/
ContentsIntroductioni01DimensionofFanovarietiesi02Thelowdegreelimitii ContentsIntroductioni01DimensionofFanovarietiesi02Thelowdegreelimitii

ContentsIntroductioni01DimensionofFanovarietiesi02Thelowdegreelimitii - PDF document

udeline
udeline . @udeline
Follow
342 views
Uploaded On 2021-08-19

ContentsIntroductioni01DimensionofFanovarietiesi02Thelowdegreelimitii - PPT Presentation

iiAUTHORALEXWALDRONADVISORJOEHARRIStobethenumberofconditionscuttingoutFkXHoweverFkXisasubvarietyoftheGrassmannianGknandthereforesuchanargumentfailstoshowthatFkXisinfactnonemptyif30210Indeedtherequire ID: 867201

planes dim def plane dim planes plane def alexwaldronadvisor 2pn grassk x0000 m2m http preprint newyork aij empty verlag

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ContentsIntroductioni01DimensionofFanova..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 ContentsIntroduction.i0.1.DimensionofFan
ContentsIntroduction.i0.1.DimensionofFanovarietiesi0.2.Thelow-degreelimitii0.3.Applicationtounirationalityinlowdegreeiii0.4.Furtherworkiii0.5.Incidencecorrespondencesiv1.PlanesonHypersurfacesinGeneral.11.1.De nitionoftheFanovariety11.2.EstimatingthedimensionofFk(X)21.3.Proofsbyexample.51.4.Fk(X)hastheestimateddimensionforgeneralX72.FanoVarietiesintheLow-DegreeLimit.112.1.Notationandterminology112.2.A rstresult112.3.Constructions132.4.Explicitdescriptionofthe bersoftheresidualvarieties172.5.Numbers192.6.Low-degreesmoothhypersurfacesdonothavetoomanyk-planes203.UnirationalityofSmoothHypersurfacesofLowDegree.273.1.Preparatoryresults,andcombs283.2.Statementofresultsconcerningunirationality303.3.Constructions313.4.Proofofunirationalityofsmoothlow-degreehypersurfaces33Acknowledgements.36References37 iiAUTHOR:ALEXWALDRONADVISOR:JOEHARRIStobethenumberofconditionscuttingoutFk(X):HoweverFk(X)isasubvarietyoftheGrassmannianG(k;n);andthereforesuchanargumentfailstoshowthatFk(X)isinfactnon-emptyif0:Indeed,therequirementd3isessential,asshowninRemark1.8.And,althoughtheargumentwillbeentirelyclassical|adimensionco

2 untviaincidencecorrespondences(two,inthi
untviaincidencecorrespondences(two,inthiscase)|theclaimwasestablishedonlythroughtheresultofHochsterandLaksov[1]in1987.Interestingly,inthecase(n;d;k)0;theproofthatFk(X)isnon-emptyforallXPnofagivendegreedwilldependonprovingtheexistenceofahypersurfaceX0suchthatFk(X0)hasdimensionexactly(n;d;k)(seeRemark1.9).Wewillgiveseveralsuchexamples,therebyprovingparticularcasesoftheclaim.Forarbitraryn;d;k;wewillprovethatageneralsurfacehasFanovarietyofdimension;evenwhileweareleftwithnowaytoexhibitsuchahypersurface,norwithmeanstocheckthataparticularhypersurfaceis\general"inoursense.Thisisthepowerofusing\incidencecorrespondences"(section1.2.1)inconjunctionwiththeTheoremonFiberDimension(Proposition1.3),incontrasttothenaivecomputationalargumentsuggestedattheoutset.0.2.Thelow-degreelimit.Thislastresultestablishesthatallhypersurfaceshave\enough"k-planescorrespondingtotheirdegreeanddimension,andthatageneralhyper-surfacehastheexpected-dimensionalfamilyofk-planes.Butthenextquestionremainsinscrutable:whichhypersurfaceshave\toomany"k-planes,bywhichwemeanaFanovarietyofdimensiongreaterthan?Weproposetwocriteriaforremedyin

