/
ShearResistanceAnalysisofRebarConnectorinRCStockyWallPanelUsingLusas3D ShearResistanceAnalysisofRebarConnectorinRCStockyWallPanelUsingLusas3D

ShearResistanceAnalysisofRebarConnectorinRCStockyWallPanelUsingLusas3D - PDF document

trish-goza
trish-goza . @trish-goza
Follow
359 views
Uploaded On 2015-11-02

ShearResistanceAnalysisofRebarConnectorinRCStockyWallPanelUsingLusas3D - PPT Presentation

NAbdullahMSSobriSHHamzahFacultyofCivilEngineeringUniversitiTeknologiMARAUiTMShahAlamSelangorMalaysiaemailsuhelmieysobriyahoocomNAbdullahemailnoraspalelaabdullahyahoocomSHHamza ID: 180905

N.AbdullahM.S.Sobri(S.H.HamzahFacultyofCivilEngineering UniversitiTeknologiMARA(UiTM) ShahAlam Selangor Malaysiae-mail:suhelmiey_sobri@yahoo.comN.Abdullahe-mail:noraspalela.abdullah@yahoo.comS.H.Hamza

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ShearResistanceAnalysisofRebarConnectori..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ShearResistanceAnalysisofRebarConnectorinRCStockyWallPanelUsingLusas3DModellingNoraspalelaAbdullah,MohdSuhelmieySobriandSitiHawaHamzahAbstractReinforcedconcrete(RC)stockywallpanelisanewinnovationtotheconstructionindustry.To-date,studiesontheRCstockywallpanelareunderprogress.ThispaperisanalyzedshearresistanceofrebarconnectorinRCstockywallpanelsusingLUSAS3Dmodel.Four(4)numberofmodelhavebeenanalyzedniteelementanalysiswithvariessizeofrebarconnectorwhichisT12,T16,T20andT25.ThesemodelsofRCstockywallpanelwasconstructedinsamedimension,125mm1,000mm500mm(Thickness:Length:Height).ThispaperwasconcernedwithaniteelementmodeltodeterminethemaximumdeectionoftheRCstockywallpanelinresistinglateralload.Thesefour(4)modelsarebeinganalyzedtoobserveitsdeection,stressandstrain.Theresultwasillustratedanddiscussedingraphsnamelystress-strainrelationshipandalsoloadversusdis-placementcontour.Thesizeofrebarconnectorsareaffectedtheshearresistanceresultsintermoflateraldeection,stressandstrain.Fromthisstudy,itcanbeconcludedthat,thelargerdiameterofrebarsizehasgivethelessdisplacementinmodel.KeywordsRCstockywallpanelRebarconnectorShearresistance N.AbdullahM.S.Sobri(S.H.HamzahFacultyofCivilEngineering,UniversitiTeknologiMARA(UiTM),ShahAlam,Selangor,Malaysiae-mail:suhelmiey_sobri@yahoo.comN.Abdullahe-mail:noraspalela.abdullah@yahoo.comS.H.Hamzahe-mail:shh@salam.uitm.edu.mySpringerScience+BusinessMediaSingapore2015R.Hassanetal.(eds.),InCIEC2014,DOI10.1007/978-981-287-290-6_2 1IntroductionWallcanbecategorizedinmanytypeswithdifferentfunction.Thereinforcedconcrete(RC)wallisoneofthetypewallsthatiscategoriesasloadbearingornon-loadbearing.Loadbearingwallcaterstheloadfromitsownweightandtheloadfromthemainstructuresuchasbeamandslabfollowedbytransmittingtheloadtothefoundation.Non-loadbearingwallonlyupholditsownweight,thenallloadtransfertothecolumnandproceedtothefoundation.InMalaysiathewallpanelsarewidelyusedandhavealreadybeenusedinnumerousprojects,includingtheconstructionofresidentialhouses,hotelsandcommercialbuildings.RCwallpanelisusuallydesignandmanufacturerinrect-angularshape.TheRCstockywallpanelsaresamelikeshearwallpanelsintermoffunctionbutdifferentindimensionsizeofwall.NowadaystheIndustrialisedbuildingsystem(IBS)iscompulsorytobeusedinalltheMalaysiangovernmentsprojectswhichmustnotbelessthan70%oftheallbuildingworks.BasedonthestructurescopesIBScanbedividedintovemajorPrecastconcreteframings,panelandboxsystems,ThecommongroupofIBSproductsisthepre-castconcreteelementswhichisprecastconcretecolumns,beams,slabs,wallsandlightweightprecastconcreteandetc.Steelframeworksystems;exampleofsteelframeworksystemsaretunnelforms,tilt-upsystems,beamsandcolumnsmouldingforms,andpermanentsteelformworks(metaldecks).PrefabricatedtimberframingssystemsCommonlyusedwithpre-castconcreteslabs,steelscolumnsandbeams,steelframingsystems.FramingsystemsAmongtheproductslistedinthiscategoryaretimberbuildingframesandtimberrooftrusses.BlockworksystemsTheconstructionmethodofusingconventionalbrickshasbeenrevolutionizedbythedevelopmentandusageofinterlockingconcretemasonryunits(CMU)andlightweightconcreteblocks.TheRCstockywallpanelscanbecategorizedasprecastconcreteandareoneoftheelementsintheIBS.Thestockywallpanelswascategoriesasprecastconcreteframings,panelandboxsystems.TheproductsofIBSareencouragedtobeusedintheconstructionindustriestospeedupthedeliverytimeandbuiltaffordableandqualityofproject.TheprecastRCwallpanelsaremanufacturedinfactories,andmobilizedtothesite.Generallytoeasiermobilizetothesite,themanufacturerwilldesignthecomponentsofwallwithacertainxedlengthandshallbeconnectedatthesite.TheworkersatsitemustconnecttheRCwalltothemainstructuresuchascolumnandbeam.Theconnectionfromonewallpanelwithotherpanelisimportancebecausethelowerworkmanshipatnalworkwillmakethelowerperformanceinstructureserviceability.18N.Abdullahetal. Theinnovationinstockywallpanelsasloadbearingwallhavebeenmosthelpfulintheconstructionindustrytoachievethatshorttimeframeinworkandontheotherhandwillmakemuchenergyefciencybenetsinconstruction.Theminimumwastageontherebarusedinthesiteprojectwillcontributetoenergyciency.Theuseofrebarstolinkthesestockywallpanelsasthemainwallstructuresisthemainfocusofthisstudy.Rebaralsoknownasreinforcementbar,reinforcingsteelordeformedbar.Normallyrebarformedfromthecarbonsteel,thenormalreinforcementbarusedinMalaysiasindustriesismildsteelroundbar(Grade250)andhightensiledeformedbar(Grade460)butincertainspecialconstruction,thecontractorwasusedspecialgradeofhightensilebarforminimizethenumberofreinforcementbarsexampleGrade500.TheRCstockywallpanelswithrebarconnectorisanewbieinconstructionindustries,whichismoreresearchshouldbedonetothiswallinordertomakeituseabletoconstructionindustriesinfuture.ThenewndingandresearchabouttheRCstockywallpanelswillmaketheindustriesbecomemoreeffectiveandcompetitive.2TheoreticalWallDesignUsingBritishStandard(BS8110:Part1:1997)AccordingtoBS8110,awallisdenedasaverticalload-bearingmemberwhoselengthonplanexceedsfourtimesitsthicknessandontheotherhandthemembercancallasacolumn[].Areinforcedwallwithminimumamountofverticalreinforcementusedcanbecategorisedasplainconcretewall.AccordingtoBS8110(clauses3.9.4),itrecommendsthatthedesignultimateaxialforceinaplainconcretewallmaybecalculatedontheassumptionthatthememberstransmittingforcesonthewallsaresimplysupported.SummaryfordesignrequirementforreinforcedconcretewallaregiveninTable3FindingfromPreviousResearchRCWallpaneliscommonlyusedinconstructionindustries.Basicfunctionsofwallarepartitionofarea,separatorforinteriorspace,sometimeasrewallandetc.RCwallshavethreemainstructuralfunctionswherearelistedbelow;Resistgravityloadsappliedthroughoorframingsystems.Resistlateralloadingimposedbyearthpressureorliquidpressure.Resistinglateralresistancefromwindorearthquakeforcesand/orpromoteslateralstabilitytoabuilding.ShearResistanceAnalysisofRebarConnectorinRCStockyWall