/
On the Complexity of Matrix Rank and Rigidity Meena Mahajan and Jayalal Sarma M On the Complexity of Matrix Rank and Rigidity Meena Mahajan and Jayalal Sarma M

On the Complexity of Matrix Rank and Rigidity Meena Mahajan and Jayalal Sarma M - PDF document

trish-goza
trish-goza . @trish-goza
Follow
470 views
Uploaded On 2015-01-19

On the Complexity of Matrix Rank and Rigidity Meena Mahajan and Jayalal Sarma M - PPT Presentation

N The Institute of Mathematical Sciences Chennai 600 113 India meenajayalal imscresin Abstract We revisit a well studied linear algebraic problem computi ng the rank and determi nant of matrices in order to obtain completeness results fo r small comp ID: 33297

The Institute Mathematical

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "On the Complexity of Matrix Rank and Rig..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

OntheComplexityofMatrixRankandRigidityMeenaMahajanandJayalalSarmaM.N.TheInstituteofMathematicalSciences,Chennai600113,India.fmeena,jayalalg@imsc.res.inAbstractWerevisitawellstudiedlinearalgebraicproblem,computingtherankanddetermi-nantofmatrices,inordertoobtaincompletenessresultsforsmallcomplexityclasses.Inparticular,weprovethatcomputingtherankofaclassofdiagonallydominantmatricesiscompleteforL.WeshowthatcomputingthepermanentanddeterminantoftridiagonalmatricesoverZisinGapNC1andishardforNC1.Wealsoinitiatethestudyofcomputingtherigidityofamatrix:thenumberofentriesthatneedstobechangedinordertobringtherankofamatrixbelowagivenvalue.Weshowthatsomerestrictedversionsoftheproblemcharacterizesmallcomplexityclasses.Wealsolookatavariantofrigiditywherethereisaboundontheamountofchangeallowed.Usingideasfromthelinearintervalequationsliterature,weshowthatthisproblemisNP-hardoverQandthatacertainrestrictedversionisNP-complete.Restrictingtheproblemfurther,weobtainvariationswhichcanbecomputedinPLandarehardforC=L.1IntroductionAseriesofseminalpapersbyavarietyofpeopleincludingValiant,Mulmuley,Toda,Vinay,Grigoriev,Cook,andMcKenzie,setthestageforstudyingthecomplexityofcomputingmatrixproperties(inparticular,determinantandrank)intermsoflogspacecomputationandpoly-sizepolylog-depthcircuits.Thisareahasbeenactiveformanyyears,andanNCupperboundisknownformanyrelatedproblemsinlinearalgebra;seeforinstance[All04].SomeofthemajorresultsinthisareaarethatcomputingthedeterminantofintegermatricesisGapL-completeandthattestingsingularityofintegermatricesisC=L-complete.Inparticular,thecomplexityofcomputingtherankofagivenmatrixoverQhasbeenwellstudied.Forgeneralmatrices,checkingiftherankisatmostrisC=L-complete[ABO99].Completeproblemsforcomplexityclassesarealwayspromising,sincetheyprovideasetofpossibletechniquesthatareassociatedwiththeproblemtoattackvariousquestionsregardingthecomplexityclass.Suchresultscanbeexpectedto\rourishwhenthecompleteproblemhaswell-developedtoolsassociatedwithit.Withthismotivation,welookatspecial1 Matrixtype(overQ) rankbound singular determinant general C=L-complete C=L-complete GapL-complete (even0-1) [ABO99] [ABO99] [Dam91,Vin91] [Tod91,Val92] symmetricnon-neg. C=L-complete C=L-complete GapL-hardunder logTreductions [ABO99] [ABO99] [Kul07] symmetricnon-neg. L-complete L-complete diag.dominant(d.d.) (Theorem5) (Theorem5) ? symmetricd.d. L-hardevenwhendet2f0;1g(Thm.10) ? diagonal TC0-complete AC0 TC0-complete (Prop1) (Prop1) (Prop1) tridiagonal ? C=NC1(Theorem11) GapNC1(Thm.11) tridiagonalnon-neg. non-negativepermequivalenttoplanar#BWBP(Thm.11) Table1:rankbound,singular,anddeterminantforspecialmatricescasesofthematrixrankproblemandtrytocharacterizesmallcomplexityclasses.Wecon-siderrestrictionswhicharecombinationsofnon-negativity,0-1entries,symmetry,diagonaldominance,andtridiagonalsupport,andweconsiderthecomplexitiesofthreeproblems:computingtherank,computingthedeterminantandtestingsingularity.These,thoughintimatelyrelated,canhavedi eringcomplexities,asTable1shows.However,thecorrespondingoptimizationsearchproblemscanbeconsiderablyharder.Considerthefollowingexistentialsearchquestion:GivenamatrixMovera eldK,atargetrankrandaboundk,decidewhethertherankofMcanbebroughtdowntobelowrbychangingatmostkentriesofM.Intuitively,onewouldexpectsuchaquestiontobein9NC:guessklocationswhereMistobechanged,guessthenewentriestobeinsertedthere,andcomputetherankinNC([Mul87]).However,thisintuition,whilecorrectfor nite elds(thiscasewasrecentlyshowntobeNP-complete[Des07]),doesnotdirectlytranslatetoaproofforQandZ1sincetherequirednewentriesmaynothaverepresentationspolynomially-boundedintheinputsize.Usingresultsaboutmatrixcompletionproblems,wecanobtainupperboundsofPSPACEoverrealsandcomplexnumbers,anddecidabilityoverp-adicnumbers,[BFS99].However,inthecaseofarbitraryin nite elds,thebestupperboundwecanseeinthegeneralcaseisrecursiveenumerability,andinparticular,thisisthesituationoverQ.WealsodonotknowanylowerboundsforthisquestionoverQ.Inthispaper,weexplorethecomputationalcomplexityofseveralvariantsofthisproblem.Theabovequestionisacomputationalversionofrigidityofamatrix,whichisthesmallestvalueofkforwhichtheanswertotheabovequestionisyes.ThenotionofrigiditywasintroducedbyValiant[Val77]andindependentlyproposedbyGrigoriev[Gri76].The 1Technically,rankoverZisnotde ned,sinceZisnota eld.InSection2,wede neanaturalnotionofrankoverrings.Underthis,sinceZisanintegraldomain,therankisthesameasoverthecorrespondingdivisionringQ.2 