/
Optimization Convex Relaxations Optimization Convex Relaxations

Optimization Convex Relaxations - PowerPoint Presentation

triclin
triclin . @triclin
Follow
343 views
Uploaded On 2020-06-23

Optimization Convex Relaxations - PPT Presentation

M Pawan Kumar Slides available online http mpawankumarinfo Energy Function V a V b V c V d Label l 0 Label l 1 Random Variables V V a V b Labels L l ID: 783951

integer relaxation minx xab relaxation integer xab minx program label pairwise energy min cost xabc gradient potential hierarchy relaxations

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "Optimization Convex Relaxations" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

OptimizationConvex Relaxations

M. Pawan Kumar

Slides available online http://mpawankumar.info

Slide2

Energy Function

V

a

V

b

V

c

V

d

Label

l

0

Label

l

1

Random Variables V

= {V

a

, V

b

, ….}

Labels L

= {l

0

, l

1

, ….}

Labelling f: {a, b, …. }

 {0,1, …}

Slide3

Energy Function

V

a

V

b

V

c

V

d

Q(f)

=

a

a

(f

(a

))

Unary Potential

2

5

4

2

6

3

3

7

Label

l

0

Label

l

1

Easy to minimize

Neighbourhood

Slide4

Energy Function

V

a

V

b

V

c

V

d

E : (a,b)

 E iff V

a

and V

b

are neighbours

E = { (a,b) , (b,c) , (c,d) }

2

5

4

2

6

3

3

7

Label

l

0

Label

l

1

Slide5

Energy Function

V

a

V

b

V

c

V

d

+∑

(

a,b

)

ab

(f

(a

),f

(b

))

Pairwise Potential

0

1

1

0

0

2

1

1

4

1

0

3

2

5

4

2

6

3

3

7

Label

l

0

Label

l

1

Q(f)

=

a

a

(f

(a

))

Slide6

Energy Minimization

V

1

V

2

2

5

4

2

0

1

3

0

+∑

(

a,b

)

ab

(f

(a

),f

(b

))

a

a(f(a))minf

Slide7

Integer Program

+∑

(a,b) 

ab(f(a),f

(b

))

a a(f(a))

minfDoes

Va take the label li (xa(

i) = 1) or not (xa(i) = 0)?

xa(i) ∈ {0,1}

V

1

V

2

2

5

4

2

0

1

3

0

Slide8

Constraint

+∑

(a,b) 

ab(f(a),f

(b

))

a a(f(a))

minfConstraint that

Va can take exactly one label

xa(i) ∈ {0,1}

V

1

V

2

2

5

4

2

0

1

3

0

Slide9

Constraint

+∑

(a,b) 

ab(f(a),f

(b

))

a a(f(a))

minf∑i

xa(i) = 1

xa(i) ∈ {0,1}

V

1

V

2

2

5

4

2

0

1

3

0

Slide10

Unary Potentials

+∑

(a,b) 

ab(f(a),f

(b

))

a a(f(a))

minf

∑a ∑i a

(i)xa(i)

∑i xa(i) = 1

xa(i

) ∈ {0,1}

V

1

V

2

2

5

4

2

0

1

3

0

Slide11

Pairwise Potentials

+∑

(a,b) 

ab(f(a),f

(b

))

a a(f(a))

minf

∑(a,b) ∑i,k 

ab(i,k)xa(i)xb

(k)∑i

xa(i) = 1

xa(i) ∈ {0,1}

V

1

V

2

2

5

4

2

0

1

3

0

Slide12

Integer Program

minx

x

a(

i

) ∈ {0,1}

i

xa(i) = 1

+ ∑(a,b) ∑i,k

ab(i,k)xa(i)

xb(k)s.t.