3 gthissitua-tion,i.e.specifyingwhichhyper
gthissitua-tion,i.e.specifyingwhichhypersurfacesare\general"intheprevioussense.The rst,smoothness,isnaturalespeciallywhenworkingovera eldKofcharacteristiczero(aswewillinCh.2and3).However,itisnotsucient.Inthecasek=1oflines,thecanonicalexampleofasmoothhypersurfacefails:ifchar(K)=0;theFanovarietyoftheFermathypersurfaceofdegreed=n+1inPnhasdimensionn�3(see[5]),greaterthantheestimateddimension(n;d;1)=2n�3�d=n�4:Second,weworkinthelimitoflowdegreecomparedtodimension.Thisisarealmofbroadinterestpertainingtoseveraldi erent elds:seeforexampleKollar'sarticle[12].Byitself,however,lowdegreeisclearlyinsucientforFk(X)tohavetheexpecteddimension,asseenbyconsideringanyreduciblehypersurface.Workinginthelow-degreelimitisacommonapproachfor\specializing"aknownfactaboutgeneralhypersurfacestosmoothones.2Inthecaseoflines,k=1;thewell-knownDebarre-DeJongconjecture[3]assertsthatifdnandXissmooth,thendim(Fk(X))=(n;d;1)=2n�3�d;i.e.Xdoesnothave\toomany"lines.Bytheexamplejustgiven,thebounddnissharp,ifitholds.Thisconjectureisactivelypursued(see[3],[4]):theresulthasbeenestablishedford6[5],

4 andforseveralmonthsin2007aproofofthegene
andforseveralmonthsin2007aproofofthegeneralcasewasthoughttohavebeenfound.Therehasalsobeenprogressintheareaofrationalcurveslyingonhypersurfacesoflowdegree:StarrandHarris[10]showthatford(n+1)=2;ageneraldegreedhypersurfacecontainstheexpected-dimensionalvarietyofrationalcurvesofeachdegree.Ourassertionisthatfora xedk;ifXPnissmoothofdegreedn;thenXdoesnothavetoomanyk-planes.ThisistheresultofHarris,MazurandPandharipande[2]in1998,inwhichthesesameFanovarietiesarealsoshowntobeirreducible.Theproof 2Theterm\specialization"canrefertoamuchmoreinvolvedsetoftechniqueshavingthisfunction. ivAUTHOR:ALEXWALDRONADVISOR:JOEHARRISTable1.Themeaningofnd: d N0(d;k) U(d) k=1k=2k=3 2 469 0 3 52117250 3 4 342763662723391294 179124155 5 101710211025 10145 6 10821010310122 108790 ... ......... ... SetM(d;k):=�k+d�1d�1+k�1:(ThisnumberwillreappearinLemma2.11,forthereasonthatifnM(d;k)thenXissweptoutbyk-planes.)In[9],itisshownusingmuchmoresophisticatedtechniquesthatifnM(d;k)+1andXissmooth,thenFk(X)hasatleastacomponentoftheexpecteddimension.ItisalsoshowntherethatifnM(d;k)t

5 henthegeneralk-planesectionofXisageneral
henthegeneralk-planesectionofXisageneralhypersurfaceinPk;whereasin[2]thissamefactwasprovedonlyforn�N0(d�1;k):So[9]hasmanagedtoimproveoneofthemainresultsofoursource[2]toapracticallevel,leavingoneoptimisticaboutsuchprospectsfortheresultswhichwedemonstratehere.Chen[11]hasalsoshownasacorollaryto[2]thattheFanovarietyisitselfunirationalinthelow-degreelimit.0.5.Incidencecorrespondences.Perhapsthemainideaofthispaperistotakean\incidencecorrespondence"(seesection1.2.1)betweentwofamiliesinordertogaininfor-mationaboutonebymeansoftheother(oftenusingtheTheoremonFiberDimension(1.3)).Anapologyisevennecessaryfortherepeateduseofthisideainallthreechapters|eventheunirationallyparametrizingvarietywillbebuiltusingthe\relativeFanovariety,"whichislocallyjustaformoftheincidencecorrespondence\I"ofChapter1!Moreover,anideasimilartothatofthe rstchapterisappliedintheinductivestepofourproofofunirationality:inProposition3.12ofChapter3,wewillprovesurjectivitybyshowingthatthegeneric berofamaphasappropriatelylowdimension,basedonthefactfromCh.2thatsmoothhypersurfacesoflowdegreedonotcontain\toomany"k-planes.(AlthoughinCh.1thisargumentismad