mainmotivationforstudyingrigidityisthatgoodlowerboundsonrigiditygiveimportantcomplexity-theoreticresultsinothercomputationalmodels,likelinearalgebraiccircuitsandcommunicationcomplexity.Thoughthequestionweaddressisinfactacomputationalversionofrigidity,ithasnodirectimplicationsfortheselowerbounds.However,itprovidesnaturalcompleteproblemsbasedonlinearalgebraforimportantcomplexityclasses.Animportantaspectofcomputingrigidityisitspossibleconnectiontothetheoryofnat-uralproofsdevelopedbyRazborovandRudich[RR97].Valiant'sreduction[Val77]identi es\highrigidity"asacombinatorialpropertyoffunctions,basedonwhichheproveslinear-sizelowerboundsforlog-depthcircuits.However,themodelofarithmeticcircuitshasnotbeenstudiedinsucientdetailsuchthatinthesettingofnaturalproofsthiscandirectlyprovidesomeevidenceaboutthepoweroftheprooftechnique.Nevertheless,thiscouldbethoughtofasmotivationforthecomputationalquestionofrigidity.Ourquestionbearscloseresemblancetothebodyofproblemsconsideredundermatrixcompletion,seeforinstance[BFS99,Lau01].Givenamatrixwithindeterminatesinsomelocations,canweinstantiatetheminsuchawaythatsomedesiredproperty(e.g.non-singularity)isachieved?InSection4,wediscusshowresultsfrommatrixcompletioncanyieldupperboundsforourquestion.Inthispaper,werestrictourattentiontoZandQ(someextensionsto nite eldsarediscussedattheend).SinceevenanupperboundofNPisnotobvious,werestrictthechoiceavailableinchangingmatrixentries.Weconsidertwovariants:(1).Intheinput,a nitesubsetSKisgiven.MhasentriesoverS,andthechangedentriesmustalsobefromS;rankcomputationcontinuestobeoverK.(Forinstance,wemayconsiderBooleanmatrices,soS=f0;1g,whilerankcomputationisoverK.)ItiseasytoseethatthisvariantisindeedinNP.(2).Intheinput,aboundisgiven.Werequirethatthechangesbeboundedby;wemayapplytheboundtoeachchange,ortothetotalchange,ortothetotalchangeperrow/column.(Seeforinstance[Lok95].)Thisversionhascloseconnectionswithanotherwell-studiedareacalledlinearintervalequationswhicharisesnaturallyinthecontextofcontrolsystemstheory(see[Roh89]).Weobtaintighterlowerandupperboundsforsomeofthesequestions.Weshowcom-pletenessforC=Lwhenk2O(1)inthe rstvariant,forNPwhenthetargetrankrequalsninthesecondvariant,andforC=Lwhenr=ninthegeneralcase.Table2summarizestheresults.2PreliminariesOverany eldF,therankofamatrixM2Fnn(weconsideronlysquarematricesinthispaper)hasthefollowingequivalentde nitions:(1)Themaximumnumberoflinearlyinde-pendentrowsorcolumnsinM.(2)Themaximumsizeofanon-singularsquaresubmatrixofM(3)TheminimumrsuchthatM=ABforsomeA2FnrandB2Frn.(4)TheminimumrsuchthatMisthesumofrrank-1matrices,wherearank-1matrixisoneforwhichthereexistsavectorv(notnecessarilyinthematrix)suchthateveryrowinthematrixcanbeexpressedasamultipleofv.Thesede nitionsneednotbeequivalentwhen3 K,SK restriction bound (if,thenS=K) ZorQ,f0,1g inNP ZorQ,f0,1g k2O(1) C=L-complete(Thm13) ZorQ, k2O(1) C=L-hard[ABO99] Q, r=n C=L-complete[ABO99] witness-searchinLGapL(Thm15) Z, r=nandk=1 inLGapL(Thm16) ZorQ, boundedrigidity,r=n NP-complete(Thm18) ZorQ, boundedrigidity,r=n;k=1 InPL,andC=L-hard(Thm22) Table2:Ourboundsonrigidwhenk2O(1)orr=ntheunderlyingalgebraicstructureisnota eld.Hence,thenotionofrankisnotwell-de nedoverarbitraryrings.However,iftheringunderconsiderationisanin niteintegraldomain(likeZ)(noticethata niteintegraldomainhastobea eld),thentheabovede nitionsareindeedequivalent,andcanbetakenasade nitionofrank.Infact,therankinthatcasecanbeeasilyseentobesameastherankoverthecorrespondingquotient eld;thusrankoverZasde nedaboveisthesameasrankoverQ.Nowweintroducethebasicnotionsincomplexitytheorythatweneed.LandNLdenotelanguagesacceptedbydeterministicandnondeterministiclogspaceclassesrespectively,andFListheclassoflogspace-computablefunctions.#ListheclassoffunctionsthatcountthenumberofacceptingpathsofanNLmachine,andGapLisitsclosureundersubtrac-tion.ComputingthedeterminantoverZiscompleteforGapL.Incontrast,computingthepermanentiscompletefor#P,theclassoffunctionscountingacceptingpathsofanNPma-chine.NC1istheclassoflanguageswithpolynomial-sizelogarithmic-depthBooleancircuits.#NC1istheclassoffunctionscomputedbyarithmeticcircuits(gatescompute+and)withthesamesizeanddepthboundsasNC1,andGapNC1isitsclosureundersubtraction.AC0(TC0)istheclassoflanguageswithpolynomial-sizeconstant-depthunboundedfaninBooleancircuits,wheregatescomputeand,or,not(andmajority).Formoredetails,see[Vol99].AlanguageLisintheexactcountinglogspaceclassC=L(orprobabilisticlogspacePL)ifandonlyifitconsistsofexactlythosestringswhereacertainGapLfunctioniszero(positive,respectively).Thelanguagessingular(K)=fMjOverK,Misnotfullrankgrankbound(K)=f(M;r)jOverK,rank(M)rgforK=ZorQarecompleteforC=L[ABO99].Notethatforanytypeofmatrices,andanycomplexityclassC,C-hardnessofsingularimpliesC-hardnessofrankbound.Howevertheconverseisnottrue:Proposition1.(folklore)Restrictedtodiagonalmatrices,singular(Z)isinAC0whilerankbound(Z)anddeterminantareTC0-complete.4 Therigidityfunction,anditsdecisionversion,areasde nedbelow2.(Heresupport(N)=#f(i;j)jN(i;j)=0g.)RM(r)def=minNfsupport(N):rank(M+N)rgrigidK=f(M;r;k)jRM(r)kgLemma2.(Valiant,folklore)Overany eldF,rank(M)rRM(r+1)(nr)2.Theinequalityontheleftalsofollowsfromthefollowinglemmawhichwewilluselater:Lemma3.