/
CONTENTS2Contents1Coarse-graininganatomicstructure81.1Coarse-grainingo CONTENTS2Contents1Coarse-graininganatomicstructure81.1Coarse-grainingo

CONTENTS2Contents1Coarse-graininganatomicstructure81.1Coarse-grainingo - PDF document

trish-goza
trish-goza . @trish-goza
Follow
371 views
Uploaded On 2016-02-26

CONTENTS2Contents1Coarse-graininganatomicstructure81.1Coarse-grainingo - PPT Presentation

CONTENTS5RequiredProgramsThefollowingprogramsarerequiredforthistutorialVMDThetutorialassumesthatyoualreadyhaveaworkingknowledgeofVMDwhichisavailableathttpwwwksuiuceduResearchvmdforallpla ID: 231819

CONTENTS5RequiredProgramsThefollowingprogramsarerequiredforthistutorial:VMD:ThetutorialassumesthatyoualreadyhaveaworkingknowledgeofVMD whichisavailableathttp://www.ks.uiuc.edu/Research/vmd/(forallpla

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "CONTENTS2Contents1Coarse-graininganatomi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

CONTENTS2Contents1Coarse-graininganatomicstructure81.1Coarse-grainingofaBARdomainmonomer............91.2Mappingthecoarse-grainedmonomerstructureontoadi erentcopyofthemonomer.........................132ParameterizingSBCGforce eld162.1Non-bondedinteractionparameters.................162.2Obtaininginitialguessforbondedinteractionparametersfromall-atomsimulations..........................192.3Iterativere nementofbondedinteractionparameters.......213Buildingashape-basedcoarse-grainedmembrane273.1Generateapatchofcoarse-grainedmembrane...........283.2Addchargedlipidstothemembranepatch.............294Combiningproteinsandmembraneforasimulation305Runningacoarse-grainedsimulation325.1Preparingacon guration le.....................325.2Simulationoutputs..........................34 CONTENTS5RequiredProgramsThefollowingprogramsarerequiredforthistutorial:VMD:ThetutorialassumesthatyoualreadyhaveaworkingknowledgeofVMD,whichisavailableathttp://www.ks.uiuc.edu/Research/vmd/(forallplatforms).TheVMDtutorialisavailableathttp://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorial-html/NAMD:InordertoperformsimulationswiththeCGmodelinthistu-torial,NAMDshouldbecorrectlyinstalledonyourcomputer.Forinstal-lationinstructions,pleaserefertotheNAMDUsers'Guide.TheNAMDtutorialisavailableinbothUnix/MacOSXandWindowsversions:http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/PlottingProgram:UnderUnix/MacOSX,onecanuseprogramxm-grace,availableathttp://plasma-gate.weizmann.ac.il/Grace/(Freedown-load),orgnuplot,http://www.gnuplot.info/(Freedownload).UnderWin-dows,onecanuseMicrosoftExcel,availableathttp://oce.microsoft.com/en-us/FX010858001033.aspx(Purchaserequired),orscilab,availableathttp://www.scilab.org/(Freedownload).Otherusefulgraphingprograms,withversionsavailableforbothUnix/MacOSXandWindows,areMathematica,http://www.wolfram.com/(Purchasere-quired)andMatlab,http://www.mathworks.com/(Purchaserequired).MostoftheexercisesinthetutorialareperformedusingShape-BasedCoarse-Graining(SBCG)ToolsinVMD.TheToolsareimplementedasasetofpluginsavailablewiththeirGraphicalUserInterfaces(GUIs)throughVMDmenu:Extensions!Modeling!CGBuilder CONTENTS6 Figure2:MainGraphicalUserInterfacefortheCGBuilderToolsinVMD.AvailableareseveraltoolsfortwoCGmodels,oneofwhichistheSBCGmodeladdressedinthistutorial. CONTENTS7GettingStartedIfyouareperformingthistutorialataComputationalBiophysicsWorkshopo eredbytheTheoreticalandComputationalBiophysicsGroup,acopyofthe lesneededforthistutorialhavebeensetupforyou.Theycanbefoundinyourhomedirectory,underthepath/Workshop/sbcg-tutorial/files/.Unix/MacOSXUsers:InaTerminalwindowtype:cdpathtothedirectorysbcg-tutorial/files/&#x]TJ/;༧ ; .96; Tf;&#x 20.;ड ;� Td;&#x[000;Youcanlistthecontentofthisdirectorybyusingthecommandls.WindowsUsers:Navigatetothesbcg-tutorial!filesdirectoryusingWindowsExplorer.Ifyoudownloadedthetutorialfromthewebyouwillalsoneedtodownloadtheappropriate les,unzipthem,andplacetheminadirectoryofyourchoosing.Youshouldthennavigatetothatdirectoryinasimilarmannerasdescribeddirectlyabove.The lesforthistutorialareavailableathttp://www.ks.uiuc.edu/Training/Tutorials/Inthe gurebelow,youcanseethestructureofthedirectorycontaining lesforeachofthetutorialexercises. Figure3:DirectoryStructurefortutorialexercises.Sampleoutputforeachexerciseisprovidedinan\example-output"subdirectorywithineachfolder.Whenpossible,exemplaryoutput lesfromoneexerciseareusedasexemplaryinput lesforthenextexercise;theycanbefoundin\example-input"subdirectories. 