/
SETINTERSECTIONSPERFECTGRAPHSANDVOTINGIN AGREEABLESOCIETIES DEBORAH E SETINTERSECTIONSPERFECTGRAPHSANDVOTINGIN AGREEABLESOCIETIES DEBORAH E

SETINTERSECTIONSPERFECTGRAPHSANDVOTINGIN AGREEABLESOCIETIES DEBORAH E - PDF document

trish-goza
trish-goza . @trish-goza
Follow
391 views
Uploaded On 2015-01-29

SETINTERSECTIONSPERFECTGRAPHSANDVOTINGIN AGREEABLESOCIETIES DEBORAH E - PPT Presentation

BERG SERGUEI NORINE FRANCIS EDWARD SU ROBIN THOMAS AND PAUL WOLLAN Manuscript August 2006 My idea of an agreeable person is a person who agrees with me Benjamin Disraeli 7 1 Introduction When is agreement possible An important aspect of group decis ID: 34948

BERG SERGUEI NORINE FRANCIS

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "SETINTERSECTIONSPERFECTGRAPHSANDVOTINGIN..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2D.BERG,S.NORINE,F.E.SU,R.THOMAS,ANDP.WOLLANApprovalvotinghasnotyetbeenadoptedforpoliticalelectionsintheUnitedStates.However,manyscienti candmathematicalsocieties,suchastheMathematicalAssociationofAmericaandtheAmericanMathematicalSociety,useapprovalvotingfortheirelections.Additionally,countriesotherthantheUnitedStateshaveusedapprovalvotingoranequiv-alentsystem.Fordetails,seeBramsandFishburn[2],whogivemanyreasonswhytheybelieveapprovalvotingisadvantageous.Inwhatfollows,ourstudyofagreeabilitywillhelpusunderstandwhenwecanguaranteeamajorityunderapprovalvoting.Considerthe2003Californiagubernatorialrecallelection,with135candidatesinthemix[6].Wemightimaginethesecandidatespositionedat135pointsonthelineinFigure1.IfeachCaliforniavoterapprovesofcandidateswithinsomerangeofpositions(callthisthevoter'sapprovalset),wemightwonderifandwhentheremightbeapointonthelinecoveredbyamajorityofthevoterapprovalsets,i.e.,aplatformonwhichamajorityofthevotersagree.Inthissetting,wemayassumethateachapprovalsetisaclosedintervalonRandwecallacollectionofvoters,togetherwiththeirapprovalsets,alinearsociety.Callasocietysuper-agreeableifforeverypairofvotersthereissomeplatformtheywouldbothapprove,i.e.,eachpairofapprovalsetshasanon-emptyintersection.Forlinearsocietiesthislocalconditionguaranteesastrongglobalproperty,namely,thatthereisaplatformthateveryvoterapproves!AsweshallseeinTheorem3,thisisaconsequenceofHelly'stheoremaboutintersectionsofconvexsets.Inthisarticle,weconsideravarietyofsimilartheorems.Forinstance,werelaxtheconditionaboveandcallasocietyagreeableifithasatleastthreevotersandamongeverythreevoters,thereissomepairofvoterswhoagreeonsomeplatform.Thenweprovethefollowing:Theorem1(TheAgreeableLinearSocietyTheorem).Inanagreeablelinearsociety,thereisaplatformwhichhastheapprovalofamajorityofvoters,i.e.,awinningplatform.Forexample,Figure2showsapprovalsetsforanagreeablelinearsocietyofsixvoters,andindeedthereareplatformsthatamajorityofvotersapprove.Asanotherapplicationofourtheorem,considerasituationinwhicheachvoter'sapprovalsetisaclosedsubintervalof[0;1]oflengthatleast1=3.ThenTheorem1guaranteesawinningplatform,sinceamonganythreeapprovalsetstheremustbeapairthatintersect.Weconsiderotherdegreesof\agreeability"andproveamoregeneralresultinTheorem8givingalowerboundforthesizeofthepluralityinapprovalvoting.Wealsobrie ystudysocietieswhoseapprovalsetsareconvexsubsetsofRd.Ageneralthemeofthisarticleisthatclassical(andnew)convexitytheoremshaveinter-estingsocialinterpretations,andthesesocialquestionsmotivatethestudyofsetintersec-tionsandperfectgraphs,sincetheyhavenaturalinterpretationsinthisvotingcontext.2.DefinitionsInthissection,we xterminologyandexplainsomeofthebasicconceptsuponwhichourresultsrely.LetussupposethatthesetofpossiblepreferencesismodeledbyasetX,calledthespectrum.Eachelementofthespectrumisaplatform.Assumethatthereisa nitesetVofvoters,andeachvotervhasanapprovalsetAvofplatforms.Wede neasocietyStobeatriple(X;V;A)consistingofaspectrumX,asetofvotersV,andacollectionAofapprovalsetsforallthevoters.Ofparticularinteresttouswillbethecaseforalinearsociety,whereXisRandapprovalsetsinAareclosedintervals, 