(folklore)Overany eldF,foranytwomatricesMandNofthesameorder,support(MN)=1=)jrank(M)rank(N)j1Toseethis,usethefactsthatrankissub-additiveandthatrank(A)=rank(A).HenceforanytwomatricesAandB,rank(A)rank(B)rank(A+B)rank(A)+rank(B).Further,rank(A)support(A),yieldingtheclaim.3ComputingtherankforspecialmatricesComputationofrankisintimatelyrelatedtocomputationofthedeterminant.Mulmuley[Mul87]showedthatoverarbitrary elds,rankcanbecomputedinNC(withthethe eldoperationsasprimitives).OverZandQ,rankboundisC=L-complete([ABO99]),andwewishtocharacterizeitssubclassesbyrestrictingthetypesofmatrices.Anaturalapproachistousecharacterizationsofmatrixrankintermsofassociatedcombinatorialobjects,likegraphs.However,noknownparameterofthegraphofamatrixcharacterizesthematrixrankingeneral.Thefollowingiseasytosee:Proposition4.Thelanguagesrankbound(Z)andsingular(Z)remainC=L-hardeveniftheinstancesarerestrictedtobesymmetric0-1matrices.Proof.LetA0bethesymmetricmatrix0AAT0.Sincerank(A0)=2(rank(A)),rankbound(Z)remainsC=L-hardwhenrestrictedtosymmetricmatrices.Further,determinantremainsGapL-hardevenwhenthematricesarerestrictedtobe0-1(seeforinstance[Tod91]).ThussingularremainsC=L-hardevenwhenrestrictedto0-1matrices.SinceMisinsingularifandonlyif(M;n)isinrankboundifandonlyif(M0;2n)isinrankbound,itfollowsthatrankbound(Z)remainsC=L-hardforsymmetric0-1matricesaswell. 2Inmuchoftherigidityliterature,rank(M+N)risrequired.Weusestrictinequalitytobeconsistentwiththede nitionofrankboundfrom[ABO99].5 determinantremainsGapL-hardfor0-1matrices,butitisnotclearthatsymmetricinstancesareGapL-hardundermany-onereductions.Theabovetrickdoesnotworkforcomputingdeterminants,becausedet(A0)willequaldet(A)2andGapLisnotknowntobeclosedundertakingsquare-roots.Wedonotknow(anyotherwayofshowing)many-onehardnessforsymmetricdeterminant.Recently,Kulkarni[Kul07]hasobservedthatsymmetricinstancesareGapL-hardunderTuringreductions.Theideaisto rstuseChineseRemaindering:anydeterminantcanbecomputedinLifitsresiduesmodulopolynomiallymanyprimesareavailable.Smallprimes(logarithmicallymanybits)suceandcanbeobtainedexplicitly.Nowto ndthedeterminantmoduloasmallprimep,rangeoveralla2f0;1;:::;p1gandtestifitequalsamodulop.Butthiscanberecast,usingtheGapL-completenessproofsofthedeterminant,asaskingifarelateddeterminantis0modulop.Finally,usingtheideaintheproofofProposition4,wecanasktheoracleforthedeterminantofarelatedsymmetricmatrixandtest(inL)ifitis0modulop.Wenowconsideranadditionalrestriction.AmatrixMissaidtobediagonallydominantifforeveryi,jmi;ijPj=ijmi;jj.(Ifalltheinequalitiesarestrict,thenMissaidtobestrictlydiagonallydominant.)Weshow:Theorem5.singular(Z)restrictedtonon-negativediagonallydominantsymmetricma-tricesisL-complete.ThehardnessisviauniformAC0many-onereductions.Proof.Thisresultexploitsaverynicecombinatorialconnectionbetweensuchmatricesandgraphs.Foranon-negativesymmetricdiagonally-dominantmatrixM,itssupportgraphGM=(V;EM)hasV=fv1;:::vng,andEM=f(vi;vj)ji=jmi;j�0g[f(vi;vi)jmi;i�Pi=jmi;jg.Thefollowingisshownin[Dah99]forR,anditcanbeveri edthatthesameholdsoverQ.Lemma6([Dah99]).LetMbeanon-negativesymmetricdiagonallydominantmatrixofordernoverQorR.Thenrank(M)=nc,wherecisthenumberofbipartitecomponentsinthesupportgraphGM.Hardness:ThereductionisfromundirectedforestaccessibilityUFA,whichisL-completeandremainsL-hardevenwhenthegraphhasexactly2components[CM87].Withoutlossofgenerality,wecanassumethattheinputinstanceshaveaniceform,asstatedinthefollowinglemma.Lemma7.([CM87])GivenanundirectedforestG,ofboundeddegreewithexactlytwocomponents,andthreespecialverticess;tandq,withtheguaranteethattandqareindi erentcomponents,decidingwhichcomponentsbelongstoisL-hard.Proof.ThereductionisfromthemachinemodelforL,andisessentiallyreproducedfrom[CM87].Werephrasetheproofheretohighlightthefactthatthenormalformweneedisindeedachievable.Tobeginwith,modifythemachinedescriptionsuchthatwheneverthecomputationisonanin niteloop,themachineclearso thework-tapeandgoestoanerrorstatee.Thusthereareonlytwopossible nalstatesforthemachine,oneistheerrorcon gurationse,andtheotheristheacceptingcon gurationt.6 Thesetofcon gurationsofaTuringmachinewitha xedinputwformstheverticesofsuchagraphG,andthe(unique)acceptingcon gurationisaccessiblefromtheinitialcon gurationifandonlyiftheTuringmachineacceptstheinputw.Gcanbemadeacyclicbyassociatingatimestampwiththecon gurations,andinsistingthatanedgealwaysjoinsacon gurationattimeitoacon gurationattimei+1.Ifp(n)isanupperboundonthecomputationtimeoftheTuringmachinewithinputw,thenweletthenodetinthegraphbetheacceptingcon gurationwithtimestampp(n),andswillbetheinitialcon gurationwithtimestamp0.Byde nition,thenumberofpossible(in/out)-neighboursofanynodeisboundedbyaconstant.Inadditionthereareexactlytwonodesofoutdegree0,andtheycorrespondtothecon gurationseandt.Viewingeachedgeintheresultingdigraphasundirectedyieldsanundirectedforestsuchthatsandtbelongtothesametreeifandonlyifadirectedpathexistedfromstotintheoriginaldigraph.Notethattheresultingundirectedforesthaspreciselytwocomponents,andthethreeverticessatisfytherequiredpropertiesofthereduction. WenowconstructG0asfollows:MaketwocopiesG1andG2ofG.Addanewvertexu.Addedges(s1;s2);(t1;u);(t2;u).Addself-loopsatq1andq2.G0hasatmostthreecomponents(copiesofthecomponentscontainingtjoinupviau).Thecomponent(s)containingcopiesofqarenecessarilynon-bipartite.Ifthereisans;tpathinG,theninG0thetwocopiesofthepath,alongwiththeedges(s1;s2);(t1;u);(u;t2)createanoddcycle,sothenewjoinedupcomponentisalsonotbipartite.HenceG0hasnobipartitecomponents.Ifthereisnos;tpathinG,thecomponentcontainingt1andt2willremainbipartite.Thusthereisexactlyonebipartitecomponentnow.Tocompletetheproof,weneedtoproduceamatrixMsuchthatG0isitssupportgraph.WeconstructMasfollows:Foreachi=jmi;j=1if(i;j)2E00otherwiseForeachimi;i=1+Pj=imi;jif(i;i)2E0Pj=imi;jotherwiseFromLemma6,Missingularifandonlyifthereisnos;tpathinG.ItisclearthatMcanbeconstructedfromG0,andhencefromG,byauniformTC0circuit.NowweshowthatinfactitcanbeconstructedinAC0.First,observethattheforestthatwestartwith(astheL-hardinstance)hasboundeddegree.SowewouldliketorewritethesummationPj=imi;jasPj=i;mi;j=0mi;j.Buthowdoweknowaprioriwhichentriesarenon-zero?Foranodei,de