1COARSE-GRAININGANATOMICSTRUCTURE81Coarse-graininganatomicstructureWewillworkwiththeamphiphysinBARdomaindimerfromDrosophila(Peteretal.,Science,303:495,2004).Itisahomodimer,i.e.,itconsistsoftwoidenticalmonomers.ItisnaturaltoemployexactlythesameSBCGmodelforeachmonomer,whichcanbedonebycoarse-grainingonemonomer rst,andthencopyingtheresultingSBCGmodelandaligningitwiththeorientationandpositionofthesecondmonomer.Inthissection,wewilllearnhowtouseSBCGVMDpluginsforbothsteps. Figure4:BARdomainhomodimer.Thetwomonomersareshowningreenandpurple.Theall-atomstructureisshownontheleft,andanexampleofaSBCGstructureisshownontheright.Bothall-atomandSBCGstructuresareshownfromthetopandfromtheside.MappinganSBCGstructurecreatedforoneproteinontoothercopiesofthatproteinisacommontaskincoarse-grainingoflargemacromolecularassemblies,whichoftencontainmultiplecopiesofoneprotein.Agoodexampleareviralcapsids,theproteinshellsenclosinggeneticmaterialofviruses.Mostknownviralcapsidsarehighlysymmetric(e.g.,icosahedral)structures,composedofmultiplecopiesofafewproteins(see,e.g.,Arkhipovetal.,Structure,14:1767,2006).Navigatetothedirectory1 build cg model/.YoucanexaminethewholedimerinVMD( lesdimer.pdbanddimer.psfin1 build cg model/).OnemonomerisdesignatedassegnameP1,andtheotherassegnameP2.YoucansaveeachmonomerfromVMDtoseparatePDB lesusingthewritepdbcom-mandforatomselectionssegnameP1orsegnameP2,andaPSFusingthewritepsfcommand(onePSF lewillworkforeithermonomer,sincetheyareidenticalexceptfortheatoms'positions).SuchPDBandPSFarealreadycreated:seemonomer.psf,monomer.pdbandmonomer-2.pdbinthedirectory1 build cg model/.Notethatbothdimer.psfandmonomer.psfcontainin- 1COARSE-GRAININGANATOMICSTRUCTURE10 Figure5:SBCGBuilderGUI. 1COARSE-GRAININGANATOMICSTRUCTURE11 LearningparametersintheSBCGBuilder.InSBCGmodels,CGbeadsaredistributedinspaceoccupiedbytheall-atomproteinusingaself-organizingneuralnetwork.Afewparameters,suchas\eps"and\Lambda"areusedbythenetworktogothroughiterationsofthelearningalgorithm(seeArkhipovetal.,Structure,14:1767,2006).TheSBCGBuilderwilladjustvaluesofthoseparametersautomaticallyforoptimalconvergence,dependingonthenumberofCGbeadsrequestedbytheuser,buttheusercanalsomodifythem,ifdesired.Thelearningalgorithmisstochastic,i.e.,eachtimeitisusedtocreateaCGmodelofthesameall-atomstructure,theresultwillbeslightlydi erent.However,theoverallshapeoftheproteinismaintainedeachtime. 7.OnceCGbeadpositionsareassigned,thealgorithmconnectssomeofthembybonds.Bydefault,abondbetweentwobeadsisestablishedifthepartsoftheproteinrepresentedbyeachbeadaredirectlyconnectedbytheproteinbackbone(\DetermineBondsFromAllAtom").Toggletheotherswitchon,ProvideBondCutoff,andsetthecuto valueto18.Now,abondbetweentwobeadswillbeestablishedifthebeadsarewithin18Aofoneanother.Whichofthetwooptionstochoosedependsontheapplication.Choosingconnectivityaccordingtotheproteinbackboneismorerealistic,butfortheexercisewithBARdomainsthischoicedoesnotmattermuchfortheendresult.8.Changethe\CGResidueName"to\BAR",and\CGNamePrefix"to\A".NamesoftheCGbeadswillbe\A1",\A2",\A3",andsoon,upto\A25".9.Hitthe\BuildCoarseGrainModel"button.CompletionoftheSBCGalgorithmwilltakeafewmoments.10.Themainresultofrunningthealgorithmistheproductionofoutput lesthatarewrittenontheharddrive,namelytheSBCGtopology,parameter,andPDB les,andanall-atomreferencePDB le.Ifyouwanttohavespeci cnamesforthose les,theycanbechangedintheSBCGBuilderGUIbeforehitting\BuildCoarseGrainModel"button.TheoutputPDB lecontainingthenewlyconstructedSBCGmodelisautomaticallyloadedinVMDasanewmolecule,overlappedwiththeoriginalall-atommodel. 