4D.BERG,S.NORINE,F.E.SU,R.THOMAS,ANDP.WOLLAN Figure3.ThesocietyofFigure2withagreementnumber4andagreementsetmarked.ForRd-convexsocieties,workconcerningsetintersectionscanbeappliedtotheagreementnumberproblem.ThemostwellknowntheoreminthisareaisHelly'stheorem.ThistheoremwasprovenbyHellyin1913,buttheresultwasnotpublisheduntil1921,byRadon[14].Theorem2(Helly).GiventconvexsetsinRdwheredt,ifeveryd+1ofthemintersectatacommonpoint,thentheyallintersectatacommonpoint.Helly'stheoremhasaniceinterpretationforRd-convexsocieties,especiallywhend=1,wheretheHellyconditionforapprovalsetsisequivalenttotheconditionforalinearsuper-agreeablesociety:Theorem3.Foreveryd1,a(d+1;d+1)-agreeableRd-convexsocietymustcontainatleastoneplatformthatisacceptabletoallvoters.Inparticular,whend=1andtheapprovalsetsofeverypairofvotersintersect,wehave:Corollary4(TheSuper-AgreeableSocietyTheorem).Alinearsuper-agreeablesocietymustcontainatleastoneplatformthatisacceptabletoallvoters.WeprovideasimpleproofoftheSuper-AgreeableSocietyTheorem(equivalently,Helly'stheoremindimension1)asitwillbeneededlater.AproofofHelly'stheoremforgeneraldmaybefoundin[12].Proof.Sinceeachvoteragreesonatleastoneplatformwitheveryothervoter,weseethatthesetsAimustbenon-empty.Thus,eachAiisanon-emptyclosedintervalin[0;1].Letx=maxifminfp2Aiggandy=minjfmaxfp2Ajgg.Weclaimthatxy.Why?Letibethevoterwhoseapprovalsetminimumismaximal,andletjbethevoterwhoseapprovalsetmaximumisminimal.Sincetheapprovalsetsofiandjintersect,theonlywaythiscouldholdisifxy.Therefore,everyapprovalsetcontainsthenon-emptyinterval[x;y];hencethereisaplatformcommontoallapprovalsets.BesidesHelly'stheorem,anotherfamoustheoremaboutsetintersectionsistheKKMlemma[10],whichisconcernedwithsetintersectionsonsimplices.Thereisavariantofthistheoremfortrees(e.g.,see[13])thatgeneralizesbothHelly'stheoremandtheKKMlemma,andsincealineisatree,Theorem4alsofollowsasaconsequence.Hereisanexampledemonstratingthattheconvexityassumptionisessential.Letn2beanintegerandletthespectrumofasocietySconsistofall2-elementsubsetsof 8D.BERG,S.NORINE,F.E.SU,R.THOMAS,ANDP.WOLLAN6.Rd-convexSocietiesInthissectionweproveahigherdimensionalanalogueofTheorem8bygivingalowerboundontheagreementproportionofa(k;m)-agreeableRd-convexsociety.Weneedadi erentmethodthanourmethodford=1,becauseford2,neitherFact1norFact2holds.WeusethefollowinggeneralizationofHelly'stheorem,duetoKalai[11].Theorem9(TheFractionalHelly'sTheorem).Letd1andnd+1beintegers,let 2[0;1]bearealnumber,andlet =1�(1� )1=(d+1).LetF1;F2;:::;FnbeconvexsetsinRdandassumethatforatleast �nd+1ofthe(d+1)-elementindexsetsIf1;2;:::;ngwehaveTi2IFi6=;.ThenthereexistsapointinRdcontainedinatleast nofthesetsF1;F2;:::;Fn.ThefollowingisthepromisedanalogueofTheorem8.Theorem10.Letd1,k2andmkbeintegers.Thenevery(k;m)-agreeableRd-convexsocietyhasagreementproportionatleast1�1��kd+1�md+11=(d+1).Proof.LetSbea(k;m)-agreeableRd-convexsociety,andletA1;A2;:::;Anbeitsvoterapprovalsets.LetuscallasetIf1;2;:::;nggoodifjIj=d+1andTi2IAi6=;.ByTheorem9itsucestoshowthatthereareatleast�kd+1�nd+1�md+1goodsets.Wewilldothisbycountingintwodi erentwaysthenumberNofallpairs(I;J),whereIJf1;2;:::;ng,IisgoodandjJj=m.Letgbethenumberofgoodsets.Sinceeverygoodsetisofsized+1andextendstoanm-elementsubsetoff1;2;:::;ngin�n�d�1m�d�1ways,wehaveN=g�n�d�1m�d�1.Ontheotherhand,everym-elementsetJf1;2;:::;ngincludesatleastonek-elementsetKwithTi2KAi6=;(becauseSis(k;m)-agreeable),andKinturnincludes�kd+1goodsets.ThusN�kd+1�nm,andhenceg�kd+1�nd+1�md+1,asdesired.Ford=1,Theorem10givesaworseboundthanTheorem8,andhenceford2,theboundismostlikelynotbestpossible.However,apossibleimprovementmustuseadi