∑a ∑i a

(i)xa(i)

V

1

V

2

2

5

4

2

0

1

3

0

Slide13

QP RelaxationLP Relaxation for Potts ModelLP Relaxation for Pairwise Energy

A Hierarchy of Relaxations

Outline

Ravikumar

and Lafferty, 2006

Slide14

Unary Potential Vector

Unary

Potential

u = [ 5

Cost of V

1

= 0

2

Cost of V

1

= 1

; 2 4 ]

V

1

V

2

2

5

4

2

0

1

3

0

For

x

, total unary cost?

u

T

x

Slide15

Pairwise Potential Matrix

V

1

V

2

2

5

4

2

0

1

3

0

0

Cost of V

1

= 0 and V

1

= 0

0

0

0

0

Cost of V

1

= 0 and V

2

= 0

3

Cost of V

1

= 0 and V

2

= 1

1

0

0

0

0

0

1

0

3

0

Pairwise Potential Matrix

P

For

x

, total Pairwise cost?

½

x

T

Px

Slide16

Integer Program

V

1

V

2

2

5

4

2

0

1

3

0

min

x

x

a

(

i

) ∈ {0,1}

i

x

a

(

i

) = 1

s.t.

uTxConvex?

No. Diagonal of P is 0

+ ½ xTPx

Slide17

Integer Program

V

1

V

2

2

5

4

2

0

1

3

0

min

x

x

a

(

i

) ∈ {0,1}

i

x

a

(

i

) = 1

s.t.

uTxConsider a vector d

Define D = diag(d

) + ½

xTPx

Slide18

Integer Program

V

1

V

2

2

5

4

2

0

1

3

0

min

x

x

a

(

i

) ∈ {0,1}

i

x

a

(

i

) = 1

s.t.

uTxConsider a vector d

Define D = diag(d

) + ½

xT(P+D)x

Slide19

Integer Program

V

1

V

2

2

5

4

2

0

1

3

0

min

x

x

a

(

i

) ∈ {0,1}

i

x

a

(

i

) = 1

s.t.

(u-d)TxConsider a vector d

Define D = diag(

d)

+ ½ xT(P+D)x

Equivalent to the old problem

Why?

x

a

(

i

)*

x

a

(

i

) =

x

a

(

i

)

Slide20

Integer Program

V

1

V

2

2

5

4

2

0

1

3

0

min

x

x

a

(

i

) ∈ {0,1}

i

x

a

(

i

) = 1

s.t.

(u-d)TxChoose an appropriate d

+ ½ xT(P+D)x

Convex

Why?

Because

P

+

D

0

d(

i

) = Sum of absolute values

of the

i-th

row of

P

Slide21

QP Relaxation

V

1

V

2

2

5

4

2

0

1

3

0

min

x

x

a

(

i

) ∈ [0,1]

i

x

a

(

i

) = 1

s.t.

(u-d)TxChoose an appropriate d

+ ½ xT(P+D)x

d(i) = Sum of absolute values

of the i-th row of P

Solver?

Conditional Gradient

(Frank-Wolfe)

Slide22

QP RelaxationConditional GradientLP Relaxation for Potts Model

LP Relaxation for Pairwise EnergyA Hierarchy of Relaxations

Outline

Frank and Wolfe, 1956

Slide23

Conditional Gradient

s.t.

x ∈ X

minx f(

x

)

Objective f(

x

) is assumed smoothGradients defined everywhere

Feasible region is convex and bounded

Slide24

Conditional Gradient

s.t.

x ∈ X

minx f(

x

)

Compute gradient

g

of f(x) at current xt

Compute conditional gradient

Slide25

Conditional Gradient

s.t.

x ∈ X

minx

g

T

x

c

t = argUpdate

xt+1 = ηtxt + (1-η

t)ct

xt+1 ∈ XNo need for projection

Why?

Slide26

CG for QP

Initialize x

0 and t = 0

While objective can be reduced

g

= (

u

-d) + (P+D)xt

ct = argminx

xa(i) ∈ [0,1]

∑i xa(i) = 1

s.t.

gTxEasy

Why?Update xt+1

= ηtxt + (1-ηt)ct

We can compute optimal ηt Why?

t = t + 1

Slide27

QP RelaxationLP Relaxation for Potts ModelLP Relaxation for Pairwise Energy

A Hierarchy of Relaxations

Outline

Kleinberg and

Tardos

, 1999

Slide28

Integer Program

minx

x

a(

i

) ∈ {0,1}

i

xa(i) = 1

+ ∑(a,b) ∑i,k

ab(i,k)xa(i)

xb(k)s.t.