RCwallPanelissuitableforusingascomponentsinIndustrializeBuildingSystem(IBS).Steelbrereinforcedconcretewallpanelwithaspectratio(h/l)andslendernessratio(h/t)are1.5and20respectivelyshallbesustainedmorecapacityandadvantagesintermsofcrackcomparedwiththenormalreinforcedconcretewall,[].Thereinforcedconcretestockywallpanelbyusingrecycledaggregatewithdoublelayerssteelfabriccanachievedhighultimatestrengthcomparedwiththetheoreticalresults[Studyonthenonlinearbehaviorofreinforcedconcreteslitwallwithshearcon-nectionusingniteelementsoftwareANSYS12.Thestudyhasfoundedthattheelementanalysiswassimulatedaccurateandrealisticthebehaviorofthereinforcedconcretewalls[].Ontheotherhand,theslenderandstockyreinforcedconcretewallsshallbestartedexuralanddeformwhenthewallsnominalshearstrengthofapproximatelytwicethelateralforce[].Thenonlinearbehaviorofcompositeshearwallswithverticalsteelencasedprolesisbelievedthattheshearfailurecanbeavoidedifthecompositeelementsintheshearwallaredesignedtobendingandshearattheassociatedshearforceofthecapablebendingmoment[].Onthecontrary,thenonlinearitiesarecausedbythesteelyieldingwhichoccurredinsteelprolesandverticalreinforcement,plasticdeformationsoccurredinconcrete,steelconcreteconnectionandduetoshearstudconnectorsbehavior[].Theultimateshearresis-tanceofthemultipleshearskeyconnectionmainlydependsontheloadwasactedtotheconnection,andthehearingstressesandshearfrictionalongtheslipsurfaces[ Table1DatapropertiespreparationAreaofsteelreinforcement(A4hmmEffectiveHeighttobedeterminedasforcolumns(referBS8110,Clause3.8.1.6.1)StockyWall15,wherehiswallthickness)Designunitlengthofwallasashortcolumnbentabouttheminoraxis,with=0.05h20mm(refertoBS8110designchartforrectangularcolumn)Alternatively,forawallsupportinganapproximatelysymmetricalarrangementofslabs(uniformloadandspansdifferingbynomorethan15%)DesignultimateaxialloadperunitlengthisgivenbySlenderWall(1540for10h,45otherwise)Designunitlengthofwallasaslendercolumnbentabouttheminoraxis.Ifonlyonelayerofcentrallyplacedreinforcementisprovided,doubletheadditionalmomentEffectiveHeighttobedeterminedasforcolumns(referBS8110,Clause3.8.1.6.1)StockyWall10,wherehiswallthickness)ConsideredasforbracedcolumnSlenderWall(10Designunitlengthofwallasaslendercolumnbentabouttheminoraxis.Ifonlyonelayerofcentrallyplacedreinforcementisprovided,doubletheadditionalmomentduetoslenderness20N.Abdullahetal. 4MethodologyGenerally,thisresearchwasusedLUSASsoftwareversion14.7toidentifythesolutionsandgettheresultsandachievetheobjectiveforthisresearch.4.1AnalysisThemainfocusofthisresearchtoinvestigateandanalysisthebehaviorofrebarsconnectorinRCstockywallpanelbyusingFiniteElementMethod(FEM)innonlinearmethod.Fromtheanalysis,themaximumdeection,maximumstressesandstrainsoftheRCstockywallpanelusingLUSAS3Dhasbeendiscussed.Finiteelementmethodscanmakeadvancedcomputingfacilitiesinobtainingsafeandoptimumbuildingsolutionswithouttheneedforexpensiveandtimeconsuminglaboratorytestingandatthesametimehiswasstatedthattheniteelementmethodisinnovativeandefcientbuildingproducts[4.2ComputerModellingUsingLUSASSoftwareLinearandnonlinearniteelementanalysiscanbepreparedusingLUSAScom-puterprogram.TheLUSASprogramshallbecapabletoprovide3-DimensionalgraphicalmodelingforthesampleofRCstockywallpanel.FiniteElementAnalysiswasmodelinginthree(3)stagesofworks,whichis:1.Pre-Processing/Modelling2.FiniteElementSolver/Runningtheanalysis3.Results-Processing/Viewingtheresults4.3RCStockyWallPanelFour(4)modelsofReinforcedconcrete(RC)StockyWallPanelwithdimensions125mm1,000mm500mm(Thickness:Length:Height)hasbeenmodeledbyusingLUSAS3Dprogram.TheRCstockywallpanelwasmodeledbyusingconcreteGrade30(=30N/mm)anddoublelayersteelfabrictypesB385(B7)asthemainreinforcement.RebarconnectorwithsizesofT12,T16,T20andT25aredenedinthefournumbersofRCshortwallpanelmodelsrespectively.TherebarconnectorhasbeenmodeledinverticallybetweenthetwoRCstockywallpanelsandanalysedusingtheLUSASsoftware.FigureshowsthedetailedmodelsdimensionsofRCstockywallpanel.Thelateralgloballoaddistributed0.2858kN/mwasusedinthemodeling.Theloadisconvertedbasedonthebasicwindspeed100yearsreturnperiodsforIpoh.ThedatafromIpohwasusedbecausetheirgiveShearResistanceAnalysisofRebarConnectorinRCStockyWall criticalvaluesforwindspeedinMalaysia.Thedatahasbeenfoundedfromthe JabatanMeteorologiMalaysia. 4.4DataUsedinLUSASModeling ThedoublelayerofrectangularsteelfabricmeshtypeB385orB7with7mm diameterofwirehasbeenusedtoreinforcethesamples[ 10 ].Themeshsize nominalpitchofwiresformainwireis100mmspacingcentretocentreandforthe crosswireis200mmcentretocentre.Thecrosssectionareapermeterwidthfor themainwireis385mm 2 andforthecrosswireis193mm 2 .Theyieldstressforthe steelfabricmeshandthereinforcementbarsis485and460N/mm 2 respectively. Furthermore,theotherpropertiesofthematerialsusedforthesteelfabricmeshand rebarconnectoraretheYoung ’ smodulusspeci  edas209,000N/mm 2 ,Poisson ’ s Fig.1 RCstockywalldetailingmodelwithrebarconnectorofvarioussize 22N.Abdullahetal. ratio0.3,massdensityspeciedas7,800kg/mandcoefcientofthermalexpan-sion0.011E3.TablesareshownthedatathatusedinLUSASModeling.TheconcretepropertiesmaterialhasbeenassignedbasedontheBS8110forconcreteGrade30withYoungsmodulusspeciedas26,000N/mm,Poissonratio0.2,massdensityspeciedas24kg/m.Mortarwith10mmthicknesswasusedinthemodelasajoinforRCstockywallpanels.ThepropertiesmaterialsusedformortararetheYoungsmodulusspeciedas15,000N/mm,Poissonsratio0.25,massdensityspeciedas24kg/m.LUSASelementsareclassiedintogroupsaccordingtotheirfunction.TwotypesofelementshasbeenusedinmodeledRCstockywallpanels,therearebarelement,BRS2and3Dcontinuumelement,HX8M.ThebarelementsBRS2wereselectedforthesteelfabricmeshwhileontheotherhandtheelementsHX8Mwereusedfortheconcretesection.BRS2arethree-dimensionalbarelementscomprisingof2nodeseachwith3degreesoffreedomandthegeometricpropertiesofthiselementisconstantalongthelengthofthebar.Intheanalysis,BRS2canbedeformedperfectly.HX8Melementsarethreedimensionalsolidhexahedralelementscomprising8nodeseachwith3degreesoffreedommoreovertheHX8Melementsarelinearwithrespecttogeometry.Thedisplacementcontourvariationsalongthelengthoftheelementarelinearaxial,linearrotationalandcubictransversedisplacementcontour.FigureshowstheLUSASelementusedinmodelingtheRCstockywallpanel.AlltheRCstockywallpanelshavebeenassignedwithfullyxedsupportsatthetopandbottomofthewall.Figuresshowthesupportconditions,loadappliedlocationonwallpanelandmortarlocationthathasbeenmodeledinLUSASsoftware. Table2Datapropertiespreparation1.Gradeofconcrete30N/mm2.Gradeofreinforcement(a)Nominalreinforcement460N/mm(b)Weldedsteelfabric485N/mm3.Densityofconcrete24kN/mm4.Dimensionofwall125mm1,000mm500mm(Thickness:Length:5.Concretecovertoreinforcement25mm6.Reinforcementbar@rebarconnectorsize(a)Model112mm(b)Model216mm(c)Model320mm(d)Model425mm7.SteelfabrictypesB385(B7)7mmdiameter8.Selfweight-gravityload9.81N/mm9.Mortarthickness10mmShearResistanceAnalysisofRebarConnectorinRCStockyWall Fig.2 LUSASelementsused inmodelling Fig.3 RCstockywallpanel- LUSASmodel Fig.4 RCstockywallpanel- LUSASmodel 24N.Abdullahetal. 5ResultandDiscussionFour(4)modelsofRCstockywallpanelswasmodeledandanalysedunderhor-izontalloadcondition.AllthemodelswasmodeledusingdifferencesizeofrebarconnectorwhichisT12,T16,T20andT25andthecrosssectionareaofrein-forcementbaris113.10,201.061,314.161and490.871mmrespectively.RCstockywallpanelModel1,Model2,Model3andModel4arerepresentativetheRCstockywallpanelswiththerebarconnectorsizeT12,T16,T20,andT25respectively.Tablesshownthemaximumdisplacementinx-direction,maximumandminimumstressinx-plane,andmaximumandminimumstraininx-planewasoccurredonModel1,Model2,Model3andModel4.5.1GraphofLoadVersusDisplacementshowloadinx-directionversusdisplacementinx-directionforModel1,Model2,Model3andModel4asmodelwithT12,T16,T20andT25respectively. Table3Maximumdisplacementinx-directionElasticconditionmaxdisplacementinx-direction(mm)Plasticconditionmaxdisplacementinx-direction(mm)Model10.0392Model20.0382Model30.0373Model40.0366 Table4MaximumandminimumstressinX-planestressinx-planestressinx-planestressinx-planestressinx-planeModel13.236e336.729Model23.180e364.262Model32.556e364.262Model42.035e318.125 Table5MaximumandminimumstraininX-planestraininx-planestraininx-planestraininx-planestraininx-planeModel10.067e60.469eModel20.068e60.844eModel30.066e60.642eModel40.068e60.591eShearResistanceAnalysisofRebarConnectorinRCStockyWall Fromthegraph,therebarconnectorT25givelessdisplacementonthehigherload.Themaximumloadformodel1(T12),model2(T16),model3(T20),andmodel4(T25)beforethemodelyieldedare78.64,81.765,78.64and84.89kNrespectively.Whencomparingdisplacementwithsizeofrebarsconnector,itcanclearlybeseenthatthebiggersizeofrebarconnectorwillgivelessdisplacement.5.2GraphofStressVersusStrainFiguresareshowingthegraphofstress-straincurveforRCstockywallpanelforallmodels.HoweverinFig.showsthegraphofmaximumstressandsizeofrebarconnectorrelationship.ThemaximumstressoccurredonmodelwiththerebarconnectorofsizeT16andthevalue49.895N/mm.Intheotherhand,theshowsthegraphofstressinSx-planeversusstraininEz-plane.Basedontheanalysis,thesethreetypesofplanegivethemaximumvalueofstressandstrainbecausetheshearresistancewasoccurredinthisplanearea.Fromtheanalysisthemaximumstressandstrainwasoccurredatthelocationoftheappliedloadposition.WhentheRCstockywallpanelwasloadingbeyondtheproportionallimit,theelongationincreasesmorerapidlyandreachedtheelasticlimit. Fig.5LoaddisplacementrelationshipofRCstockywallpanelformodel1,2,3,and4 Fig.6Maximumstressversussizeofrebarconnector26N.Abdullahetal. 