/
ThepositivenessoflowerlimitsoftheHoffmanconstant ThepositivenessoflowerlimitsoftheHoffmanconstant

ThepositivenessoflowerlimitsoftheHoffmanconstant - PDF document

test
test . @test
Follow
374 views
Uploaded On 2015-09-28

ThepositivenessoflowerlimitsoftheHoffmanconstant - PPT Presentation

JGlobOptim DOI101007s1089801197297 inparametricpolyhedralprograms AJourani ID: 143184

JGlobOptim DOI10.1007/s10898-011-9729-7 inparametricpolyhedralprograms A.Jourani

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ThepositivenessoflowerlimitsoftheHoffman..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

JGlobOptim DOI10.1007/s10898-011-9729-7 ThepositivenessoflowerlimitsoftheHoffmanconstant inparametricpolyhedralprograms A.Jourani · D.Zagrodny ©TheAuthor(s)2011.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract If K ( t ) aresetsofadmissiblesolutionsinparametricprogramsthenitisnatural AnswerstothisquestionarerelatedtotheproblemofthecontinuityorLipschitzcontinuity ofthevaluefunction,namelyhavingthelowersemi-continuityof K ( · ) wegettheupper semi-continuityofthefunctioneasilyandtheLipschitz-likepropertyof ( · ) leadstothe Lipschitz-continuityofit.HereinsufÞcientconditionstogetthesepropertiesofthepolyhe- dralmultifunctionofadmissiblesolutionsaregivenintermsofthelowerlimitoftheHoffman lowerlimitoftheHoffmanconstantarepositive. Keywords Parametricprogramming · Hoffmanconstant · Errorbound · Moscoconvergence · AttouchÕstheorem Convexfunctions · Subdifferentials · Polyhedrals MathematicsSubjectClassiÞcation(2000) 49J40 ThispaperwaswrittenwhilethesecondauthorwasvisitingProfessorattheUniversityofBurgundy.The A.Jourani UniversitŽdeBourgogne,UFRSciencesetTechniques,InstitutdeMathŽmatiquesdeBourgogne,UMR 5584CNRS,BP47870,21078DijonCedex,France e-mail:jourani@u-bourgogne.fr D.Zagrodny FacultyofMathematicsandNaturalScience,CollegeofScience,CardinalStefanWyszy« Dewajtis5,01-815Warsaw,Poland D.Zagrodny( B ) SystemResearchInstitute,PolishAcademyofSciences,ul.Newelska6,01-447Warsaw,Poland e-mail:d.zagrodny@uksw.edu.pl 123 JGlobOptim1IntroductionbearealBanachspaceandbeitstopologicaldual.Forasetofindices,ametricspaceandmappings,westudythefollowinginequalitysystem0forallreferstothepairingbetween.Thissystemisviewedasdependingontheparameter,soforeach,letbethe(possiblyempty)setofsolutionsto)withrespectto.WeareinterestedinalocalbehaviorofthemultifunctionaroundaÞxedelement.OurattentionismainlyfocusedonconditionsunderwhichLipschitz-likeatt,inthesensethatthereexistaneighborhoodUoftsuch(2)orKislowersemi-continuousatt,i.e.liminfdenotestheballat0withradiusandliminfstandsforthelowerlimitofsets.Thesepropertiesplayacentralroleinparametricprogramming,werefertoo5]forseveralfactsonthecontinuityof.Theyallowtoinvestigatethebehaviorandthepropertiesofsolutionsetsofoptimizationproblemsundervariationsofthedescribingparameters.Tobemoreprecise,letusconsiderthefollowingproblemisagivenfunction,whichisassumedtobeconvexinthesecondvariable.Changingover,wewillgetafamilyofproblemswhosevaluesandsetsofsolutionsaregiven,respectively,by:={.Theobtainedfunctioniscalledvalueormarginalorcostfunction.Thebehaviorofitisrelatedtothatofthesolutionsets.Inordertoobserveitletusindicatesomelinksamong.ForthisreasonÞxandsupposethatarecontinuous.Itiseasytoobservethatthefollowingimplicationlowersemi-continuityofKatholdstrue,seealso[,Theorems4.2.1and4.2.2].Additionally,imposingauniformcom-pactnessassumptiononandsomecontinuitypropertieson,wehavelowersemi-continuityofaswellasthefollowingequivalenceuppersemicontinuityofuppersemicontinuityofholdstrue.Thisfactiscommonlyknownsee[,Theorem5]or[,Proposition12],wereferalsoto[].Ofcoursetogetmoresmoothwehavetoassumemoreoninvolvedfunctions,wereferto[]andthereferencesthereinforseveralfactsonthat. JGlobOptimWeseethatthelowersemi-continuityofisessentialtogettheuppersemi-continuity.HereinweprovideitusingtheHoffmanconstant.Thisconstantisgivenby ai(t),x+bi(t)],K(t):={see[],and:=.ManyauthorshavepresentedandstudiedexplicitrepresentationsofHoffmanconstants,wereferto[]andreferencestherein,seealso[].InIn7,Theorem5.1](undertheassumption)itisshownthatistheFenchelsubdifferentialoftheconvexfunctionisthedistancebetween0andwithrespecttothenormofRelation()isequivalenttothefollowingoneobtainedin[].ThisrepresentationoftheHoffmanconstantallowsustouseasubddifferentialcalculustoshowthattheinequalityliminfentailsthelowersemi-continuityof,seeTheorem,ortheLipschitzcontinuity,see,thus()and()hold.Unfortunately,thefunctionisnotlowersemi-continuouseveninsimplecases,asitisshowninSect..Itmeansthatitisnotenoughtoimposeconditionspreservingthat0togetthepositivenessofthelowerlimit.Theproblemismuchmorecomplicated.InSect.wepresentconditionsimplyingthepositivenesswheneverisÞniteordenumerable.ThecaseisdenumerableinvolvestheAttouchtechniqueofapproximationofsubgradientsbyÒbetterÓonesingettingtheinequal-ity,seeTheorems.ThistechniquecanbeusedonlyinreßexiveBanachspacesormoregenerallyinweaklycompactlygeneratedBanachspaces.WedonotknowhowtogetthisresultsingeneralBanachspaces,thisisanopenproblem.WheneverisÞniteorcanbeexpressedasthemaximumofaÞnitenumberofafÞnefunctions,see[]forsomeinformationonthistechnique,itiseasiertoevaluatethesubdifferential,so()canbeappliedtogettheinequalityliminf0,seeExampleandPropositionLetusalsomentionthatwheneverisaÞniteset,,functionalsdonotdependonandatleastoneofthemisdifferentfromzero,thenliminf0,seeandCorollaryfordetails.WhenwecompareProposition,Theoremsitturnsoutthattheyareofdifferentnature.Wepresenttheminthosemiscellaneousformsinordertopointoutthatthereareseveralpossibilitiestopreservethepositivenessofthelimitliminfbyexamples.OfcoursetherearepossibilitiestoproducetheoremslikePropositionthereßexiveorweaklycompactlygeneratedBanachspacesetupwithdenumerablefamiliesofafÞnemappings,andthereverseisalsopossible.Finallywewouldliketothanktherefereeforhisremarks,whicheliminatedsomegapsinthepresentation. JGlobOptim2PropertiesofsubgradientsofconvexfunctionsInthissectionseveralpropertiesoflowersemi-continuousfunctionsdeÞnedonarealBanachspacearerecalled,wereferto[]forthedefinitionoflowersemi-continuousproperconvexfunctionandtheirproperties.WhenisaBanachspacethentheweaktopologyisdenotedby,theweaktopologyby,wereferto[]forthedefinitionsoftheweaktopologies,weakconvergence,weakconvergenceandforthedefinitionofthereßexiveBanachspace.TheclosedandtheopenunitballsofaredenotedbyThe(Fenchel)subdifferentialofaconvexfunction{}atapointisthesubsetofthedualspacegivenbyisapointofthedomainof,wheredom:={,andthesubdifferentialistheemptysetotherwise.Itfollowsfromthisdefinitionthatforevery0thefollowingassertionsareequivalent,)(10)Either()or()ensuresthatisanisolatedminimumofBelowwerecalltworesultsallowingustoapproximateasubgradientofaconvexfunc-tionbysubgradientsofconvexfunctions,whichsubgradientsareeasiertocalculate.ForthisreasonletusrecallthenotionoftheMoscoconvergence.Indoingthiswefollow[],wereferalsoto[]formoreinformationontheMoscoconvergence.DeÞnition2.1beaBanachspaceand{}forevery.WesaythatMoscoŠifthetwofollowingconditionsaresatisÞed:(S1)wheneverisasequenceweaklyconvergentto,thenliminfŠ(S2)foreachthereexistsasequenceconverginginnormtoforwhichŠItisnotdifÞculttonoticethatifisanondecreasingsequenceoflowersemicon-tinuousconvexfunctionsandforeveryŠthen(S1)and(S2)aresatisÞed.FirstresultconcerningtheapproximationsofsubgradientsbybetteronesisaconsequenceoftheAttouchtheorem(thenecessitypart),see[Theorem2.2Letf{+}beconvexlowersemi-continuosfunctionsonareßexiveBanachspaceXandfMoscoŠ.Foranyxtherearesequencessuchthata:limŠŠforeverynandxŠWerecallthataBanachspaceisWCG(weaklycompactlygenerated)ifthereexistsaweaklycompactsubsetthatspansadenselinearspacein,onecanalwaysassumethatisconvex,wereferto[]fordetailedinformationonWCGspaces.Below JGlobOptimwerecall,see[],thatifisaweaklycompactlygeneratedBanachspaceandMoscoŠ,thenforeverythereisasequenceandlimŠforevery,wereferto[]formore.Theorem2.3LetXbeaWCGBanachspace,beÞxedandf{+}bealowersemi-continuousconvexfunctionsuchthatfAssumethatf{+}arelowersemi-continuousconvexfunctionssuchthat:MoscoŠthereisanopennonemptysubsetUofXandaconstantcsuchthatforeveryuandnwehavefThentherearesequencesEandsuchthat:iii:limŠŠiv:ŠFinallyletusrecalltheEkelandvariationalprinciple,see[]formore.Theorem2.4(EkelandVariationalPrinciple)Assumethatf{}isalowersemi-continuousfunctiononaBanachspaceX,boundedfrombelow.ForanyEsuchthatfthereisapointzXsatisfyingforeveryx3Examplesoflowersemi-continuityofadmissiblesetswiththelackoflowersemi-continuityoftheerrorboundsInthissectionthreesimpleexamplesofparametricconvexprogramsarepresented,wherethesetsoftheadmissiblesolutionsarelowersemi-continuouswithrespecttoparameterbuttheHoffmanconstantsarenotlowersemi-continuous.Thusthelowersemi-continuityofthemultifunctionofadmissiblesolutionsmaynotbelinkedtothelowersemi-continuityoftheerrorboundfunction.Example3.1Letusput:=[andforeveryandforeveryLetusobservethatisLipschitzcontinuousonandforeverythefunctionisconvex,moreoverif0 JGlobOptimForeverystandsforthesubdifferentialofwithrespecttothesecondvariableat:={Foreveryywehave2andliminf(12)isnotlowersemi-continuousat0but=]Šforeveryislowersemi-continuousonBelowweprovideanotherexample,wherethesamephenomenaoccursbutthelowerlimitin()isequalto0,henceweinferthatthepositivenessofthelowerlimitoftheHoffmanconstantsisnotnecessaryforthelowersemi-continuityoftheadmissiblesetsofsolutions.ThesecondexampleisaslightmodiÞcationoftheÞrstone,namelyExample3.2if0Forevery:={Foreveryywehave1andliminfisnotlowersemi-continuousat0but=]Šforevery,soislowersemi-continuousonThethirdexampleisjusttoshowthatevenassumingthatbdconvforeverysubsetwedonothavethelowersemi-continuityoftheerrorbounds,seealso()inRemarkExample3.3 if0Forevery