6 efortheprojectionontotheoppositefactor.)
efortheprojectionontotheoppositefactor.)Theubiquityofthisconstructionbecomesimpressive. 2AUTHOR:ALEXWALDRONADVISOR:JOEHARRISThusinordertoshowthatFk(X)isaclosedsubvarietyofG(k;n),itissucienttoshowthatFk(X)\Uisananevariety,foranysuchanepatchUG(k;n).Wlog,letXbeahypersurfacede nedbyasinglehomogeneouspolynomialf(X0;:::;Xn)ofdegreed;thegeneralcasewillfollowjustbytakingintersections.ForXahypersurface,Xi therestrictionofftovanishesidentically.Let2U;andparametrizethelinearspaceby[u0;:::;uk]7![Puii];withithei'throwofthematrixMfrom(2)(i.e.basisvectorfor).Wethensimplypluginthisparametrizationtoobtainapolynomialf(Puii)ofthesamehomogeneousdegreedintheparametersfuigofthespace.Thecoecientsaretheninhomogeneouspolynomialsintheaij;theirvanishingisnecessaryandsucientforftovanishidenticallyon,i.e.forthespacetobecontainedinthelocusff=0g=X.Thuswehaveobtainedpolynomialequationsintheaijde ningf2UjXg=Fk(X)\U;foranysuchU:HenceFk(X)isaclosedsubvarietyofG(k;n);andaprojectivevarietyitself.NotethatifXisquasi-projective,withprojectiveclosure X;th

7 entheFanoVarietyFk(X)Fk( X)isalocal
entheFanoVarietyFk(X)Fk( X)isalocallyclosedsubvariety.Thisissimplybecauseforanytwofamiliesofsubvarietiesofavariety,thesubsetofdisjointpairsisopen([13],Ch.4).Remark1.2.Eliminationtheorycanbeusedoneachelementofa nitecoverofpatchesfUi=A(k+1)(n�k)g;usingtheexplicitpolynomialdescriptionofFk(X)\Uijustgiven,toanswertheopeningquestionofwhetherornotagivenvarietyXactuallycontainsak-plane.1.2.EstimatingthedimensionofFk(X).1.2.1.Incidencecorrespondence.Inorderto ndanestimateofthedimensionofFk(X)forahypersurface,wesetupanincidencecorrespondencebetweenhypersurfacesandk-planes.LetPNbetheprojectivespaceofhomogeneouspolynomialsofdegreedinn+1variables,soN=�n+dd�1:ThenletI=f(f;)2PNG(k;n)jf()=0g:GivenanytwofamiliesofprojectivevarietiesinPn;thesetofpairssuchthatthe rstsubvarietyiscontainedinthesecondisaconstructibleset(see[13]).Here,IisinfactaclosedsubvarietyofPNG(k;n);whichcanbeshownalongmuchthesamelinesastheaboveargumentforFk(X).ChooseananecoordinatepatchU0ofPNG(k;n).UndertheSegreembedding,U0=U1U2fortwoanecoordinatepatchesU1PNandU2G(k;n).ThenU1isoftheformU1=f[f(

8 T)]2PNjf(T)=Th0 +Xh 6=h0 eh Th g;andwele
T)]2PNjf(T)=Th0 +Xh 6=h0 eh Th g;andweletU2G(k;n)haveanecoordinatesaijcomingfromthematrixMof(2).ThenviatheSegreembedding,oneobtainsinhomogeneouscoordinatesonU0=U1U2aspairs(feh g;faijg):Meanwhile,thepointsf2U1arestillhomogeneouspolynomials,andthepoints2U2arestillprojectivelinearspaces.Sowecanparametrizeasbeforeby[u0;:::;un]7![Pu``].Thenf()isahomogeneouspolynomialintheparametersu`,whosecoecientsaredoublyinhomogeneouspolynomialsinthecoecientseh offandtheentriesaijofthe 4AUTHOR:ALEXWALDRONADVISOR:JOEHARRISTheresultsofthischapterwillcomefromapplyingthesestatementstothemap1aswellasinseveralsimilarinstances.First,weapplyProposition1.3tothemap2tocomputethedimensionofI:Given2G(k;n)considerthesurjectivelinearmapfpolynomialsofdegreedonPng�!fpolynomialsofdegreedon=Pkggivenbyrestrictionto.Thekernelofthismapisalinearsubspaceofdimension�n+dd��k+dd;whoseprojectivizationisthethe berof2over:Thereforethe bersof2areallirreducibleofthesamedimension,soIisirreducible(byTheorem11.14of[13]).FromProposition1.3,dim(I)=dim(G(k;n))+dim(&#