neLitobethelistofnodesforwhichmi;jcanpossiblybenon-zero.SincethelogspaceTuringmachinealtersonlyasmallpartofthecon gurationinonestep,thislistisofboundedlength,withtheboundldependingonlyonthemachine'sdescriptionandnotontheinputlength.Letlist(i;t)denotethetthelementinalexicographicalenumerationofLi;oninputi;t,list(i;t)canbedeterminedinAC0.Now7 therequiredsummationisexactlyPj2Limi;j=Plt=1mi;list(i;t),andthusitcanbecomputedbyanAC0circuit.MembershipinL:GivenamatrixMsatisfyingthestatedconditions,itisstraightforwardtoconstructthesupportgraphGM.By[AG00,NTS95,Rei05],checkingwhethertwoverticesbelongtothesamecomponentinanundirectedgraph,countingthenumberofcomponents,andcheckingbipartitenessofanamedcomponentareallinL.Hence,byLemma6,rank(M)canbecomputedinL. Corollary8.Thelanguagerankbound(Z),restrictedtosymmetricnon-negativediago-nallydominantinstances,isL-complete.However,thehardnessofrankbound(Z)isnotderivedjustfromthehardnessofsingular.Anobviouswaytoobtainhardnessatothervaluesofrank(ratherthanr=ninthecaseofsingular)istopadoutthematrixwithzerorowsand/orcolumns.Wepresenthereaslightlydi erentproofofTheorem5,establishinghardnessofdecidingwhethertherankisn1orn2.Proof.ThereductionisagainfromundirectedforestaccessibilityUFA,usingniceinstancesasguaranteedbyLemma7.LetG;s;tbeaninstanceofUFA,whereGhastwotrees.WeconstructanewgraphG0=(V0;E0)asfollows:taketwodisjointcopiesofG.Addanewvertexuandconnectittobothcopiesoft.Connectthetwocopiesofs.Also,addself-loopsatbothcopiesoft.Ifthereisans;tpathinG,thenG0hasthreecomponents:thecopiesofthecompo-nentcontainingsandtjoinup,whilethecopiesoftheothercomponentremaindisconnected(andhencebipartite).Thetwocopiesofthepath,alongwiththeedges(s1;s2);(t1;u);(u;t2)createanoddcycle,sothenewjoinedupcomponentisnotbipartite.HenceG0hasexactlytwobipartitecomponents.Ifthereisnos;tpathinG,thecomponentcontainings1ands2willremainbipartite.Theothercomponentisnotbipartiteduetotheselfloopsatt;t2.Thusthereisexactlyonebipartitecomponentnow.Tocompletetheproof,weneedtoproduceamatrixMsuchthatG0isitssupportgraph.ThiscanbedoneinAC0asdescribedinthepreviousproof. NotethatthoughrankforthesematricescanbecomputedinL,wedonotknowhowtocomputetheexactvalueofthedeterminantitself.(NotethatbyTheorem5,thisishardforFL.)Inabriefdigression,wenotethefollowing:ifamatrixistohavenotrivial(all-zero)rows,andyetbediagonallydominant,thenitcannothaveanyzeroesonthediagonal.Onemayaskifitiseasiertocomputedeterminantswhentherecanbenozerosonthemaindiagonal.Wedonotknowifcomputingdeterminantsofsuchmatricesiscompleteundermany-onereductions,althoughthefollowinglemmashowsthatitiscompleteunderarestrictivetypeofTuringreduction.Lemma9.ForeveryGapLfunctionfandeveryinputx,f(x)canbeexpressedasdet(M)1,whereMhasnozeroesonthediagonal.Mcanbeobtainedfromxviaprojections(eachoutputbitisdependentonatmostonebitofx).8 Proof.ConsiderToda'sproof[Tod91]forshowingthatdeterminantisGapLhard(seealso[ABO99,MV97]).GivenanyGapLfunctionfandinputx,itconstructsadirectedgraphGwithself-loopsateveryvertexexceptaspecialvertexs.Galsohasthepropertythateverynon-trivialcycle(notaself-loop)inGpassesthroughs.IfAistheadjacencymatrixofG,thentheconstructionsatis esf(x)=det(A).NowconsiderthematrixBobtainedbyaddingaself-loopats.Whatadditionaltermsdoesdet(B)havethatwereabsentindet(A)?Suchtermsmustcorrespondtocyclecoversusingtheself-loopats;i.e.cyclecoversinGnfsg.ButGnfsghasnonon-trivialcycles,sotheonlyadditionalcyclecoverisallself-loops,contributinga+1.Thusdet(B)=1+det(A),andBistherequiredmatrix. Wealsoshowviaasomewhatdi erentreductionthattheL-hardnessofsingularinTheorem5holdsevenifweallownegativevalues,butdisallowmatriceswithdeterminantotherthan0or1.Theorem10.singular(Z)forsymmetricdiagonallydominantmatricesisL-hard,evenwhenrestrictedtoinstanceswith0-or-1determinant.Proof.AsintheproofofTheorem5,webeginwithaninstance(G;s;t)ofUFAwhereGhasexactlytwocomponents.Addedge(s;t)toobtaingraphH.Bythematrix-treetheorem,(seeforexampleTheoremII-12in[Bol84]),ifAistheLaplacianmatrixofH(de nedbelow),andBisobtainedbydeletingthetopmostrowandleftmostcolumnofA,thendet(B)equalsthenumberofspanningtreesofH.TheLaplacianmatrixAisde nedasfollows:ai;i=thedegreeofvertexiinHai;j=1ifi=jand(i;j)isanedgeinHai;j=0ifi=jand(i;j)isnotanedgeinHClearly,Aisdiagonallydominant(infact,foreachi,theconstraintisanequality);also,sinceHisanundirectedgraph,Aissymmetric.NowthenumberofspanningtreesinHis1ifs;Gt(Hitselfisatree)andis0ifs;Gt(Hstillhastwocomponents,sincetheedgeinHnGjoinsverticesinthesamecomponentofG). Thenextrestrictionweconsideristridiagonalmatrices:mi;j=0=)jijj1.WeshowthatdeterminantandpermanentareinGapNC1,byusingbounded-widthbranchingprogramsBWBP.IntheBooleancontext,BWBPequalsNC1.However,inthearithmeticcontext,theyarenotthatwellunderstood.Itisstillopen([All04,CMTV98])whetherthecontainment#BWBP#NC1isinfactanequality(thoughitisknownthatGapBWBP=GapNC1).LayeredplanarBWBParetheG-graphsreferredtoin[AAB+99].CountingpathsinG-graphsmaywellbesimplerthanGapNC1duetoplanarity.However[AAB+99](seealso[All04])showsthatevenoverwidth-2G-graphs,itishardforNC1(underAC0[5]reductions).Weshowthatthepermanentanddeterminantoftridiagonalmatricesareessentiallyequivalenttocountinginwidth-2G-graphs.Inwhatfollowswehaveaweighted9 