2PARAMETERIZINGSBCGFORCEFIELD17unlesstheyareboundtootherparticles;ijfortwocompletelyhydrophobicbeadsismax,whichshouldbetunedtorepresenthydrophobicaggregationrealistically.For150atomsperCGbead,anappropriatevalueisapproximatelymax=10kcal/mol.Theformulaandparametervaluesusedhere(suchasmax=10kcal/mol)werefoundtobeoptimalforcertainSBCGapplications(Arkhipovetal.,Bio-phys.J.,95:2806,2008).ForSBCGapplicationstosigni cantlydi erentsys-tems,onemayneedtomodifytheformulaorparameters,orboth,whichcanbedonebyeditingthepluginscriptsthataredeliveredtogetherwithVMD. Figure7:GUIforassigningparametersfornon-bonded(LJ)interactionsfortheSBCGmodel.AssigningtheseparametersiseasilydonewithanotherGUIintheVMDCGtools.1.StartVMDifyouhaveclosedit,andloadthereferenceall-atommonomerPDBaa ref monomer.pdb.2.StarttheSBCGLJGUIinVMD:Extensions!Modeling!CGBuilder!AssignLennard-JonesParamsForCGModelFromAll-Atom.3.Inthe eld\OriginalCGParamFile",providethepathtotheCGpa-rameter le,cg monomer.par,thatwascreatedwhenyouranSBCGBuilder.Theeasiestwayistocopythis ledirectlyinthefolderyouareworkingin,2 parameters/.Then,youcanjusttype\cg monomer.par"inthecorrespond-ing eldintheGUI(makesurethatVMD'sworkingdirectoryis2 parameters/-youcancheckitbyusingthecommand\pwd"intheVMD'sTkConsole,andifnecessarynavigatetotherightdirectoryusingcommand\cd").Otherwise, 2PARAMETERIZINGSBCGFORCEFIELD18providethefullpathintheGUI's eld.4.For\AllAtomStructure",choosethemoleculeaa ref monomer.pdb.5.\MaxenergyforLJwelldepth"istheaforementionedmax;setitto10kcal/mol.6.TheLJradiusijfortheinteractionbetweenbeadsiandjisobtainedinNAMDbydefaultasij=(i+j)=2,whereiandjareradiiassociatedwitheachatom.InSBCGmodel,eachiisobtainedasaradiusofgyrationofthegroupsofatomsrepresentedbytheCGbead,increasedbyaconstantvalue,whichaccountsforthefactthateachatomhasaradius(typically,1-2A).ThisvalueischosenbytheuserintheGUI eld\AdditiontoLJradius".Set=1A.7.ChoosetheOutputParameterfilename"tobecg monomer updated LJ.parandhitthe\AssignParameters"button.8.Compareentriesfornon-bondedinteractionsintheoriginallyproducedpa-rameter lecg monomer.parwiththoseinthenew le,cg monomer updated LJ.par.TheLJradiiiareverysimilarbetweenthetwo les,becausetheoriginalSBCGBuilderalgorithmusesalmostthesameprocedureaswejustemployedtoassignthesevalues(=1Ainbothcases).However,LJenergiesincg monomer.pararesetuniformlyto4kcal/molbytheSBCGBuilder,andnowtheyarechangedsigni cantlyintheupdated le,accountingforthechoicemax=10kcal/molandforthespeci cityofeachCGbead. AssigningLJParametersinthetextmode.Thesyntaxforthiscommandis�::cgtools::sasa LJ networkingstatusProcpar CGpdbrefIDf outELJRLJFortheexamplethatwehavejustconsidered,wewouldneedtorunthiscommandusingthefollowingvalues:�::cgtools::sasa LJ networking0cg monomer.par0cg monomer updated LJ.par10.01.0MakesurethatyouareusingthecorrectVMDmoleculeIDfortheall-atomreference le! 2PARAMETERIZINGSBCGFORCEFIELD192.2Obtaininginitialguessforbondedinteractionparam-etersfromall-atomsimulations.ThetermsforbondedinteractionsintheSBCGmethodaredescribedbypo-tentialsVbond(r)=Kb(L�L0)2andVa()=Ka(�0)2forbondlengthLandangle,whereKb;L0;Ka,and0aretheforce- eldparameters.Theprocedureforextractingthevaluesfortheseparametersfromanall-atomsimulationisbasedontheconceptoftheso-calledBoltzmanninversion:foreachvariablex(suchasi-thbondlengthLi),oneobtainsthedistribution(x)fromtheall-atomsimulation,andusestheBoltzmannrelation(x)=0exp[�V(x)=kBT]toobtainV(x).Thisprocedurecanbeillustratedbythesimpleexampleofaone-dimensionalharmonicoscillator,withaparticlemovingalongthexcoor-dinateinthepotentialV(x)=f(x�x0)2(notethatthereisno1=2factor,accordingtotheCHARMMforce- eldnotation).Withthesysteminequilib-riumattemperatureT,theaveragepositionhxiisequaltox0,andtherootmeansquaredeviationofx(RMSD)isgivenbyhx2i�hxi2=kBT=(2f)(kBistheBoltzmannconstant).UsinganMDsimulation,onecancomputehxiandtheRMSD,thusobtainingx0andf;notethatinthiscaseitisnotnecessarytocomputecomplete(x).TheseformulasareusedintheSBCGmethodtoobtainaninitialguessforKb;L0;Ka,and0. Figure8:ExtractingbondsandanglesfortheCGmodelfromanall-atomsimulation.TheGUIisshownontheleft.AnexampleofanalyzingaCGbondisshownontheright.Listhedistancebetweenthecentersofmassofall-atomdomains(blueandred)thatcorrespondtothetwoCGbeadsbeinganalyzed(green).Theprocedureconsistsofcomputingpositionsofcentersofmassforeachall-atomdomainthatisrepresentedbyoneCGbead,ateachtimeframefromtheall-atomtrajectory.Then,foreachpairofbeadsthatformsabond,ortripleofbeadsthatformanangle,thedistanceLoranglebetweentherespectivecentersofmassiscomputedandaveragedoveralltimeframes;RMSDsarealsocalculated. 2PARAMETERIZINGSBCGFORCEFIELD224.WewillnowusetheSBCGBondsGUItoanalyzetheSBCGsimulationtrajectoryandobtainRMSDsofbondsandangles,justthesamewayaswedidbeforeforanall-atomtrajectory.TheSBCGBondsGUIrequiresareferencePDB le(seeabove),wherethebeta-valuesofatomsareassignedaccordingtothenumberofCGbeadthattheatomcorrespondsto.Here,thestructurewean-alyzeisthesameastheSBCGmodel.Thus,thebeta-valuesforeachCGbeadinthereferencePDB leshouldbethesameasthenumberofthatbead.Notethatthisnumberstartsfrom1,i.e.,itiso setbyonefromthebeadindexinVMD,whichstartsfrom0.YoucancopyyourCGPDB lecg monomer-psfgen.pdbtocreatethereferencePDB,cg monomer-beta.pdb; llthebeta eldsinthe leusingatexteditor(seetheexampleinthefolderexample-input/).Alter-natively,youcanusethesimplescript,example-input/beta.tcl,todothisautomatically.5.EmploytheSBCGBondsGUIasyoudidbeforeforanall-atomsimulation.Usecg monomer-psfgen.psfandcg monomer-psfgen.pdbforCGPSFandPDB les.Forthetrajectorytoanalyze(\AADCDFile"),usetheCGtrajec-torythatyoujustobtainedfromthesimulation:iteration1/output/iteration1.dcd.Forthereference le,typethenameofthejustcreatedCGreferencePDB,cg monomer-beta.pdb.SetSimulationTemperatureto310K.SetOutputParameterFilename,and lenamesforthebondandangledata les,toiteration1/from-iter1.par,iteration1/from-iter1-bonds.dat,anditeration1/from-iter1-angles.dat.HittheExtractParametersbutton.6.Theextractedparametersareinthefolderiteration1.Wecanignorethe lefrom-iter1.par.Letuslookatthe lesfrom-iter1-bonds.datandfrom-iter1-angles.dat,whichcontaincolumnsofdataobtainedfromtheCGsimulation,inthefollowingorder.Forthe lefrom-iter1-bonds.dat:nameofbead1,nameofbead2,averagedistancebetweenthetwobeads,itsRMSD,andthebondspringconstantobtainedfromtheRMSDusingBoltzmanninver-sion(seeabove).Forthe lefrom-iter1-angles.dat:nameofbead1,nameofbead2,nameofbead3,averageanglebetweenthethreebeads,itsRMSD,andtheanglespringconstantsimilarlyobtainedfromtheRMSD.7.Wecannowcomparethesedatawiththoseobtainedfromtheall-atomsimu-lationusingaplottingprogram(e.g.,compareiteration1/from-iter1-bonds.datwithfrom-aa-bonds.dat).Onecanseethataveragebondlengthsandangles,whichforCGsimulationaremainlyde nedbyL0and0intheCGparameter le,areessentiallythesameintheall-atomandCGsimulations.Thus,theoriginalassignmentofL0and0isappropriate,andwedonotneedtotunethemfurther.8.WecanfurthercomparetheRMSDsofbondsandangles,whichdemonstratethestructure exibility.However,practicallyitismoreconvenienttocompareinverseRMSDs,which,inBoltzmanninversionprocedure,areproportionaltoKbandKa.Thus,wecancomparethelastcolumnsofthe*dat lesforbonds 2PARAMETERIZINGSBCGFORCEFIELD23andanglesobtainedfromtheCGsimulationwiththosefromtheall-atomsimu-lation.Noteagainthedi erence:whatwecompareisnottheparametervaluesusedinthetwosimulations,butsti nessesofbondsandanglesobservedinthosesimulations. Figure9:Comparisonofbondandanglestrengths,KbandKa,obtainedusingBoltzmanninversionfromsimulationswithsuccessivelyscaledparameter