9 25;�12())=(k+1)(n�k)+n+dd
25;�12())=(k+1)(n�k)+n+dd�k+dd�1:Themap1cannotbedealtwithsostraightforwardly.However,itwillbeshowninsection1.4thatitsimagehasmaximaldimension(unlessd=2).Thismeansthat1isinjectivewhendim(I)N;and1issurjectivewhendim(I)N:Onceweestablishthis,wewillbeabletocountthedimensionbyapplyingProposition1.3.Untilthislastfactwasproven,by[1]in1987,thefollowingwasmerelya\dimensionestimate:"Theorem1.6.Fornk0andd3,let(n;d;k)=dim(I)�dim(PN)=(k+1)(n�k)�k+dd:(a)For(n;d;k)0;thesubvarietyofPNofhypersurfacesthatcontainak-planehascodimension�:(b)For(n;d;k)=0;everyhypersurfaceofdegreedinPncontainsak-plane,andageneralhypersurfacecontainsapositivenumberofk-planes.(c)For(n;d;k)&#x]TJ/;༕ ;.9; T; 12;&#x.479;&#x 0 T; [00;0;ahypersurfaceXhasdim(Fk(X))(n;d;k);withequalityforgeneralX.Bytheprecedingdiscussion,thistheoremwillbeprovedifwecanestablishthattheimageof1:I!PNhasmaximaldimension,i.e.issurjectivefor0andinjectivefor0:Atpresent,however,wecanproveonlysmallpiecesofthistheorem.It

10 isclearthatfor0;thevarietyofhypersu
isclearthatfor0;thevarietyofhypersurfacesthatdocontainak-planehascodimensionatleast�=dim(PN)�dim(I);sothefollowingisalreadyevident:Corollary1.7.For0;ageneralhypersurfacecontainsnok-planes.Alsonotethatfor&#x]TJ/;༕ ;.9; T; 21;&#x.046;&#x 0 T; [00;0;ifahypersurfaceXcontainsak-plane(i.e.liesintheimage1(I))thenitcontainsin nitelymanyk-planes,sincedim(Fk(X))=dim(�11(X))(n;d;k)&#x]TJ/;༕ ;.9; T; 21;&#x.046;&#x 0 T; [00;0:Thenontrivialtaskistoshowthatahypersurfacedoesinfactcontainak-plane:Example1.8.ThegeneralquadricthreefoldinP4containsno2-planes|thisisthecasen=4;k=2;d=2and(4;2;2)=0:For,inthefamilyofallquadrichypersurfaces,thesub-familyofconesoverquadricsurfaceshascodimension1;andeachsuchconecontainsatleasta1-dimensionalfamilyof2-planes.Thereforethissub-familymustequaltheimage1(I):Thestipulationd3isthusnecessaryin(b),andassuchitisnotobviousthat(b)holdsatall. 6AUTHOR:ALEXWALDRONADVISOR:JOEHARRIS1.3.2.Thecasek=2andabove.Wegivesimilarexamplesinthecasesk=2;d=4;5and=0:Fromtheseexampleswecaninductivelydescribepolynomial

11 sasrequiredforalld1;2mod3;provingal
sasrequiredforalld1;2mod3;provingallcasesk=2and=0:Example1.12.4(a)(n=7;d=4;k=2)ThequartichypersurfaceinP7=f[Z0;Z1;Z2;W0;W1;W2;W3;W4]gde nedbytheequationW0Z30+W1Z31+W2Z32+W3Z0Z1Z2+W4(Z0Z21+Z1Z22+Z2Z20)=0;containsthe2-planefWi=0gasanisolatedpointofitsFanovarietyof2-planes.(b)(n=9;d=5;k=2)ThequintichypersurfaceinP9=f[Z0;Z1;Z2;W0;:::;W6]gde nedbytheequationXi;j;kevenW`Zi0Zj1Zk2+W6(Z20Z1Z2+Z0Z21Z2+Z0Z1Z22)=0containsthe2-planefWi=0gasanisolatedpointofitsFanovarietyof2-planes.(c)(n=8;d=3;k=3)ThecubichypersurfaceinP8=f[Z0;:::;Z3;W0;:::;W4]gde nedbytheequation3Xi=0WiZ2i+W4(Z0Z1+Z1Z2+Z2Z3+Z3Z0)=0containsthe3-planefWi=0gasanisolatedpointofitsFanovarietyof3-planes.Toprovetheseassertions,onemustshowthatuponsubstitutingWi=PaijZjtheresultingformsspanK[Z]dasaijvaries.Then,since(n;d;k)=0;theyarealsolinearlyindependent,meaningthat=(aij=08i;j)istheonlyk-planecontainedintheanepatchU\Fk(X):Thisisseeninpart(a)bychoosingvaluesofthecoecientsaijasfollows:settingWi=Ziforeachi=0;1;2individually,weseethatallofthemonomialsZ4iareincludedinthespan.SettingW3=Ziforeachiindividually,wegeteachmonomialinvolvingallof

12 theZk:Now,settingW4=Zi;theonlymonomialno
theZk:Now,settingW4=Zi;theonlymonomialnotdivisiblebyanyZ3korinvolvingallthreeZiisZ2iZ2i+1;andtheseareexactlytheremainingmonomials.SowehaveshownthatallthemonomialsofK[Z]4areinthespan.Parts(b)and(c)aretreatedsimilarly.Forthecasek=2;onecandescribeinductivelyasetofpolynomialsde ninghyper-surfaceswiththerequiredproperty.Wehavetreatedthecasesd=4;5individuallyinExample1.12(a),(b),respectively.Then,givenFd(Z;W)ofdegreedasrequired,de neFd+3(Z;W;W0)=Z0Z1Z2Fd(Z;W)+W0aZd+20+W0bZd+21+W0cZd+22+dXk=1W0k(Zk+10Zd+1�k1+Zk+11Zd+1�k2+Zk+12Zd+1�k0): 4Part(a)herewasfoundbywritingoutthetheresultofsubstitutingWi=PaijZjintoanarbitrarypolynomial,andchoosingitscoecientssothattheresultspansK[Z]4:Part(b)wasfoundbywritingoutthedegreedmonomialsina2-simplexwiththedegreed�1monomialsinterlaced,andchoosingapolynomialthatspansK[Z]5undercertainchoicesofcoecientsaij:Part(c)wasfoundsimilarly. 8AUTHOR:ALEXWALDRONADVISOR:JOEHARRISi.e.dim(V)=dim(B)�1,andagenericm-tuple(Fi)Bwillsatisfytheconclusionofthelemma.Letp=[(aij)]2Ptberepresentedbytheranktmatrix(aij);andletF=�12(p)bethe berof2overp:Wewill rstshowth

13 atthis berisirreducibleandhasdimensi
atthis berisirreducibleandhasdimension(4)dim(F)=mN(r;d�1)�N(r;d)+N(r�t;d):SinceitsuniqueP-coordinateisp,thevarietyFmaybeidenti edwithitsprojectionontoB;i.e.thesetofvectorsb=(F1;:::;Fm)2(K[x]d�1)msuchthatb(aij)~x=0.SolettingLbethecolumnvectoroflinearforms(aij)~x=L=(L1;:::;Lm)t;wethinkofFastheaneconefb2BjbL=0g:SoFissimplyalinearsubspaceofthevectorspaceB;henceirreducible.LetJk[x]betheidealgeneratedinL1;:::;Lm:Thenwehavetheshortexactsequenceofgradedrings(K[x](�1))mL!K[x]!K[x]=J:SinceF=Ker(L:(K[x](�1))m!K[x]);thisinducestheshortexactsequenceofvectorspaces0!F!(K[x]d�1)mL!K[x]d!(K[x]=J)d!0:SinceK[x]=Jisisomorphictoapolynomialringinr�tvariables,thissequencedirectlyyieldsthedesireddimensioncountfordim(F)in(4).Now,noticethatthemap2issurjectiveontoP,since(0;p)2V8p2P:Furthermore,dim(Pt)=mr�1�(m�t)(r�t)=N(r;d)�`�1�(m�t)(r�t)by[13]Prop.12.2andthegiven.So,sincethe berFwasarbitrary,fromCorollary1.4totheTheoremonFiberDimensionwehavedim(Vt)=dim(F)+dim(Pt)=mN(r;d�1)�N(r;d)+N(r�t;d)+N(r;d)�`�1�(m�t)(r�t)=(mN(r;d�1)�1)+N(r&