BWBP,wheretheweightofapathistheproductoftheweightsoftheedgesonthepath.ThevalueofaweightedBWBPisthesum,overalls-tpaths,oftheweightsofthepaths.Theorem11.ComputingthepermanentanddeterminantofatridiagonalmatrixoverZisequivalenttoevaluatingalayeredplanarweightedBWBPofwidth2.Proof.GivenatridiagonalmatrixA,letAibethetop-leftsubmatrixofAoforderi,andletXnandYndenoteitspermanentanddeterminantrespectively.Wehavethefollowingrecurrences:X0=Y0=1X1=Y1=a1;1Xi=ai;iXi1+ai1;iai;i1Xi2Yi=ai;iYi1ai1;iai;i1Yi2Figure1showsaweightedbranchingprogramforXnthathaswidth2andcanbedrawninalayeredplanarfashion.TheconstructionforthedeterminantYnissimilar,usingsomenegativeweights.Thiscompletestheproofofonedirection.X0a12 a11??????????????a21 X2a33??????????????a34 a42 X4an;n1 annXn X1a22a23 a32 X3a45 a44Xn1Figure1:Width-2branchingprogramfortridiagonalpermanentWeremarkthatintheconstructionforthepermanent(Xn),whenallentriesarenon-negative,thisproblemreducestocountingpathsinunweightedplanarbranchingprogramsofwidth5.Toseethis,replaceeachweightededgeinFigure1withawidth-threegadgethavingtheappropriatenumberofpathsinastandardway.Toseetheotherdirection,noticethatanylayerofaplanarwidth-2BWBPshouldlooklikeoneofthefollowingstructures.a b@@@@@@@@d c f e~~~~~~~DUFigure2:Componentsofwidth-2layeredplanargraphsAnywidth-2graphGcorrespondingtotheBPcanbeencodedasasequenceofandUcomponentsasindicatedin gure2.FirstconsiderthecasewherethesequenceconsistsofalternatingDandU;thatisconsidersequencesin(DU).Eachsuchsequencelooksexactlylikethegraphin gure1.Byjustreadingo theweightsonthecorrespondingedgesin10 thegraph,wecanproducetwomatricesM1andM2suchthatpermanentofM1andthedeterminantofM2(byputtinginappropriatenegations)equalthevalueoftheweightedBWBP.NowitissucienttoarguethatthegraphcorrespondingtoanyBWBPcanbetrans-formedtothisform.Ifthestringdoesnotstartwithacomponent,wewilljustputinapre xwithabc=101.Similarly,addasuxUcomponentwithdef=101ifnecessary.Weneedtohandlethecasewhentherearetwoconsecutivecomponentsofthesametype;UUorDD.Simplyputinacomponentwithabc=101betweentwoUs,andaUcompo-nentwithdef=101betweentwos.Noticethatthenewwidth-2graphwhenencodedwillbeanelementof(DU),andtheweightsofthepathsarepreservedinthetransformation.TheabovereductionnowgivesthetwomatricesM1andM2.Inaddition,observethatiftheBWBPisunweighted,thenthematrixM1thatweproducehasonly0,1entries,andM2willhaveentriesfromf1;0;1g. FromTheorem11andthediscussionprecedingit,wehavethefollowingcorollary.Corollary12.ComputingthepermanentanddeterminantofatridiagonalmatrixoverZisinGapNC1,andishardforNC1underAC0[5]reductions.4ComplexityresultsonrigidityInthissectionwestudytheproblemofcomputingmatrixrigidity,rigidK,andalsoitsrestrictionrigidK;Sde nedbelow,wherethematricescanhaveentriesonlyfromSK.rigidK;S=(M;r;k) MoverS;9M0overS:rank(M0)r^support(MM0)kWewillmostlyconsiderStobeeitherallofK,oronlyB=f0;1g.Wealsoconsiderthecomplexityofrigidwhenkis xed,viathefollowinglanguage:rigidK;S(k)=f(M;r)j(M;r;k)2rigidK;SgAsmentionedintheintroduction,matrixrigidityandmatrixcompletionarerelated.TheMinRankproblemtakesasinputamatrixwithvariables,andasksfortheminimumrankachievableunderallinstantiationsofthevariablesintheunderlying eld,seeforinstance[BFS99].1-MinRankisitsrestrictionwhereeveryvariableoccursatmostonce,andisalsocalledminimumrankcompletion.MaxRankand1-MaxRankaresimilarlyde ned.Thenaivealgorithmforrigidity,mentionedintheintroduction,easilytranslatestoanupperboundofNP(1-MinRank).Moreprecisely,rigidisin91-MinRank.WhileMinRankoverZisundecidable[BFS99],thishardnessproofdoesnotcarryoverfor1-MinRank.Nonetheless,thebestknownupperboundfor1-MinRankisrecursiveenumerability.Thusthenaivealgorithmdoesnotgiveanyreasonableupperboundforrigid.Theorem13.Foreach xedk,rigidZ;B(k)iscompleteforC=L.11 Proof.Membership:Weshowthatforeachk,rigidZ;B(k)isinC=L.Aninstance(M;r)isinrigidZ;B(k)ifthereisasetof0skentriesofM,which,when\ripped,yieldamatrixofranklessthanr.Thenumberofsuchsetsisboundedbyks=0ns=t2nO(1).LetthecorrespondingmatricesbedenotedM1;M2:::Mt;thesecanbegeneratedfromMinlogspace.Now(M;r)2rigidZ;B(k)()9i:(Mi;r)2rankbound(Z).HencerigidZ;B(k)logdttrankbound(Z).Sincerankbound(Z)isinC=L,andsinceC=Lisclosedunderlogspacedisjunctivetruth-tablereductions(see[AO96]),itfollowsthatrigidZ;B(k)isinC=L.Hardness:Toshowacorrespondinghardnessresult,weuseLemma3below.ThehardnessforrigidZ;B(0)holdsbecausesingularremainsC=L-hardevenwhenrestrictedto0-1matrices(Proposition4).Hardnessforallthelanguagesmentionedinthelemmaalsofollowsfromthisfact,andfromthefollowingclaim:(1)M2singular(Z)=)(M\nIk+1;n(k+1)k)2rigidZ;B(0)rigidZ;B(k)(2)M62singular(Z)=)(M\nIk+1;n(k+1)k)62rigidZ(k)Here\ndenotestensorproductandIk+1denotesthe(k+1)(k+1)identitymatrix.Notethatrank(M\nIk+1)=(k+1)rank(M).Toseetheclaim,observethatifM2singular(Z),thenrank(M)n1andsorank(M\nIk+1)(k+1)(n1)n(k+1)k.IfM62singular(Z),thenrank(M\nIk+1)=n(k+1).Thuswewanttoreducetherankbyatleastk+1.ByLemma3,weneedtochangeatleastk+1entries. Remark14.ThemembershipboundofTheorem13cruciallyusesthefactthatC=Lisclosedunderlogdttreductions.Wealsoobservethatthisresultholdsforany