leentries.SincetheBoltz-mannprocedureisused,thevaluesofKbandKaareinverselyproportionaltotheRMSDsofcorrespondingbondlengthsandangles,asobservedinsimulations.Thus,essentially,herewecomparesti nessesofthestructureinsimulationswithdi erentparameters.ComparingRMSDsdirectlyisnotasinformativeascomparingtheirinverses,orKbandKa.Left:bonds;right:angles.Blackcircles:fromall-atomsimulation.Redsquares:fromSBCG,iteration1.Greendiamonds:fromSBCG,iteration2.Bluetriangles:fromSBCG,iteration3.Theiter-ationnumberscorrespondtothe lesprovidedinthefolder2 parameters/example-output/.9.Youwillseethattheproteinstructureismuchsti erintheSBCGsimulationthanitwasintheall-atomsimulation(i.e.,bondandangleRMSDsaresmaller,or,inverseRMSDsarehigher).Thisisduetothestronginterconnectionbe-tweenbeadsintheSBCGmodel,whichmakesthedirectBoltzmanninversionprocedurenotquiteadequate,asmentionedabove.Toovercomethis,weneedtodecreaseKbandKainourparameter le.Onecanchangetheseparametersone-by-one,andrunmanyCGsimulationsto ndthesetofvaluesthatgivestherightsti nessforeverybondandangle;thisis,however,verytedious,and,forsuchcoarsemodelasours,isprobablyunnecessary.Below,wefollowasimplerapproach,whereKbandKaarescaleduniformlyoverallbondsandangles,tomatchthestructuresti nessroughly.10.ToscaleKbandKa,wewillusetheScalingGUIintheSBCGtoolset(en-titled\ScaleBond/AngleSpringConstants").NotethatthisGUIcanbeusedforanyCHARMM-styleparameter le,notnecessarilyforCGonly.Remem-ber,theparameter lewewanttoscaleistheoneweusedforthesimulationiniteration1,i.e.,the lefrom-aa.par.Donotmakeamistakeofscalingthe leiteration1/from-iter1.par;parametersinthis lere ectthepropertiesoftheCGmodeliniteration1,whileweareinterestedinreproducingtheprop- 2PARAMETERIZINGSBCGFORCEFIELD24ertiesoftheall-atomsimulation. Figure10:GUIforscalingbondsandanglesinaparameter le.11.SettheInputParameterFileintheGUItofrom-aa.par.Setscalingcon-stants,forexample,to0.3forbothBondSpringConstantScalingandAngleSpringConstantScaling.12.TheproblemwiththedirectBoltzmanninversionisthatitusuallymakestheCGstructuretoosti ,i.e.,bondandanglespringconstantsaretoolarge.However,wecanseethatforsomeofthespringconstantsthathaverelativelysmallvalues,theresultsoftheall-atomsimulationandoftheCGoneinitera-tion1agreequitewell.Itis,therefore,counterproductivetoscaleKbandKaforsuchweakbondsandangles,sincethatwouldmakethemmuchweakerthanwewant.Thus,wedonotwanttoapplyscalingtothebondsandanglesforwhichKbandKaarebelowcertainthreshold.Thiscanbeachievedbysettingthecuto levelforscalingintheGUI,forexample,settingtheBondSpringConstantCutoffto3.5kcal/(molA2)andAngleSpringConstantCutoffto170kcal/(molrad2).Youshouldchoosetheactualvaluesforscalingandcuto saccordingtotheagreementbetweenyourCGandall-atomsimulations.13.Makeanewfolder,iteration2,forthenewCGsimulation.Addthesame lesandsubfoldersintothisfolderasyoudidforiteration1.Theonlydi erenceisthatwewillneedtoreplacetheparameter lefrom-aa.parinfolderiteration2/inputbytheonewithscaledKbandKa.IntheGUI,setOutputParameterFiletoiteration2/input/scaled1.par,andhittheScaleValuesbutton. 2PARAMETERIZINGSBCGFORCEFIELD25(YoumustagaincopytheLJparametersintothenew le.)14.WecannowrunthenewCGsimulationinthefolderiteration2.Afteritisdone,analyzetheCGtrajectoryusingtheSBCGBondsGUI,asinthestep5above(youcanreusetheSBCGreferencePDB lethatyoucreatedear-lier).Thisprocedurewillgiveyouthefollowing lesinthefolderiteration2:from-iter2.par,from-iter2-bonds.dat,andfrom-iter2-angles.dat.Plotthedatafromthese lesandcomparethemwiththedatafromtheall-atomsimulationandfromiteration1.Thebondandanglessti nessininteraction2shouldbeclosertothoseobservedintheall-atomsimulationthanthesti nessfromiteration1.15.Thescalingstepsshouldberepeatedseveraltimes,possibly,separatelyforbondsandangles.Usually,forthenextiterationitisconvenienttoscalethevaluesfromthepreviousiteration,e.g.,scalevaluesfromthe lefrom-aa.partoobtainscaled1.par,thenscalevaluesfromscaled1.partoobtainscaled2.par,andsoon.16.The