ofDe nition3.3continuetohold.AlsonotethatsincethesetwisestabilizerofAinGisS3theassumptionsimplythatthereisnow2Gnotcontainingf;f�1takingAtoBasaset.Toprovetheremainingconditionsof3.3letwbeacyclicallyreducedword(inthesenseof3.2)leavingsometripleC2(X)3invariant.Sincethepreviousactionwasgood,itsucestoshowthatwdoesnotcontainforf�1.Supposeotherwise.Thenbycyclicallypermutingwandtakinginverseswemayassumethatw=fw0.SowstabilizesAandw0takesBtoAasaset.ByassumptiononA;Bthesubwordw0mustcontainf.Hencewemaywritew0=v0fvforsomesubwordv0notcontainingforf�1.Wedistinguishtwocases:1.=1.Thenv0takesBtoAasasetasfisonlyde nedonA.Sincev0doesnotcontainf;f�1,thiscontradictstheassumptiononA;B.2.=�1.Thenv0leavesBinvariant.Sincethepreviousactionwasgood,weeitherhavev0=tandf2Sorv0=a1andf2U(accordingtowhetherBisana-orat-triple).Ineithercasev0commuteswithf,contradictingtheassumptionthatwbecyclicallyreduced. Corollary3.6.AssumethatGactswellonXwithjXjmaxf@0;jGjgandtherearesucientlymanyelementsofR;SandUwhoseactionisnotyetde nedanywhere.ThenwecanextendthepartialactionofGonXtoasharply3-transitive(total)actiononsomeappropriatesupersetY.Proof.Fixtheuniquea-tripleA=(x0;x0a;x0a2)=(x0;x0a;x0at)inX0.Usingthepreviouslemmaswede neasetYanda3-sharpactionofGonYwiththefollowingproperties:1.alla-triplesareconnectedtoA;7 2.allt-triplesareconnectedtoA;3.anytriple(x;y;z)canbeshiftedbyanelementofG.ThelastpropertycanbeachievedusingLemma3.5:supposeB=(x;y;z)cannotbeshiftedbyanelementofGatacertainstageoftheconstruction.ThenBisafreetriple:otherwiseanelementofGleavingBinvariantwouldhavetobeaninvolutiont02G.Sincet0=hth�1forsomeh2G,thetripleBhisat-tripleandhenceconnectedtoA,makingBshiftableaswell.Thus,Bisafreetripleatthatstage,andwelaterextendtheactionbyputtingAr=Bforsomer2R.ThenBcanbeshiftedbyar.ThiseasilyimpliesthattheactionofGonYissharply3-transitive,i.e.alltriplesareconnectedtoA:letBbeatripleandg2GshiftB.Thenwehaveg=hah�1forsomeh2G,soBhisana-tripleandwhenceconnectedtoA. ThisconcludestheproofofTheorem2.1.References[BN]A.Borovik,A.Nesin,Groupsof niteMorleyrank,OxfordLogicGuides,26.OxfordSciencePublications.TheClarendonPress,OxfordUniversityPress,NewYork,1994.[DM]J.D.Dixon,B.Mortimer,Permutationgroups,GraduateTextsinMathematics,163.Springer-Verlag,NewYork,1996.xii+346pp.[Ha]M.Hall,OnatheoremofJordan,Paci cJ.ofMath.4(1954)219{226.[Ne]B.H.Neumann,OnthecommutativityofadditionJ.LondonMathSoc.15(1940),203{208.[RST]E.Rips,Y.Segev,K.Tent,Asharply2-transitivegroupwithoutanon-trivialabeliannormalsubgroup,toappearinJournaloftheEMS.[TZ]K.Tent,M.Ziegler,Sharply2-transitivegroups,preprint,2014.[Ti]J.Tits,Groupestriplementtransitifsetgeneralisations.AlgebreetThe-oriedenombres,Coll.Int.duCentreNat.delaRech.Sci.no.24(1950)207{208.8 [Z1]H.Zassenhaus,UberendlicheFastkorper,Abh.Math.Sem.Hamburg,11(1936),187{220.[Z2]H.Zassenhaus,KennzeichnungendlicherlinearerGruppenalsPermu-tationsgruppen,Abh.Math.Sem.Hamburg,11(1936),17{40.KatrinTent,MathematischesInstitut,UniversitatMunster,Einsteinstrasse62,D-48149Munster,Germany,tent@wwu.de9