niteS,evenifSisnot xedaprioributsuppliedexplicitlyaspartoftheinput.ThehardnessofTheorem13essentiallyexploitsthehardnessoftestingsingularity.Thereforewenowconsiderthecomplexityofrigidatthesingular-vs-non-singularthreshold,i.e.whenr=n.FromLemma2weknowthatoverany eldF,(M;n;k)isinrigidwhen-everk1.And(M;n;0)isinrigidifandonlyifM2singular(F).SothecomplexityofdecidingthispredicateoverQisalreadywellunderstood.Wethenaddressthequestionofhowdicultitistocomeupwithawitnessingmatrix.Theorem15.Givenanon-singularmatrixMoverQ,asingularmatrixNsatisfyingsupport(MN)=1canbeconstructedinLGapL.Proof.Foreach(i;j),letM(i;j)bethematrixobtainedfromMbyreplacingmi;jwithanindeterminatex.Thendet(M(i;j))isoftheformax+b,andaandbcanbedeterminedinGapL(seeforinstance[AAM03]).SinceRM(n)=1(Lemma2),thereisatleastoneposition(i;j)wherethedeterminantissensitivetotheentry,andhencea=0.Settingmi;jtobeb=agivesthedesiredN. Anotherquestionthatarisesnaturallyisthecomplexityofrigidatthesingularitythresh-oldoverrings.NotethatLemma2doesnotnecessarilyholdforrings.Forinstance,changing12 oneentryofanon-singularrationalmatrixMsucestomakeitsingular.ButevenifMisintegral,thechangedmatrixmaynotbeintegral,andoverZ,RM(n)maywellexceed1.(Itdoes,forthematrix2357.)Thus,thequestionofdecidingRM(n)overZisnon-trivial.Weshow:Theorem16.GivenM2Znn,decidingif(M;n;k)isinrigid(Z)is(1)trivialforkn,(2)C=Lcompletefork=0,and(3)inLGapLfork=1.Proof.(1)holdsbecausezeroingoutanentirerowalwaysgetssingularity.(2)merelysaysthatsingular(Z)isC=L-complete.(3)followsfromtheproofofTheorem15andaddition-allycheckingtheintegralityofb=a. Inparticular,(3)aboveimpliesthatifoverZ,RM(n)=1,thenthenon-zeroentryofawitnessingmatrixispolynomiallyboundedinthesizeofM.However,ifRM(n)�1wedonotknowsuchasizebound.Todemonstratethisdiculty,considerthecaseinwhichk=2.FollowingthegeneralideainTheorem15,foreachchoiceoftwoentriesinthematrix,replacethembyvariablesxandy.Thisde nesafamilyofn2=O(n2)matricesandafamilyPofbilinearbivariatepolynomialsrepresentingthecorrespondingdeterminants.Thecoecientsofeachp2PcanbecomputedinGapL.Now,totestifRM(n)2,itsucestocheckifatleastoneoftheDiophantineequationsde nedbyp2P(orequivalently,thesinglemultilinearDiophantineequationq(x1;x2:::;y1;y2:::)=Qp2Pp(xp;yp)=0)hasanintegralsolution.However,wedonotknowhowtodothis.5ComputingBoundedRigidityWenowconsidertheboundednormvariantofrigiditydescribedinSection1:changedmatrixentriescandi erfromtheoriginalentriesbyatmostapre-speci edamount.Formally,thefunctionsofinterestarethenormrigidityM(r)andtheboundedrigidityRM(r;),asde nedin[Lok95],andtheirdecisionversion,asgivenbelow.M(r)def=infN(Xi;jjni;jj2:rank(M+N)r)RM(r;)def=minNfsupport(N):rank(M+N)r;8i;j:jni;jjgb-rigidK=f(M;r;k;)jRM(r;)kgOverZ,thenaivealgorithmforb-rigidZisnowinNP.HoweveroverQ,theboundstilldoesnotimplyanaprioripoly-sizeboundonthechangedentries.Thus,unlikeinSection4,herecomputationoverQappearsharderthanoverZ.Thefollowinglemmashowsthattheboundedrigidityfunctionscanbehaveverydi er-entlyfromthestandardrigidityfunction.13 Lemma17.Forany,andforanysucientlylargensuchthatn logn�+1,thereisannnmatrixMoverQsuchthatRM(n)=1,M(n)=(4n),andtheboundedrigidityRM(n;n)isunde ned.Proof.LetMbeannndiagonalmatrixwithmi;i=2nandmi;j=0fori=j.Clearly,RM(n)=1;justzerooutanydiagonalentry.Thisinvolvesanormchangeof4n.CanMbemadesingularbyasmallernorm-change,evenallowingmoreentriestobechanged?Recallthede nitionofstrictdiagonaldominancefromSection3.WeinvoketheLevy-Desplanquestheorem(seeforinstanceTheorem2.1in[MM64])thatsaysthatthedeterminantofastrictlydiagonallydominantmatrixisnon-zero.Now,atotalnorm-changelessthan4nwillnotdestroystrictdiagonallydominance,andthematrixwillremainnon-singular.HenceM(n)=4n,andRM(n;n)isunde ned. SinceforagivenmatrixM,arankrandabound,RM(r;)canbeunde ned,weexaminehowdicultisittocheckthis.Weshowthefollowing:Theorem18.1.GivenamatrixM2Qnn,andarationalnumber�0,testingifRM(n;)isde nedisNP-complete.2.GivenMandasabove,andfurthergivenanintegerk,testingifRM(n;)isatmostkisNP-complete.Proof.Tobeginwith,noticethatRM(r;)isde nedifandonlyifRM(r;)n2.Membership:We rstshowthemembershipinNPfor(2).Membershipin(1)followsbyusingthiswithk=n2.Weusearesultfromthelinearintervalequationsliterature.FortwomatricesAandB,wesaythatABifforeachi,j,AijBij.ForAB,theintervalofmatrices[A;B]isthesetofallmatricesCsuchthatACB.Anintervalissaidtobesingularifitcontainsatleastonesingularmatrix;otherwiseitissaidtoberegular.ByTheorem2.8of[PR93](ordirectlyfromLemma21),checkingsingularityofagivenintervalmatrixisinNP.GivenM,andk,wewanttotestwhetherRM(n;)isatmostk.InNP,weguesskpositions(i1;j1);(i2;j2);:::(ik;jk)andconstructthematrixVimjm=forall1mkand0elsewhere.NowletA =MVand A=M+V.ThenRM(n;)kifandonlyifforsomesuchguessedV,theinterval[A ; A]issingular,andthiscanbetestedinNP.Hardness:Itsucestoprovehardnessfor(1),sincehardinstancesof(1)alongwithk=n2giveshardinstancesof(2).Westartwiththemaximumbipartitesubgraphproblem:GivenanundirectedgraphG=(V;E),withnverticesandmedgesandanumberk,checkwhetherthereisbipartitesubgraphwithatleastkedges.ThisproblemisknowntobeNP-complete(see[GJ79]).In[PR93],thereisareductionfromthisproblemtocomputingtheradiusofnon-singularity,de