nalsti nessofCGbondsandanglesdoesnothavetobeexactlythesameasthatfromtheall-atomsimulation.Iftheaveragedeviationis25%,thisalreadycanbeconsideredareasonableagreementforsuchacoarsemodel.Intheexample-output,weperformedthreeiterations.Initeration1,theoriginal lefrom-aa.par,withparametersobtaineddirectlyfromtheall-atomsimulation,wasused.Foriteration2,thevaluesinfrom-aa.parwerescaledasdescribedinsteps11-12,toyieldscaled1.par.Foriteration3,theBondSpringConstantScalingwassetto1.0,BondSpringConstantCutoffto100.0kcal/(molA2),AngleSpringConstantScalingto0.7,andAngleSpringConstantCutoffto300kcal/(molrad2),i.e.,bondswerenotscaled.17.NowtheSBCGproteinstructureisestablishedandtheproteinforce- eldisfullyparameterized.WecanrunproductionSBCGsimulations!Notethat,dependingonthesti nessofthebondsandanglesintheresultingmodel,thetimestepforsimulationscanbelargerorsmaller.Thetimestepof100fs,whichweusedduringtheparameterizationrun,canbepotentiallyincreased,resultinginfastersimulations. 2PARAMETERIZINGSBCGFORCEFIELD26 ScalingBondandAngleSpringConstantsinthetextmode.Toscalebondsandangles,runthefollowingcommandintheTkconsole:�::cgnetworking::scaleParameterConstantsstatusProcbondScaleFactorbondCutoffangleScaleFactorangleCutoffoutParFilenameFortheexampleofscalingconsideredabove,namely,thescalingafteriteration1,thisbecomes�::cgnetworking::scaleParameterConstantsputscg monomer.par0.33.50.3170.0scaled1.par 3BUILDINGASHAPE-BASEDCOARSE-GRAINEDMEMBRANE273Buildingashape-basedcoarse-grainedmem-braneAbuildingblockoftheSBCGlipidmodelconsistsoftwobeads-a\head"beadanda\tail"bead-connectedbyaharmonicbond.Thisisthesimplestrepresentationthatpreservestheelongatedshapeofareallipidmoleculeaswellastheseparationofhydrophobicandhydrophilicparts.Evenso,ifweweretorepresentasingleall-atomlipid,whichcontainslessthan150atoms,inthisway,theresultingbeadswouldbetoolighttoaccommodatethelongtimestepsdesiredinaSBCGsimulation.WethereforehavetoviewSBCGlipid\molecules"inamoreabstractsense,allowingthatoneSBCG\molecule"representsasmallpatchofall-atomlipids,ratherthanonerealall-atomlipidmolecule.Atthislevelofcoarse-graining,thedi erencesbetweenlipidsofdi erenttypes(e.g.POPEvs.POPCorDOPC)becomealmostnegligible.However,SBCGlipidscanbematchedtoall-atomsimulationsbyconsideringqualitiessuchasthebilayerthicknessandareaperlipid.Sincethelipidbilayerthicknessisapproximatedtobe50A,eachbeadthereforehasadiameterof12.5A.OneSBCGlipidoccupiesthenacross-sectionalareaofapproximately156A2.Inthistutorial,wewillbeworkingmainlywithDOPC,whichoccupies72.5A2perlipid.OneSBCGDOPClipidmustthenrepresentapproximately2.2all-atomDOPClipids.Themassofthe2.2lipidsisdividedequallyamongthe\head"andthe\tail"beads,meaningthatthe\head"beadactuallyrepresentsboththeheadgroupsofthelipidsandsomeportionofthetails,andthe\tail"beadrepresentstheremainderofthelipidtails.SinceoneDOPClipidcontains138atoms,2.2lipidscorrespondsto300atoms,or150atomsperSBCGbead,consistentwiththelevelofcoarsegrainingusedfortheBARdomainproteins.Inmanycircumstances,onewillwanttoincludechargedaswellasneutrallipids.Wethereforewillalsode nenegativelychargedSBCGlipidstorepresentDOPStouseinamixedDOPC/DOPSmembrane.SinceDOPCisthemainlipid,andwehavealreadydeterminedthatoneSBCGlipidrepresents2.2all-atomlipids,thisconventioniskeptforDOPS.SinceDOPSisslightlyheavier,theextramassisaddedtotheDOPS\head"beadsothatthe\tail"beadsofthetwolipidscanremainidentical.TheDOPS\head"beadisgivenachargeof-2.2toaccountforthefactthatitincorporates2.2all-atomDOPSlipids.Allthesecharacteristicsarere ectedintheprovidedtopology leforSBCGlipids,3 cg membrane/lipid-ion.top.ThebondparametersandnonbondedparametersfortheSBCGlipidswerechosentoconsistentlyreproducethebilayerthicknessandareaperlipidvaluesinall-atomsimulations,asdescribedindetailinArkhipovetal.,Biophys.J.,95:2806,2008.Sincewedonotrunsimulationsinthissection,aparameter leisnotnecessaryatthispoint.Wewillneedtheparameter lelater,whenwerunaCGsimulationofacombinedlipid-proteinsystem. 