14 #0;t;d)�(m�t)(r�t)�`:Toshow3
#0;t;d)�(m�t)(r�t)�`:Toshow3,wenowmustprovethat(m�t)(r�t)+`N(r�t;d)foralltr;withourchoiceofmandr:Proceedbyinductionont:thebasecaset=0followsfromtheassumptionN(r;d)=mr+`:Nowassume(m�(t�1))(r�(t�1))+`N(r�(t�1);d):(m�t)(r�t)=r�t r�t+d(m�t)(r�t+d)r�t r�t+d(m�t+1)(r�t+1)sincemrtandd�12r�t r�t+d(N(r�t+1;d)�`)byinductionN(r�t;d)�`:Wehaveestablishedthatforalltr;dim(Vt)dim(Vr)=mN(r;d�1)�1:SinceV=SVt;wegetdim(V)=maxt(dim(Vt))=dim(Vr)=mN(r;d�1)�1;asdesired. 10AUTHOR:ALEXWALDRONADVISOR:JOEHARRISissurjective,ford3:5Hencethekernelofthismaphasdimensionrm�N(r;d)=(n;d;k)inourset-up,whichisexactlythestatementthatFj(Z)0foraijinalinearsubspaceofdimension(n;d;k):ThusFk(X0)\UU=Armisalinearsubspaceofdimension;whichisthereforethelocaldimensionofFk(X0)onU:Thisestablishespart(c)ofthetheorem.Remark1.14.Itissomewhatsurprisingthatourargumentestablishessurjectivityonlyinthecase(n;d;k)=0;andnotforthecasethatthedimensionofIisstrictlybiggerthanthato

15 fthetargetPN:However,thisisnottheonlyfai
fthetargetPN:However,thisisnottheonlyfailureofitskind,e.g.asurjectivemapofsheavesisnotingeneralsurjectiveonglobalsectionsunlessitisalsoinjective. 5Therequirementd3isnotincludedin[1].Theerrorissimplytheunjusti edclaimthattheinequalityatthebottomofp.237holdsfor\d=1"(whichisd�1=1inthispaper).Thesubsequentcombinatorialproofoftheinequalityford2iscorrect. 12AUTHOR:ALEXWALDRONADVISOR:JOEHARRISProposition2.3.Forn3;asmoothcubichypersurfaceXPnKisunirational,providedKisalgebraicallyclosedandchar(K)=0:Proof.Certainnotionsusedhere(suchasGrassmannbundles)willbemaderigorousinSection2.3immediatelyfollowingthisproof,whichwillthusbesomewhatcasual.FromTheorem1.6,wemaychooseaplane�ofsomedimensionl�0lyingonX(aline,ifoneprefers).Thenthevarietyof(l+1)-planescontainingthel-plane�isparametrizedbyPn�l�1=Pn=�:SinceXissmooth,ageneralsuch(l+1)-plane�meetsXinatheunionoftheplane�anda\residual"quadrichypersurfaceofdimensionl;callitQ:So,Xisbirationaltothetotalspaceofa\quadricbundle"|i.e.aPn�l�1-schemewhose bersarequadrics|overanopensubsetofPn�l�1: Tobeprecise,thequadrics