JGlobOptim:={Foreveryywehave),2andliminfisnotlowersemi-continuousat0butbdconvforeverysubsetOfcourse=]Šforevery,soislowersemi-continuousonLetusobservethatalltheexamplescanberearrangedtohavecoercive,sotheadmis-siblesetswouldbebounded.Forthisreasonitisenoughtoadd1andinthedefinitionoftakethemaximumfromthefourafÞnefunctionsinsteadofthethree,see4ThepositivenessofthelowerlimitsoftheHoffmanconstantsThroughoutthepaperletbearealBanachspace,beametricspace,beanonemptysetofindicesandthefamilyofmappingsbegiven,whereLetusdeÞneandforevery,):={:={wheretheinfimumovertheemptysetisWestartwithasimpleobservationthathaving0insidetheinteriorofthesubdifferentialwegetthatthelowerlimitoftheerrorboundsispositive,namelyProposition4.1FixXandletusassumethatf{+}suchthatfandforsomeandeverytTinsomeneighborhoodoftsayforeveryt,wehave,)andK,thenforeverytwehave,thusliminf JGlobOptimProofForeveryandeverybytheequivalence()wehaveThusif,thenwhichimpliesforevery.Inordertocompletetheproofletusobservethat0forevery.Infact,by()wehaveforevery,so0andbythedefinitionofcanbeconsideredwhenthevaluesofthefunctionarecalculated,butthen,thus(keepinmindthattheinfimumovertheemptysetisBelowweprovideanexampleshowingthatwhenever0isintheinteriorofthepolyhedrongeneratedbyaÞnitefamily,then()issatisÞedwithExample4.2Assumethatforgiven0and,wehave0,thesetsarenonemptyforeverycloseto,themappingsequi-continuousat,themappingsdonotdependon,i.e.forevery,anddclconv,)thentheassumptionsoftheabovepropositionaresatisÞed,whereisdeÞnedin()andstandsfortheclosurewithrespecttotheweaktopology.Indeed,becauseoftheequi-continuityof,thereexistsaneighborhoodsuchthatsuchthatandletetbearbitrary.Foreachconv,),thereexistaÞnitesubset,)andnon-negative1,suchthatthatai(t),x+bi]Š iJi[ai(t0),0+bi]Š= iJ[iai(t)Šai(t0),x]+Henceforeachconv,)Thelastinequalityisalsotrueforallandhenceisarbitraryinn,wehave JGlobOptimUsingtheassumptionthatthemappingsdonotdependon,wehaveforall,andthenorequivalently, )andthisisexactlyrelation(Remark4.3Theexampleaboveholdstrueifwereplaceandcondi-tion()bythefollowingoneconvRemark4.4IfthespaceisaÞnitedimensional,isÞnite,themappingsarecontinuousat,then()implies(Itisalsoeasytoobservethatassuming,similarlyto[],thatisÞniteandforeverysubsetbdconveither()holdstrueoritdoesnotholdbutthen()ensures, )convforsome0andaneighborhoodof,sayItisnaturaltoaskwhathappensif()doesnothold.BelowwegivepartialanswerstothisquestionwheneverthesetiseitherÞniteordenumerable.InthePropositionbelowweassumeonlythatsetsofalmostactiveconstraintsareÞnite.Proposition4.5LetusÞxtTandassumethatforsomeandaneighborhoodoftsayUT,thesets,)(20)arenonemptyandÞniteforeveryt.Ifforsome, )domfconv,)domfforeveryt,thusliminfwhereNdomfisthenormalconetodomfaty,i.e.domf:={domf JGlobOptimProofLetusÞxsuchthatthatandxf(t,y)=.Take.Bythelowersemi-continuityandtheconvexityofthereis0suchhforeveryry0,µ],hencethesetet0,µ]I(t,y+s(uŠy),)isÞnite.BecauseoftheÞnitenessof,)andthecontinuityofonthesegmentmenty,u]wehave),),),for0smallenough.Indeed,if),),)foreveryandsome0,thenthereisasuchthat),),)forsomeandevery(keepinmindthat),)isÞnite).,),acontradiction.Thus),),),for0smallenough.Takeanyandobservethatforforsmallenoughweobtain,)Nowapplyingthestandardprocedure,seeforexample[,Theoremp.87],wegetconv,)conv,)Hencebytheassumptionsforevery0weget(keepinmindthatthedistancefromtheemptysetisObservethatifthesetdeÞnedin()isemptyforsome,so(issatisÞed.InthepropositionbelowweassumethatisaÞniteset,atleastoneofisnotequaltozeroandalldonotdependon.Beforestatingthisresult,letusset:={arelinearlyindependentforallForeverysuchthat0Farkaslemma(forcones)tellsusthatthat0,+[conv(22)Proposition4.6SupposethatXisaHilbertspace,IisaÞniteset,atleastoneofaisnotequaltozeroandalladonotdependont.ThenforeachtTsuchthatK,we