6ConclusionFromthisstudy,itcanbeconcludedthattherearesomedifferencesofstructuralbehaviorofreinforcedconcreteshearwallbyusingdifferentsizeofrebarcon-nector.InthispapertheparameterofdifferentsizeofrebarhasbeenconsideredwithfunctionasrebarconnectorbetweenthetopandbottomconnectionofRCstockywallpanels.BasedonthelateralloadappliedtotheRCstockywallmodels,thedisplacementcontourweredeterminedinalldirections,andthemaximumisfoundtobe0.243mmwhichoccurredinx-direction.Themaximumdisplacementoccurredinmodel1withrebarconnectorofsizeT12.Basedontheresultsthemaximumvaluesforstressis49.895N/mm�30N/mmandoccurinx-planeofmodel2withrebarconnectorT16.Fromthisresearch,itcanbeconcludedthatthesizeofrebarconnectorusedinthemodelofRCstockywallpanelsaffectthevaluesofdisplacement,stressandalsostrain.Basedontheresults,RCstockywallpanelssize125mm1,000mm500mm(Thickness:Length:Height)withrebarconnectorsizeT20issuitabletobeusedinthedesignbecausethestressfromthemodelingis13.793N/mm,whichisnotexceedtheconcretestrengthhasbeenused(30N/mm)inthisdesignandmoreoveratsametimetoavoidcrackproblemtotheRCstockywallpanel.BasedoncalculationusingBS8110,theshearstressformodel3withrebarconnectorT20is1.258N/mmandlessthanthemaximumshearstresswhichis5N/mmor0.85fcu.TheshearresistanceofRCstockywallpanelwithrebarconnectorT20alsofulllstherequirementwasstatedinBS8110.TheauthorsexpresstheirsinceregratitudetotheConcrete,FabricationandHeavyStructureLaboratoryFacultyofCivilEngineering,UiTMMalaysiaforprovidingthelaboratoryandtestingfacilitiesduringtheconductofthisresearchandMinistryofScience,TechnologyandInnovation(MOSTI)fortheirinvaluablehelpandfundingsupportwhilecon-ductingthisresearch. Fig.7Graphofstress(Sx)versusstrain(Ex)ofRCstockywallpanelformodel1,2,3and4ShearResistanceAnalysisofRebarConnectorinRCStockyWall 1.BS8110,StructuralUseofConcrete,Part1,CodeofPracticeforDesignandConstruction(BritishStandardsInstitution,London,1997)2.A.RNurharniza,H.SitiHawa,E.T.Wong,EffectiveperformanceofsteelbrereinforcedconcretewallpanelforIBScomponent,inInternationalConferenceonConstructionandbuildingtechnology,ICCBT,C-(18),pp.203212(2008)3.S.MohdSuhelmiey,H.SitiHawa,M.R.AhmadRuslan,Ultimatestrengthofsteelfabricreinforcedconcreteshortwallpanelusingcrushedconcretewasteaggregate(CCWa).Int.J.CivilEnviron.Eng.IJCEE-IJENS01),6480(2011)4.B.Sergiu,C.Ioan-Petru,NonlinearFiniteElementAnalysisofReinforcedConcreteSlitWallswithANSYS(I).BuletinulInstitutuluiPolitehnicDinIasi,pp.3155(2011)5.M.M.Leonardo,O.Kutay,W.W.John,FlexuralandshearresponsesinslenderRcshearwalls,in13thWorldConferenceonEarthquakeEngineering,Vancouver6Aug2004,PaperNo.1067,B.C.,Canada(2004)6.D.Dan,A.Fabian,V.Stoian,Nonlinearbehaviorofcompositeshearwallswithverticalsteelencasedproles.Eng.Struct.,27942804(2011)7.V.Stoian,D.Dan,A.Fabian,Compositeshearwallswithencasedproles,newsolutionforbuildingsplacedinseismicarea.ActaTechnicaNapocensisCiv.Eng.Archit.(1),612(2011)8.H.R.Sarni,L.S.J.Reynaud,H.Scott,K.A.Emmanuel,Multipleshearkeyconnectionsforprecastshearwallpanels.PCIJ.104120(1989)9.M.Mahendran,Applicationsofniteelementanalysisinstructuralengineering,inProceedingsInternationalConferenceonComputerAidedEngineering,Chennai,India,eds.byP.N.Siva,A.S.Sekar,S.Krishnapillai(2007),pp.3810.BS8666,Scheduling,Dimensioning,BendingandCuttingofSteelReinforcementfor(BritishStandardsInstitution,London,2005)28N.Abdullahetal.

Related Contents


Next Show more