16 Qarethegeneric bersoftheblow-up&
Qarethegeneric bersoftheblow-up�:~X=Bl�(X)�!Pn�l�1;whichweviewasaquadricbundleoverPn�l�1viatheprojection�from�=Pn�l�1:ThepropertransformBl�()ofan(l+1)-plane�isagainan(l+1)-plane,andQ=Bl�()\~X:(Intherestofthisargumentwewillsometimesfailtomentionwhenapropertyholdsonlyoveranopen,densesubset.)Wewillshowthat~Xisunirationalbyviewingitasaquadricbundle.EachirreduciblequadricQisrationalindividually:projectingfromanypointofQtoahyperplaneofis1-1anddominant,thereforebirationalsincechar(K)=0:Wehopetopiecetogethertheserationalparametrizationsconsistently,inordertoparametrizeanopensubsetof~X:Thekeytodoingthisisto ndarationalsectionofthequadricbundle~X=fQj2Pn�l�1g;i.e.arationalmap:Pn�l�199K~Xwith()2Q:Ifwecould ndsuchasection;thenwewouldhavearationalmap(5)q7! ();q2G(1;);de nedforeach:Thesemapsarenowclearlycompatibleover~X�E:Now,thespacesG(1;)formthe\Grassmannbundleoflines"(whichwewillsoonrefertoas\Grass1")intheprojectivebundleof(l+1)-planes;parametrize

17 dbyPn�l�1:AnyGrassmannbundleoverar
dbyPn�l�1:AnyGrassmannbundleoverarationalbaseisrational(seeProposition3.5,tofollow).Thisrationalmapfrom~XintotheGrassmannbundleofG(1;)'sis1-1anddominantovereach;henceisbirationaloverall.Inshort,thisparagraphhasshown: FANOVARIETIESANDUNIRATIONALITY13Lemma2.4.Thetotalspaceofafamilyofpointedquadricsoverarationalbaseisratio-nal.However,thereisnoguaranteeof ndingsuchasection;i.e.achoiceofpointq2Qvaryingregularlywith2Pn�l�1:Saywetakel=1andlookonlyforpointsofQthatlieinsidetheline�:theningeneralZ:=Q\�willconsistoftwopoints,andwewillhavenowaytopickoneconsistently.Thusweareforcedtoabandonhopeofarationalparametrization,whichis1-1,andinsteadhopeforaunirationalparametrization,i.e.adominantmapPN99KX|or,equivalently,adominantmapfromarationalvarietytoX:(Althoughinfact,smoothcubicsurfacesinP3arerational.)Now,byanalogywehopeto nda\unirationalsection"ofthebundleofthequadricbundle~X=fQg,i.e.amapfromarationalvarietyto~Xthathitsanopensubsetof2Pn�l�1:Fortunately,wewill ndsucharationalvarietybydirectly xingtheproblemofthepreviousparagraph(usingafamiliarconstruc

18 tion):considertheincidencecorrespondence
tion):considertheincidencecorrespondence =f(;p)jp2Z=Q\�gPn�l�1�:Thisvariety manifestlyhasa\unirationalsection"to~X;givenby(;p)7!p2Q:And isitselfarationalvariety,whichwewillproveshortlyinLemma2.5.Whatgoodisa\unirationalsection?"Itfurnishesarationalsectionnotof~Xbutofaquadricbundlethatdominates~X;namelythepullbackH:=~XPn�l�1 :ThisvarietyHisaquadricbundleover ;whose berover(;p)isbyde nitionthepointedquadric(p2Q):ThusbyLemma2.4,Hisrationalif isrational.WecandescribeHmoreconcretelyasfollows:H=f(q;;p)jq2Q;p2Zg~XPn�l�1�:SoHclearlydominates~Xand,pendingthefollowingresult,wehaveobtainedaunirationalparametrizationof~XandhenceofX:Lemma2.5.Theincidencecorrespondence isrational.Proof.Thevariety Pn�l�1�is(overanopensubset)abundleof(l�1)-dimensionalquadrichypersurfacesZ=Y\��overPn�l�1;soitseemsat rstthatwehavemadenoprogresstowardsaproof.However,consider asasabundleoveritsotherfactor,�:observethatapointp2�simplyimposesalinearconditionon2Pn�l�1;whichcorrespondstothetangenth