JGlobOptimMoreover,ifKfortneart,thenliminfProofWeusethesameideasasintheproofof[,Theorem4.1].Forthesakeofthereaderconvenience,wegiveadetailedproofoftheabovepropositionherein.LetusobservethatthefollowinginclusionholdstrueconvLetusÞxandsetconvThen,sincearelinearlyindependent,wehaveObservethat,whereisdefiniteasin().Sousingtheequivalence),wegetTheproofisthenterminatedifweshowthatforeachthereexistssuchthatIndeed,let,thenthereexistssuchthatorequivalentlyBy((0,+[conv.Sothereexistnotallequaltozero(because),suchthatarelinearlyindependentthenputandobservethatforevery0andthentheresultfollowsfrom().Sosupposethereexist,notallequaltozerosuchthatHenceforall JGlobOptimOurproblemistoÞnd0andsuchthat0and.Setandsupposethat.Forall0iff .Soletbesuchthatmin µi=Ši0 andput .Then0andByinductionweshowthatisapositivecombinationoflinearlyindependentfamilyof,with,orequivalently,(keepinmindthat0foreveryTakingintoaccountthatequalitycanbeexpressedastwoinequalitiesweobtainthefollowingcorollaryofPropositionCorollary4.7beaÞnitefamilyofvectorsofaHilbertspaceX,withatleastoneofanotbeingequaltozero,andlet,foreachibeafunction.Considertheset:={andthefunctionfdeÞnedbyIfSfortneart,thenliminfInordertodealwiththesetofindexesbeingdenumerable,infactitisenoughtohavethatthesetdeÞnedin()isatmostcountable,andtoget()weneedamoresophisticatedtool.Namely,inwhatwedohereinisemploymentofanapproximatetechnique.WeapproximatesubgradientsoftheconvexfunctiondeÞnedin()bysubgradientsoffunctions·+whichsubdifferentialsarepossibletocalculateexplicitly.ForthisreasoninthenexttheoremweusetheAttouchtheorem.Thepricefortheuseofthetoolistheneedtoassumethatthespaceisreßexive.Theorem4.8LetXbeareßexiveBanachspaceandtTbeÞxed.Assumethatforaandaneighborhoodoft,sayUT,foreverytweareabletochooseanonemptydenumerablesubsetIIsuchthatifKifdomfwherep,and, )convforeveryt,soliminf JGlobOptimProofWeshowthatforeverysuchthatinfwehaveclconvForthispurposeletusÞxsuchthatinf.Bythelowersemi-continuityofthereis0suchthatforevery.LetusassumethatanddeÞneasequenceofconvexasfollows(v)),vForeverywehave(v)(v),(v),v),istheMoscolimitofthesequenceandTheorembeappliedtothesequence,whereisequalto0ontheballandoutsidetheball.HenceanysubgradientisthestronglimitofsubgradientsofbutforlargeenoughwegetclconvclconvThuswehaveclconvwhichbytheassumptionsimpliesLetusÞx.Forany0suchthatforevery.Since,soforeveryandhence,whichby()impliesConsiderthecaseandÞx(ifdomandwearedone).Thesetisconvexandclosed,sobythereßexivitythereissuchthat.Foreveryywehave (z+s(x(z)Šzf(tf(t,z) d(z,Kf(t123 JGlobOptimwhichby()implies Letusassumethat.TakeanyyandÞndsuchthat,v)1and,v)(v,.Choose,v) (v,,.ByTheorem,appliedto,thereissuchthat(v,,w),v),,w),),w))(thusf+(t,w),w),and,w),w))andforsome,w),whichcontradictsthechoiceof.Weconcludethatinthecaseby()weget0forevery,soeitherdomordom(inthelattercaseinf0).Weexcludethelattercase.ForthisaimÞx .ByTheoremthereissuchthat,w),w),),w))andw