nedasfollows:GivenamatrixA,itsradiusofnon-singularityd(A)istheminimum�0suchthattheinterval[AJ;A+J]issingular,whereJistheall-1smatrix.Wesketchthereductionof[PR93]belowandobservethatityieldsNP-hardnessforourproblemaswell.14 GivenaninstanceG;kofthemaximumbipartitesubgraphproblem,wede nethematrixNas,Nij=8:1ifi=jandiandjareadjacentinG2m+1ifi=j0otherwiseNoticethatsinceNisdiagonallydominant,byLevy-Desplanquestheorem(seeforinstanceTheorem2.1in[MM64]),Nisinvertible.LetM=N1.ByTheorems2.6and2.2of[PR93],(G;k)isaYesinstance()1=d(M)(2m+1)n+4k2m()d(M)=1 (2m+1)n+4k2m()theinterval[MJ;M+J]issingular()RM(n;)isde ned. Remark19.1.Itiseasytoseethat,byclearingdenominators,wehavehardinstanceswhereM;takeintegralvalues.Thus,thehardnessresultholdsforZaswell.2.Thematricesthatareproducedintheabovereductionareallsymmetricaswell.Rohn[Roh94]consideredthecasewhentheintervalofmatricesunderconsiderationissym-metric;thatisboththeboundarymatricesaresymmetric.Noticethattheintervalcanstillcontainnon-symmetricmatrices.Heprovedthatinsuchaninterval,ifthereisasingularmatrix,thentheremustbeasymmetricsingularmatrixtoo.UnravellingtheNPalgorithmdescribedinthemembershippartofTheorem18,anditsproofofcorrectness,isilluminating.Essentially,whatisestablishedin[Roh89]andusedin[PR93]isthefollowing:Lemma20([Roh89]).Ifaninterval[A;B]issingular,i.e.thedeterminantvanishesforsomematrixCwithintheboundsACB,thenthedeterminantvanishesforamatrix2[A;B]which,atallbutatmostoneposition,takesanextremevalue(dijiseitheraijorbij).Inparticular,thisimpliesthatthereisamatrixintheintervalwhoseentrieshaverepre-sentationspolynomiallylonginthatofAandB.Toseethis,letbethematrixclaimedtoexistasabove,andletk;lbethe(only)positionwhereakldklbkl.TheotherentriesofmatchthoseofAorBandhencearepolynomiallyboundedanyway.Nowreplacedklbyavariablextogetmatrixx.Itsdeterminantisaunivariatelinearpolynomial x+ whichvanishesatx=dkl.Now and canbecomputedfromxinGapL,andhencearepolynomiallybounded.If =0,then =0andthepolynomialisidenticallyzero.Other-wise,thezeroofthepolynomialis = .Eitherway,thereisazerowithapolynomiallylongrepresentation.In[Roh89],theabovelemmaisestablishedaspartofalongchainofequivalencescon-cerningdeterminantpolynomials.However,itisinfactageneralpropertyofarbitrarymultilinearpolynomials,asweshowbelow.15 Lemma21(Zero-on-an-EdgeLemma).Letp(x1:::xt)beamultilinearpolynomialoverQ.IfithasazerointhehypercubeHde nedby[`1;u1];:::[`t;ut],thenithasazeroonanedgeofH,i.e.azero(a1;:::;at)suchthatforsomek,8(i=k),ai2f`i;uig.Proof.Theproofisbyinductiononthedimensionofthehypercube.Thecasewhent=1isvacuouslytrue,sinceHisitselfanedge.Considerthecaset=2.Letp(x1;x2)bethemultilinearpolynomialwhichhasazero(z1;z2)inthehypercubeH;`iziuifori=1;2.Assume,tothecontrary,thatphasnozeroonanyedgeofH.De netheunivariatepolynomialq(x1)=p(x1;z2).Sinceq(x1)islinearandvanishesatz1,p(`1;z2)andp(u1;z2)mustbeofoppositesign.Buttheunivariatelinearpolynomialsp(`1;x2)andp(u1;x2)donotchangesignsontheedgeseither,andsop(`1;u2)andp(u1;u2)alsohaveoppositesign.Bylinearityofp(x1;u2),theremustbeazeroontheedgex2=u2,contradictingourassumption.Letusassumethestatementforhypercubesofdimensionlessthant.Considerthehypercubeofdimensiontandthepolynomialp(x1;:::xt).Let(z1:::zt)bethezeroinsidethehypercube.Themultilinearpolynomialrcorrespondingtop(x1;:::xn1;zt)hasazeroinsidethe(t1)-dimensionalhypercubeH0de nedbyintervals[`1;u1];:::[`t1;ut1].Byinduction,rhasazeroonanedgeofH0.Withoutlossofgenerality,assumethatthiszerois(z01; 2::: t1)where i2f`i;uig.Thusthepolynomialq(x1;xt)=p(x1; 2::: t1;xt)hasazerointhehypercubede nedbyintervals[`1;u1];[`t;ut].Hencethebasecaseappliesagain,completingtheinduction. AnalogoustoTheorems13,15and16,weconsiderb-rigidKwhenk2O(1).Theorem22.b-rigidQandb-rigidZareC=L-hardforeach xedchoiceofk,andremainhardwhenr=n.Whenk=1andr=n,b-rigidQisinPL,whileb-rigidZisinLGapL.Proof.Foranyk,(M;n;k;0)2b-rigidK()Missingular;henceC=L-hardness.ToseethePLupperboundoverQ,let=p q.Foreachelement(i;j),de nethe(i;j)thelementasvariablexandthenwritethedeterminantasax+b.Thus,ifjxj=jb ajp qforatleastonesuch(i;j)pair,wearedone.Thisisequivalenttocheckingif(bq)2(ap)2.Thevaluesofaandbcanbewrittenasdeterminants,hence(ap)2and(bq)2areGapLfunctions,andcomparisonoftwoGapLfunctionscanbedoneinPL.SincePLisclosedunderdisjunction(see[AO96]),theentirecomputationcanbedoneinPL.OverZ,q=1and=p,butweneedanintegralvalueforxaswell.Thatis,wewantan(i;j)pairwherejb ajandadividesb.ThiscanbecheckedinLGapL. 6DiscussionWhilethematrixrigidityproblemover nite eldsisNP-complete([Des07]),wecanconsiderrestrictedversionstheretoo.Itisknown[BDHM92]thatsingular(Fp)iscompleteforModpL(computingtheexactvalueofthedeterminantoverFpisinModpL),andthat(seee.g.[All04]),foranyprimep,rankbound(Fp)isinModpL.Usingthis,andclosurepropertiesofModpL,wecanobtainanaloguesofTheorem13and15overFp:(1)foreachk,andeach16 primep,rigidFp(k)iscompleteforModpL,and(2)givenanon-singularmatrix,asingularmatrixcanbeobtainedbychangingjustoneentry,andthechangecanbecomputedinModpL.Wecanalsoconsiderthecomplementaryquestiontomatrixrigidity,namely,computingthenumberofentriesthatneedtobechangedtoincreasetherankaboveagivenvalue.Usingargumentssimilartothecaseofdecreasingrank,wecanobtainsimilarcomplexityresultsinthiscasealso.However,notablyinthiscase,wenotonlyhavedecidability,wealsohaveanupperboundofNP.Thisfollowsfromtheframeworkofmaximumrankmatrixcompletion,whichisknowntobeinP[Gee99,Mur93].Forthemostgeneralquestionoftestingrigidityoverarbitraryin nite elds,asanopti-mizationproblem,anaturaldirectiontoexploreistheexistenceof xedparametertractablealgorithms.Morespeci cally,givenannnmatrix,andrankrandavaluek,isitpossibletotestRM(r)kintimenc:f(k)foraconstantcandanarbitraryfunctionf.However,inthisproblemwedonotseehowsuchadditionaltimecanused.7AcknowledgementsWethankV.Arvind,N.S.Narayanaswamy,R.Balasubramanian,KapilParanjapeandRaghavKulkarniformanyinsightfuldiscussions.Wethanktheanonymousrefereesforusefulcommentswhichhelpedimprovethereadabilityofthepaper.Further,oneoftherefereespointedouthowtoimprovetheboundonthereductioninTheorem5fromTC0toAC0.References[AAB+99]EricAllender,AndrisAmbainis,DavidA.MixBarrington,SamirDatta,andHuongLeThanh.Bounded-deptharithmeticcircuits:countingandclosure.InProc.26thICALP,LNCS1644,pages149{158,1999.