3BUILDINGASHAPE-BASEDCOARSE-GRAINEDMEMBRANE29andsplitchainsusingcurrentselections".InStep3,click\CreateChains"tocreatethepsf le.4.Loadtheresultingpdbandpsf lesintoVMD.Youshouldseea379arrayofSBCGlipids.3.2Addchargedlipidstothemembranepatch.WewillnowcreateacombinedDOPC/DOPSmembranebychangingsomeoftheDOPClipidstoDOPS.Theprovidedscript3 cg membrane/mutate-to-dops.tclselects30%ofthelipidsatrandomandchangesthemtoDOPS.1.Tousethisscript,typethefollowingintotheTkConsole:�sourcemutate-to-dops.tcl2.Nowcreateapsf leeitherbyusingtheprovidedpsfgenscript3 cg membrane/build-mixture.tclbytyping�sourcebuild-mixture.tclorbyusingtheAutoPSFplugin.3.Loadtheresultingpdbandpsf lesintoVMD-youshouldseethatabout30%ofthelipidsarenowDOPSlipids.Forexample,youcancolorlipidsbyresnametodistinguishbetweenDOPCandDOPS.YouwillneedthismixedDOPC/DOPSmembranepatchforthesimulationsinfollowingsections. 4COMBININGPROTEINSANDMEMBRANEFORASIMULATION314.Takealookatbuild.tcl.Thisscriptcontainsthefollowingsteps:(1)LoadthetwomonomersofaBARdomaindimer.(2)Movethemonomerstoappropriatelocations,toformalattice.(3)CallVMDpluginpsfgenandinputSBCGtopology lesforBARdomains,lipidsandions.(4)InputcoordinatesofthesixBARdomaindimers,lipidmembrane,andions.(5)Generatepsfandpdb lesforthecombinedsystem.Moredetaileddescriptionsofthecommandsareincludedinbuild.tclascommentsbeginningwith\#".Youcanviewthecommandsandcommentsinbuild.tclusinganytexteditor,or,e.g.,usinglscommandintheVMDTkConsole.5.LoadtheoutputsystemintoVMDusingthefollowingcommandintheTkConsole:�molloadpsf6bar.psfpdb6bar.pdb Figure12:Combiningproteinsandmembraneforasimulation.Ionsarenotshownforclarity.6.Measurethecenteranddimensionofthesystembyfollowingcommands:�setsel[atomselecttopall]�measurecenter$sel�measureminmax$selRecordtheabovevaluesforuseinthenextsection. 5RUNNINGACOARSE-GRAINEDSIMULATION325Runningacoarse-grainedsimulationWearenowalmostreadytosimulatethesystemofSBCGBARdomainswithSBCGmembrane.Inthissectionwewilldiscuss rsthowtowriteaNAMDcon guration leforanSBCGsystem.Wewillthenperformthesimulation,anddiscussthe leoutputsandsimulationresult.Toperformexercises,navigatetothefolder5 simulation/.5.1Preparingacon guration le.SinceSBCGwasdesignedtobecompatiblewithNAMD,anSBCGcon gura-tion lelookssimilartoanormal,all-atom,NAMDcon guration lethatyoumighthaveusedbefore.1.Asamplecon guration lesim.confhasbeenpreparedforyouinthedi-rectoryexample-output/.Copyittothefolderwhereyouwanttorunthesimulation,andopenitwithatexteditor.Remembertocreateinthesamefoldersubfolderoutputandinput,andaddyouCG lestothefolderinputanalogouslytohowitisdoneinexample-output/.NotethatyouwillneedhereanSBCGparameter leforlipids,whichwehavenotusedbefore.Forthispurpose,copythe leexample-output/input/lipid-ion.partoyourinputfolder.2.Thecon guration lecontainsmanyoptions(entriesinthe rstcolumn),followedbytheirparameters(entriesinthesecondcolumn)speci callycho-senforthesimulatedsystem.AssumingreadersalreadyhaveexperiencewithNAMDsimulations,herewewillonlygothroughthoseoptionsthatrequirespecialadjustmentsforanSBCGsystem.NewNAMDusersareencouragedtoconsulttheNAMDTutorialandNAMDUser'sGuide.3.Inthetexteditordisplayingthecontentofsim.conf,scrolldowntothesection#Force-FieldParameters.Notealllinesbeginningwith#arecom-mentsignoredbyNAMD.Under#Force-FieldParameters,youwill ndsixsimulationoptionsthatmightneeddi erentparametersthanthoseofanall-atomsimulation.Theseoptionsde nehowyouwanttheinteractionsbetweenbeadstobecomputed.SinceeachSBCGbeadrepresentsaclusterofatoms,parameterssuchascutoff,switchdist,andpairlistdistwouldtypicallyhavebiggervaluesthanthoseforanall-atomsimulation.ThevalueslistedherehavebeentestedtoworkwellfortheSBCGBARdomainsystem,andcanbeusedasstartingvaluesforotherSBCGsystems.Note,however,thecutoffparametershouldalwaysbebiggerthanthelongestbondlengthinyoursimulationsystem,otherwiseyoursimulationwillcrash. 