forsome,w).Henceby)wegetbutitcontradictsthechoiceof,soitisimpossiblethat.ThusforeverywheneverwhichimpliesthestatementsLetusobservethat()isfulÞlledwhenever, )convseealsoExample.Ofcoursehavingdenumerableweseethatitiseasytocheckthatimplication()issatisÞed(forexampleputtingforall,seeTheoremsoassumptionsofTheoremarenotdifÞculttobeveriÞedinthiscase.Wheneverassumedtobeseparableandthefamilyisboundedforevery,thenimplication()isalsovalid,evenwhenisnotdenumerable,itisdiscussedintheRemarkbelow.Remark4.9beaseparableBanachspaceandthefamilybeboundedforevery.Foreveryforwhichdomletuschoseadenumerablesubsetsuchthatdomandforeverythereisasequence(thechoiceofbecarriedoutasfollows:takeacountabledensesubsetof,),andput:={,)).Foreveryletuschooseadenumerablesubsetsuchthat JGlobOptimandputLetusobservethatforthesetimplication()holdstruewheneverdomInfact,wehaveforevery.Takesuchthat.ObservethatŠŠ,thus.Letusalsoobservethattheboundednessofthefamilyandnon-emptinessofthedomaindomfdomfTheargumentsusedintheproofofTheoremallowsustoextendPropositiontheÞnitecasetothedenumerableoneinthereßexiveBanachsetting.Theorem4.10LetXbeareßexiveBanachspaceandtTbeÞxed.Assumeforsomeandaneighborhoodoft,sayUT,theset,)isnonemptyanddenumerableandforeveryt,domfisclosedandforsomeconv,)domfProofandÞxsuchthat.Bythelowersemi-continuityofthereis0suchthat0forevery.Lett.LetusassumethatanddeÞneasequenceofconvexfunctionsasfollows(v)),vForeverywehave(v)(v).convergestosomefunctionsuchthat.SoistheMoscolimitofthesequence(thefunctionsareconvexandlowersemi-continuous)andTheoremcanbeappliedtothe,whereisequalto0onthesetoutsidethisset.Henceforany,anysubgradientsubgradientf + D(t)}](u )isastronglimitofsubgradients,withforall,butclconv JGlobOptimTheassumptionsofthetheoremandthelastinclusionensurethatstronglyconvergesto,wehaveandhenceencef + D(t)}](u )) .(28)Now,pickorequivalentlySinceforall,weobtainnf + D(t)](y).Combiningthisrelationwith(),itfollowsthatandhenceItfollowsthatInthediscretecase,i.e.,theassumptionsofTheoremcanberelaxed.Theorem4.11LetXbeareßexiveBanachspaceandtTbeÞxed.AssumeIandforsomegivenneighborhoodoft,sayUT,andforsomethefollowinginequalityconvProofTheproofissimilartothepreviousonebyconsideringthesequence,where(v)),vwhichconvergesto JGlobOptimLetusalsonoticethatthecondition, )convisequivalentto, )clconvwhichinthereßexiveBanachspacesisthesameas, )conv(30)InTheoremweuse()inordertoguaranteethepositivenessoflowerlimitoferrorbounds.InanonreßexiveBanachspace()implies()butthereverseisnotalwaystrue.Ofcoursewecoulduse()inTheoreminsteadof()andtheresultwouldbethesame.HoweverinnonreßexiveBanachspacesitisnotpossible.Inthenexttheoremweproposearesultwhere()isusedinsteadof()andthespaceisassumedtobeweaklycompactlygenerated.Howeverasapriceforthatwehavetoassumethefamilyoffunctionsconsistsofcontinuousfunctions.Thecontinuityassumptionscanberelaxedusingatechnicalconditionfrom[],forthesakeofsimplicitywedonotdoitÑtheinter-estedreadercandoitrepeatingtheideas.Letusstartwithanexampleilluminating(Example4.12beaBanachspaceandbeaconvexweakclosedsubsetsuchthat0,forexample,where.Assumethatforeverywehavethen()and()aresatisÞedfor0sufÞcientlysmall.Intheproofofthetheorembelowweneedthepropertythatwhenevertheinteriorofthedomainisnonempty,i.eintdomthentheHoffmanconstantcanbecalculatedintheinteriorofthedomain,namelywehaveProposition4.13ForeverytTsuchthatintdomfwehaveintdomfProofAssumethat()doesnothold,i.e.intdomFixany),and�0suchthat d(z,Kf(tf(t,z) intdom(32)NowletusapplyTheoremforthefunction.Thereissuchthat,).Hence0and,so,),whichcontradictsthelastinequalityin