erentmethod,becausetheboundinTheorem9isbestpossible.AboxinRdistheCartesianproductofdclosedintervals,andwesaythatasocietyisad-boxsocietyifeachofitsapprovalsetsisaboxinRd.ItfollowsfromTheorem3thatd-boxsocietiessatisfytheconclusionofFact1(namely,thatthecliquenumberequalstheagreementnumber),andhencetheiragreementgraphscapturealltheessentialinformationaboutthesociety.Unfortunately,agreementgraphsofd-boxsocietiesare,ingeneral,notperfect.Forinstance,thereisa2-boxsocietywhoseagreementgraphisthecycleon vevertices.SeeFigure7.Forkm2k�2,thefollowingtheoremandcorollarywillresolvetheagreementproportionproblemforall(k;m)-agreeablesocietiessatisfyingtheconclusionofFact1,andhenceforall(k;m)-agreeabled-boxsocietieswhered1.Theorem11.Letm;k2beintegerswithkm2k�2,andletGbeagraphonnmverticessuchthateverysubsetofV(G)ofsizemincludesacliqueofsizek.Then!(G)n�m+k.Beforeweembarkonaproofletusmakeafewcomments.Firstofall,theboundn�m+kisbestpossible,asshownbythegraphconsistingofacliqueofsizen�m+kandm�kisolatedvertices.Second,theconclusion!(G)n�m+kimpliesthateverysubsetofV(G)ofsizemincludesacliqueofsizek,andsothetwostatementsareequivalentunderthe 10D.BERG,S.NORINE,F.E.SU,R.THOMAS,ANDP.WOLLAN!(G)!(Gnfx;yg)n�2�(m�2)+k�1=n�m+k�1.Wemayassumeinthelaststatementthatequalityholdsthroughout,becauseotherwiseGsatis estheconclusionofthetheorem.LetGdenotethecomplementofG;thatis,thegraphwithvertexsetV(G)andedgesetconsistingofpreciselythosepairsofdistinctverticesofGthatarenotadjacentinG.LetusnoticethatasetQisacliqueinGifandonlyifV(G)�QisavertexcoverinG.ThusthesizeofaminimumvertexcoverinGism�k+1.Since2(m�k+1)mn,byLemma12,thegraphGhasaninducedsubgraphHonexactlymverticeswithnovertexcoverofsizem�korsmaller.Byhypothesis,thegraphHhasacliqueQofsizek,butV(H)�QisavertexcoverinHofsizem�k,acontradiction.Corollary13.Letd1andm;k2beintegerswithkm2k�2,andletSbea(k;m)-agreeabled-boxsocietywithnvoters.ThentheagreementnumberofSisatleastn�m+k,andthisboundisbestpossible.Proof.TheagreementgraphGofSsatis esthehypothesisofTheorem11,andhenceithasacliqueofsizeatleastn�m+kbythattheorem.Sinced-boxsocietiessatisfytheconclusionofFact1,the rstassertionfollows.Theboundisbestpossible,becausethegraphconsistingofacliqueofsizen�m+kandm�kisolatedverticesisanintervalgraph.7.SpeculationandOpenQuestionsAswehaveseen,setintersectiontheoremscanprovideausefulframeworktomodelandunderstandtherelationshipsbetweenpreferencesetsinmanysocialcontexts.Additionally,recentresultsindiscretegeometryhavesocialinterpretations.Thepiercingnumber[9]ofapprovalsetscanbeinterpretedastheminimumnumberofplatformsthatarenecessarysuchthateveryonehassomeplatformofwhichheorsheapproves.Setintersectiontheoremsonotherspaces(suchastreesandcycles)arederivedin[13]andsocialapplicationsareexplored,includinganapprovalvotinginterpretationwhenthesocietyhasacircularpoliticalspectrum.Wesuggestseveraldirectionswhichthereadermaywishtoexplore.ThemostnaturalproblemseemstobetodeterminetheagreementproportionforRd-convexandd-box(k;m)-agreeablesocieties.Thesmallestcasewherewedonotknowtheanswerisd=2,k=2,andm=3.RajneeshHegde(privatecommunication)foundanexampleofa(2;3)-agreeable2-boxsocietywithagreementproportion3=8.Additionally,wemustexamineourinitialassumptions.Forinstance,weassumedthatvotersplacecandidatesalongalinearspectruminexactlythesameorder,eventhoughvotersmayordercandidatesalongaspectrumdi erently.Also,whileconvexityseemstobearationalassumptioninthelinearcase,inmultipledimensions,additionalconsiderationsmayneedtobemade.TheoriginalconceptofanagreementgraphcouldbeappliedtoRd-convexsocietiestokeeptrackofmoreinformation.Forinstance,twovotersmightnotagreeoneveryaxis,meaningthattheirapprovalsetsdon'tintersect,butitmightbethecasethatmanyoftheprojectionsoftheirapprovalsetsdo.Inthiscase,onemaywishtoconsideranagreementgraphwithweightededges.Finally,wemightwonderabouttheagreementparameterskandmforvariousissueswhicha ectuspersonally.Forinstance,asocietyconsideringoutlawingmurderwouldprobablybemuchmoreagreeablethanthatsamesocietyconsideringtaxreform.Notonlydotheissuesmatter,however,butalsothesocieties.Groupsofsimilarpeopleseemlikely