5RUNNINGACOARSE-GRAINEDSIMULATION334.Scrolldowntothesection#IntegratorParameters.Theparametertimestephasavalueof100.0,implyingthattheintegrationtimestepofthesimulationis100fs/step.Atypicalall-atomsimulationuses1or2fs/step,hencetheSBCGgivesaspeedupof100fromthechoiceofinte-grationtimestepalone.Thechoiceofthetimestepdependsonhowfastbeadsaremovinginthesimulation,and,thus,themaximaltimesteppossible(sothatthesimulationdoesnotcrash)isdeterminedbythestrengthofinteractions,e.g.,sti nessofbonds,asmentionedabove.Ifyoursimulationcrasheswithatimestepof100fs/step,startingthesimulationwithashortertimestepmight xtheproblem.Thentimestepcanbeincreasedwhenthesystembecomesstablelaterinthesimulation.5.InthecellBasisVector1,cellBasisVector2,cellBasisVector3,andcellOriginparameters,onespeci estheperiodicboundaryofthesystem.Comparethesevaluestothesystemsizeyouhavemeasuredintheprevioussection.YoushouldseethatonlycellBasisVector2matchesthey-dimensionofyoursystem,whilecellBasisVector1andcellBasisVector3arebothmuchlargerthanthex-andz-dimensionofthesystem.Thisisbecauseweonlywantthesystemtobecontinuousinthey-direction,whileintheothertwodirectionswewanttoallowthemembranetobendfreely.6.ConstanttemperatureismaintainedinthisSBCGsimulationusingLangevindynamics,asusuallydoneinall-atomsimulations.Youcantakealookattheseparametersunder#ConstantTemperatureControl.Inadditiontothetem-peraturecontrol,theLangevindynamicsprovidesmeanstosimulatethesolvente ectimplicitly.Namely,theLangevindynamicsintroducesviscousdragandrandomforcesactingoneachCGbead,whichcanbeusedtomimictheviscosityofthesolventandtheBrownianmotionduetorandomhitsfromthemoleculesofthesolvent.Asingleparameter,langevinDamping,isusedtoaccountforthesee ects.Here,langevinDampingissetto2ps�1,asthisvaluewasfoundtoreproducetheviscosityofwaterforthecoarse-graininglevelused(150atomsperCGbead).7.Inthelastfewlinesofsim.conf,youcanseethatthesimulationisdesignedtobeminimizedby1000steps,andthentorunfor50,000,000steps.Thiscor-respondsto50,000,000steps100fs/step=5ssimulationtime.8.Closethetexteditordisplayingsim.conf.Runthesimulationbytypingnamd2sim.conf�sim.loginaterminalwindow. 5RUNNINGACOARSE-GRAINEDSIMULATION345.2Simulationoutputs.Onaone-processormachine,thissimulationwilltakeabouteightdaystocom-plete,butactuallywedonotneedtorunthefull5s.Thegeneraltrendisobviousalreadyafteraboutthe rst10ns,whichcanbeachievedwithinhalfanhourorso.Ifyoudonotwishtorunthesimulationyourself,youcanusethe lesprovidedinexample-output/forthefollowingdiscussionon leoutputsandresults.1.Openthelog leofthesimulation,sim.log,withatexteditor.Ifyoudidnotrunthesimulation,useexample-output/sim.log.Thelog leofasimulationcontainsusefulinformation.Whenyoursimula-tioncrashes,checkingthelog lefortheerrormessageisthe rststepof xingtheproblem.Thelog lecanalsogiveyouanestimateonhowlongasimulationwillrun.Findthewords\Benchmarktime"insim.log,hereyoucan ndthespeedofthesimulation.Nowlet'sexaminethesystemviaVMD.2.Closethetexteditor.OpenVMD,andloadthepsf leofthesystem,6bar.psf.Ifyoudidnotrunthesimulation,makesureyouusetheprovidedexample-output/input/6bar.psf.3.Loadtheoutputdcd le,sim.dcd.Ifyoudidnotrunthesimulation,useexample-output/output/sim.dcd.Inthiscase,youwillhave150framesloadedinVMD,oneframeforeachnanosecondofthesimulation.UseVMDtotakealookatthesimulationresult.TheBARdomainsystemoriginallysitsona atmembrane,andafter150nsofsimulationtime,themem-braneiscurvedintoanarch.AsimpleSBCGsimulationusedheredemonstratesverywellhowBARdomainproteinsperformtheirjobofsculptingmembraneshape.FormoreinformationonBARdomain-inducedmembranecurvature,pleaseseeArkhipovetal.,Biophys.J.,95:2806,2008. Figure13:SimulationresultoftheBARdomainsystem.Left:beginningofthesimulation.Right:systemat150ns.4.InyourVMDsession,usetheVMDanimationtooltodisplaythelastframe,whichshouldshowahighlycurvedBARdomain/membranesystem.Openthe

Related Contents


Next Show more