JGlobOptimTheorem4.14LetXbeaweaklycompactlygeneratedBanachspaceandtTbeÞxed.Assumethatforsomeandaneighborhoodoft,sayUT,thesetsintdomfarenonemptyforeverytandtheset,)isnonemptyanddenumerable,andforsome, )conv,),foreveryt,thusliminfProofItfollowsfromPropositionthatitisenoughtoshowthatforeveryintdomwehaveconv,),ForthisreasonletusÞxsuchthatintdom).Bythelowersemi-continuityofthereis0suchthatintdomisboundedfromtheaboveon.Letusassumethat,)anddeÞneasequenceofconvexfunctionsasfollows(v)),vForeverywehave(v)(v),(v),v),istheMoscolimitofthesequence,whereequalto0ontheballandoutsidetheballandTheoremcanbeapplied(keepinmindthatbythechoiceofandtheassumptionintdomwehaveintdom,whichimpliesthatthesequenceisuniformlyboundedfromtheabove).HenceanysubgradientistheweaklimitofasequenceofsubgradientsofÕsbutconvconv,),Thuswehaveconv,),whichbytheassumptionsimpliesforevery JGlobOptimhenceitfollowsthatliminfLetuspointoutthatintheproofoftheabovetheoremweneedonlytheassumptionthatforeverysuchthatthereis0suchthattheset,)isnonemptyanddenumerable.5Lipschitz-likeandlowersemi-continuitypropertiesoftheadmissiblesetsInthissectionweshowthatifliminfthenthemappingofadmissiblesetsofsolutionsislowersemi-continuousatTheorem5.1LetXbearealBanachspace,Tbeametricspace,tTanditsneighbor-hoodUTbegiven,f{+}besuchthat:={isnonemptyatt,andforeverytTthefunctionfisproperconvexlowersemi-continuousandforeveryx,andforeverysequenceTconvergingtotthereisasequence,XconvergingtoxsuchthatlimsupŠThen,thefollowinginequalityliminfentailsthelowersemi-continuityofKattProofAssumethatliminf0.LetusÞx,asequenceconvergingtoandasequence,convergingtosuchthatlimsupŠFirstletusobservethatif,thentheproperconvexlower-semi-continuousisboundedfrombelowby0.ThustheEkelandVariationlPrinciple,see,ensurestheexistenceofapairsuchthatliminfbutitwouldbeacontradictionforlargeenough,soforÕslargethesetsarenon-empty.Sincethesequenceconvergesto,thecaseforeveryimpliesthestatementimmediately.SoletusconsiderthecasewheneverinÞnitemanyof JGlobOptimÕsareoutof.Withoutlossofthegeneralitywemayassumethatforeverylarge.Usingequivalence()wegetŠlimsupŠwhichimpliestheexistenceofasequencesuchthatforeverylargeenough,thusthelowersemi-continuityisproved.Inseveralcases()isasimpleconsequenceofimposedassumptionsontheinvolvedfunctions.Forexample,letuspointoutthatifweassumethatiscontinuouson,forexampleassumingthatisÞniteandarecontinuous,weget()withforevery.Condition()isalsofulÞlledwithforevery,wheneverisuppersemi-continuousforevery.IfforeveryconvergingwehaveMoscoŠ,then()issatisÞedtoo.Thusweseethat()canbeentangledinotherassumptionsandinseveralcaseswegetitimmediately.beoftheformisadenumerableset.WeendowwithametricdenotedbyOuraimhereistoshowhowtousethepositivenessofthelowerlimitoftheHoffmancon-stanttogetakindofLipschitz-likepropertyoftheadmissiblesetdeÞnedbythefunctionTheorem5.2LettT.SupposethatthereexistandaneighbourhoodUoftsuchthatthereexistsasuchthatliminf ThenthereexistsaneighborhoodUoftsuchthatProofBy(ii),thereexistsaneighborhoodsuchthat orequivalently0bearbitrary,.If,thenwearedone.Otherwise,relation()togetherwithwithf(t,x)Šf(t ,x)] a(r+1)dT(t,t )whichcompletestheproof.Letusobservethatwheneverisuniformlyboundednear,theabovetheoremassertsthatisLipschitzcontinuousat JGlobOptimOpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionNoncommer-cialLicensewhichpermitsanynoncommercialuse,distribution,andreproductioninanymedium,providedtheoriginalauthor(s)andsourcearecredited.References1.Attouch,H.:VariationalConvergenceforFunctionsandOperators.PitmanAdvancedPublishingPro-gram,Boston(1984)2.Attouch,H.,Beer,G.:Ontheconvergenceofsubdifferentialsofconvexfunctions.Arch.Math.389Ð400(1993)3.AzŽ,D.:AuniÞedtheoryformetricregularityofmultifunctions.J.ConvexAnal.,225Ð252(2006)4.AzŽ,D.,Corvelec,J.