[AAM03]EricAllender,VikramanArvind,andMeenaMahajan.Arithmeticcomplexity,Kleeneclosure,andformalpowerseries.TheoryComput.Syst.,36(4):303{328,2003.[ABO99]EricAllender,RobertBeals,andMitsunoriOgihara.Thecomplexityofma-trixrankandfeasiblesystemsoflinearequations.ComputationalComplexity,8(2):99{126,1999.[AG00]CAlvarezandRGreenlaw.Acompendiumofproblemscompleteforsymmetriclogarithmicspace.ComputationalComplexity,9:73{95,2000.[All04]EricAllender.Arithmeticcircuitsandcountingcomplexityclasses.InJanKra-jicek,editor,ComplexityofComputationsandProofs,QuadernidiMatematicaVol.13,pages33{72.SecondaUniversitadiNapoli,2004.17 [AO96]EricAllenderandMitsunoriOgihara.RelationshipsAmongPL,#l,andtheDeterminant.RAIRO-TheoreticalInformaticsandApplications,30(1):1{21,1996.[BDHM92]G.Buntrock,C.Damm,U.Hertrampf,andC.Meinel.StructureandimportanceoflogspaceMOD-classes.Math.SystemsTheory,25:223{237,1992.[BFS99]JonathanF.Buss,GudmundSkovbjergFrandsen,andJe reyShallit.Thecom-putationalcomplexityofsomeproblemsoflinearalgebra.JournaloftheCom-puterandSystemSciences,58:572{596,1999.[Bol84]B.Bollobas.ModernGraphTheory,volume184ofGTM.Springer,1984.[CM87]SACookandPMcKenzie.ProblemscompleteforL.Jl.ofAlgorithms,8:385{394,1987.[CMTV98]H.Caussinus,P.McKenzie,D.Therien,andH.Vollmer.NondeterministicNC1computation.JournaloftheComputerandSystemSciences,57:200{212,1998.[Dah99]G.Dahl.Anoteonnonnegativediagonallydominantmatrices.LinearAlgebraandApplications,317:217{224,April1999.[Dam91]C.Damm.DET=L(#L).TechnicalReportInformatik-Preprint8,FachbereichInformatikderHumboldt{UniversitatzuBerlin,1991.[Des07]AmitDeshpande.Sampling-baseddimensionreductionalgorithms.PhDthesis,MIT,May2007.expected.[Gee99]JamesF.Geelen.Maximumrankmatrixcompletion.LinearAlgebraanditsApplications,288(1{3):211{217,1999.[GJ79]M.R.GareyandD.S.Johnson.ComputersandIntractability:AGuidetotheTheoryofNP-Completeness.W.H.FreemanandCo.,1979.[Gri76]D.YuGrigoriev.Usingthenotionsofseperabilityandindependenceforprovingthelowerboundsonthecircuitcomplexity.NotesoftheLeningradbranchoftheSteklovMathematicalInstitute,Nauka,1976.inRussian.[Kul07]RaghavKulkarni.Personalcommunication,January2007.[Lau01]M.Laurent.Matrixcompletionproblems.InC.A.FloudasandP.M.Pardalos,editors,TheEncyclopediaofOptimization,volume3,pages221{229.Kluwer,2001.[Lok95]SatyanarayanaV.Lokam.Spectralmethodsformatrixrigiditywithapplicationstosize-depthtradeo sandcommunicationcomplexity.InProc.36thFOCS,pages6{15,1995.JCSS63(3):449-473,2001.18 [MM64]MarvinMarcusandHenrykMinc.ASurveyofMatrixTheoreyandMatrixin-equalities,volume14ofThePrindle,WeberandSchmidtComplementarySeriesinMathematics.AllynandBacon,Boston,1964.[Mul87]K.Mulmuley.Afastparallelalgorithmtocomputetherankofamatrixoveranarbitrary eld.Combinatorica,7:101{104,1987.[Mur93]K.Murota.Mixedmatrices-Irreducibilityanddecomposition.InR.A.Brualdi,S.Friedland,andV.Klee,editors,CombinatorialandGraph-TheoreticProblemsinLinearAlgebra,volume50ofTheIMAVolumesinMathematicsandItsAp-plications,pages39{71.Springer,1993.[MV97]M.MahajanandVVinay.Determinant:combinatorics,algorithms,complexity.ChicagoJournalofTheoreticalComputerScience,1997:5,dec1997.[NTS95]N.NisanandA.Ta-Shma.SymmetricLogspaceisclosedundercomplement.ChicagoJournalofTheoreticalComputerScience,1995.[PR93]S.PoljakandJ.Rohn.CheckingrobustnonsingularityisNP-hard.Math.ControlSignalsSystems,6:1{9,1993.[Rei05]O.Reingold.Undirectedst-conenctivityinlogspace.InProc.37thSTOC,pages376{385,2005.[Roh89]JiriRohn.SystemsofLinearIntervalEquations.LinearAlgebraandItsAppli-cations,126:39{78,1989.[Roh94]J.Rohn.Checkingpositivede nitenessorstabilityofsymmetricintervalmatri-cesisNP-hard.CommentationesMathematicaeUniversitatisCarolinae,35:795{797,1994.[RR97]AlexanderA.RazborovandStevenRudich.Naturalproofs.JournaloftheComputerandSystemSciences,55(1):24{35,1997.[Tod91]S.Toda.Countingproblemscomputationallyequivalenttothedeterminant.TechnicalReportCSIM91-07,DeptofCompSc&InformationMathematics,UnivofElectro-Communications,Chofu-shi,Tokyo,1991.[Val77]L.G.Valiant.Graphtheoreticargumentsinlow-levelcomplexity.InProc.6thMFCS,volume53ofLNCS,pages162{176.Springer,Berlin,1977.[Val92]LeslieG.Valiant.WhyisBooleancomplexitytheorydicult?InProceedingsoftheLondonMathematicalSocietysymposiumonBooleanfunctioncomplexity,pages84{94,NewYork,NY,USA,1992.CambridgeUniversityPress.[Vin91]V.Vinay.Countingauxiliarypushdownautomataandsemi-unboundedarith-meticcircuits.InProc.6thStructureinComplexityTheoryConference,volume223ofLNCS,pages270{284,Berlin,1991.Springer.19 [Vol99]H.Vollmer.IntroductiontoCircuitComplexity:AUniformApproach.Springer,1999.20