∑a ∑i a

(i)xa(i)

V

1

V

2

2

5

4

2

0

1

3

0

ab

(

i,k

) =

w

ab, if

i ≠ k

= 0, if

i

= k

Slide29

Integer Program

minx

x

a(

i

) ∈ {0,1}

i

xa(i) = 1

+ ∑(a,b) ∑i

wab |xa(i)-x

b(i)|s.t.

∑a ∑i 

a(i)xa(i)

V

1

V

2

2

5

4

2

0

1

3

0

ab

(

i,k

) =

w

ab

, if i ≠ k

= 0, if

i

= k

½

Slide30

LP Relaxation

minx

x

a(

i

) ∈ [0,1]

i

xa(i) = 1

s.t.

∑a ∑i a(i)x

a(i)

V

1

V

2

2

5

4

2

0

1

3

0

ab

(

i,k

) =

w

ab, if i ≠ k

= 0, if i

= kFor 2 labels, min-cut problem

Integer optimal solutions

+

(

a,b

)

i

w

ab

|

x

a

(

i

)-

x

b

(

i

)|

½

Slide31

QP RelaxationLP Relaxation for Potts ModelLP Relaxation for Pairwise Energy

A Hierarchy of Relaxations

Outline

Chekuri

et al., 2001

Slide32

Integer Program

minx

x

a(

i

) ∈ {0,1}

i

xa(i) = 1

+ ∑(a,b) ∑i,k

ab(i,k)xa(i)

xb(k)s.t.

∑a ∑i a

(i)xa(i)

V

1

V

2

2

5

4

2

0

1

3

0

Slide33

Integer Program

minx

x

a(

i

) ∈ {0,1}

i

xa(i) = 1

+ ∑(a,b) ∑i,k

ab(i,k)xab(i,k)

s.t.

∑a ∑i a(i)

xa(i)

V

1

V

2

2

5

4

2

0

1

3

0

x

ab

(

i,k

) ∈ {0,1}

k

xab(i,k) =

x

a

(

i

)

Slide34

LP Relaxation

minx

x

a(

i

) ∈ [0,1]

i

xa(i) = 1

+ ∑(a,b) ∑i,k

ab(i,k)xab(i,k)

s.t.

∑a ∑i a(i)

xa(i)

V

1

V

2

2

5

4

2

0

1

3

0

x

ab

(

i,k

) ∈ [0,1]

k

xab(i,k) =

x

a

(

i

)

Marginalization constraint

UGC Hardness Guarantees

Slide35

QP RelaxationLP Relaxation for Potts ModelLP Relaxation for Pairwise Energy

A Hierarchy of Relaxations

Outline

Sherali

and Adams, 1990

Slide36

LP Relaxation

minx

x

a(

i

) ∈ [0,1]

i

xa(i) = 1

+ ∑(a,b) ∑i,k

ab(i,k)xab(i,k)

s.t.

∑a ∑i a(i)

xa(i)

xab(i,k) ∈ [0,1]

∑k xab(i,k) =x

a(i) + ∑(a,b,c) ∑i,k,m

abc(i,k,m)xab(i,k,m)

∑k,m xabc(i,k,m) = xa(i)

∑m xabc(i,k,m) =

xab(i,k)

xabc(i,k,m) ∈ [0,1]

Slide37

LP Relaxation

minx

x

a(

i

) ∈ [0,1]

i

xa(i) = 1

+ ∑(a,b) ∑i,k

ab(i,k)xab(i,k)

s.t.

∑a ∑i a(i)

xa(i)

∑k xab(i,k) =

xa(i)∑k,m

xabc(i,k,m) = xa(i)

xabc(i,k,m) ∈ [0,1]xab(

i,k) ∈ [0,1]∑m xabc(i,k,m) = x

ab(i,k)

Slide38

LP Relaxation Hierarchy

Higher and higher orders of marginalizations

Eventually you will find a tight relaxation

But it may be exponential in size

Exponential blow-up very rare in practice

Real-world is full of structure

Slide39

Questions?