-N.:OnthesensitivityanalysisofHoffmanconstantsforsystemsoflinearinequal-ities.SIAMJ.Optim.(4),913Ð927(2002)5.Bank,B.,Guddat,J.,Klatte,D.,Kummer,B.,Tammer,K.:Non-LinearParametricOptimization.Akademie-Verlag,Berlin(1982)6.Bosch,P.,Henrion,R.,Jourani,A.:Errorboundsandapplications.Appl.Math.Optim.,161Ð181(2004)7.Cornejo,O.,Jourani,A.,Zalinescu,C.:Conditioningandupper-Lipschitzinversesubdifferentialsinnonsmoothoptimizationproblems.J.Optim.TheoryAppl.(1),127Ð148(1997)8.Deville,R.,Godefroy,G.,Zizler,V.:SmoothnessandRenormingsinBanachSpaces.LongmanScientiÞcandTechnical,Essex(1993)9.Ekeland,I.:Nonconvexminimizationproblems.Bull.Am.Math.Soc.,443Ð474(1979)10.Hoffman,A.J.:Onapproximatesolutionsofsystemsoflinearinequalities.J.Res.Natl.Bureau,263Ð265(1952)11.Hogan,W.H.:Point-to-setmapsinmathematicalprogramming.SIAMRev.,591Ð603(1973)12.Holmes,R.:GeometricFunctionalAnalysisanditsApplications.Springer,NewYork(1975)13.Jourani,A.:HoffmanÕserrorbound,localcontrollabilityandsensitivityanalysis.SIAMJ.Control,947Ð970(ErratuminthesameJournal)(2000)14.Klatte,D.,Thiere,G.:Errorboundsforsolutionsoflinearequationsandinequalities.ZORMath.MethodsOper.Res.,191Ð214(1995)15.Li,W.:ThesharpLipschitzconstantsforfeasibleandoptimalsolutionsofaperturbedlinearprogram.Lin-earAlgebraAppl.,15Ð40(1993)16.Mangasarian,O.L.:Aconditionnumberoflinearinequalitiesandequalities.MethodsOper.Res.3Ð15(1981)17.Mangasarian,O.L.,Shiau,T.H.:Lipschitzcontinuityofsolutionsoflinearinequalities,programsandcomplementarityproblems.SIAMJ.ControlOptim.,583Ð595(1987)18.Meyer,R.R.:Thevalidityofafamilyofoptmizationmethods.SIAMJ.Control,41Ð54(1970)19.Mohebi,H.,Naraghirad,E.:Closedconvexsetsandtheirbestsimultaneousapproximationpropertieswithapplications.Optim.Lett.(4),313Ð328(2007)20.Mordukhovich,B.S.:VariationalAnalysisandGeneralizedDifferentiation.I:BasicTheory.GrundlehrenSeries(FundamentalPrinciplesofMathematicalSciences).Vol.330,Springer,Berlin(2006)(584p)21.Mordukhovich,B.S.:VariationalAnalysisandGeneralizedDifferentiation.II:Applications.GrundlehrenSeries(FundamentalPrinciplesofMathematicalSciences).Vol.331,Springer,Berlin(2006)(592p)22.Phelps,R.R.:ConvexFunctions,MomnotoneOperatorsandDifferentiability.2ndedn.Springer,Berlin(1993)23.Robinson,S.M.:Boundsforerrorinthesolutionsetofaperturbedlinearprogram.LinearAlgebra,69Ð81(1973)24.Tardella,F.:Existenceandsumdecompositionofvertexpolyhedralconvexenvelopes.Optim.(3),363Ð375(2008)25.Zagrodny,D.:Ontheweak*convergenceofsubdifferentialsofconvexfunctions.J.Conv.Anal.213Ð219(2005)26.Zagrodny,D.:MinimizersofthelimitofMoscoconvergingfunctions.Arch.Math.(5),440Ð445(2005)27.Zagrodny,D.:Aweak*approximationofsubgradientofconvexfunction.ControlCybern.793Ð802(2007)28.Zùalinescu,C.:SharpestimatesforHoffmanÕsconstantforsystemsoflinearinequalitiesandequali-ties.SIAMJ.Optim.,517Ð533(2003)29.Zheng,X.-Y.,Ng,K.-F.:HoffmanÕsleasterrorboundsforsystemsoflinearinequalities.J.Glob.(4),391Ð403(2004)

Related Contents


Next Show more