19 yperplaneTpXtoXatp:Infact, =fZg2
yperplaneTpXtoXatp:Infact, =fZg2Pn�l�1isinfactalinearsystemofhypersurfacesin�=Pl;parametrizedby2Pn�l�1:(ThiswillbeshownexplicitlyinSection2.4.)Furthermore,thissystemhasnobasepoints,sinceabasepointwouldbeasingularpointofX(seealso2.4).Thereforeeach beroftheprojection !�isahyperplaneinPn�l�1;so isaPn�l�2-bundleover�=Pl(byProposition3.3tofollow),hencerational.2.3.Constructions.Weproceedtointroduceseveralobjectsofwhichwewillmakeextendeduseinthischapterandthenext.ForthedurationofSection2.3,weletE!Bbeavectorbundleofrankr+1,withBandEirreduciblevarieties(i.e.integralquasi-projectiveK-schemes,inourterminology). FANOVARIETIESANDUNIRATIONALITY15OP(d)(d�0)overanopensubsetB1BsuchthatEjB1=B1VarehomogeneousformsofdegreedonVwithcoecientsregularoverB1:ThuswemayconcludethatOP(d)(PB1)=SymdE(B1);andtherefore(OP(d))=SymdE:AglobalsectionofOP(d)de nesaclosedsubschemeofP!B:6LetSPVVbetheuniversallinebundleoverPV=G(1;V)|foreach`2PV;Shas berS`=`V:De neO(�1)=OPr(�1)asthesheafofsectionsofS;andde nethe\tautologi

20 calsheaf"O(1)asthesheafofsectionsofS
calsheaf"O(1)asthesheafofsectionsofS(see[15]vol.2,ch.VIforacompletedescription).Wemayalsode neO(d)=O(1) d:Similarly,de neSP!PtobetheuniversallinebundleoverP=Grass0(E);i.e.thesub-bundleofPBEwhichhas bers(SP)(b;`b)=`bEb:Wecannowde neOP(�1)tobethesheafofsectionsofSP;OP(1)tobethesheafofsectionsofSP;andOP(d)=OP(1) d:Now,letB0BbeananeopensubsetsuchthatEjB0=B0VandPjB0=B0PV:Weemulatetheargumentof[15]vol.2,VI.1.4,Example2,to ndthesectionsofOP(1)overB0PV:Onecanseefromthede nitionsthatSPjPB0=B0PVPVS;whichimpliesSPjPB0=B0PVPVS:ChoosecoordinatesfX gonPV;andconsidertheanecoordinatepatchesU =fX 6=0gPV:Exactlyasin[15],thelinebundleSP!PVistrivialovereachopensetB0U ;withtransitionfunctionsc =X =X betweenthem.SectionsoverB0U areregularfunctions:theseareoftheform' =P =Xd withP ahomogeneousformofdegreedintheX withregularfunctionsonB0ascoecients.ForsuchasectiontoberegularonB0U forall ;wemusthavec ' =X P =(X Xd )regularonU

21 ;whichimpliesd=1:ThusthesectionsofS
;whichimpliesd=1:ThusthesectionsofSPoverPB0=B0PV;i.e.theelementsofOP(1)(B0PV);arehomogeneouslinearformswithregularfunctionsonB0ascoecients.Thisdescriptionthenclearlyextendstonon-aneopensubsetsB1BoverwhichPistrivial.Likewise,thesectionsofOP(d)overB1areformsofdegreed:ThesehomogeneouslinearformstakevaluesonE;sowemayconcludethat(OP(d))=SymdEford�0:Cartierdivisors.WewillthinkofaCartierdivisorDonaschemeXasaglobalsectionofthesheafMX=OX(de nedin[17]II.6),whichagreesexactlywiththenotionofa\locallyprincipaldivisor"onanirreduciblevarietyintheclassicalsetting.Withthisde nition,aCartierdivisorDise ectivei itcanberepresentedonanopencoverfU gbyelementsofOX(U )MX(U );called\localequations"forD.Ane ectiveCartierdivisorDthusde nesalocallyprincipalidealsheafIDandhenceaclosedsubschemeofX;referredtobythesameletterD:In[15]vol.2,VI.1.4,classesofCartierdivisorsareshowntobeequivalenttoinvertiblesheavesandlinebundles,whichallowsusthepushforwardandpullbackoperations,respectively(thoughonemayloselocaltrivialityinapplyingthepushforward).TheCartierdiv

22 isorsmanifestlyformagroup.Inthecaseofthe
isorsmanifestlyformagroup.InthecaseoftheprojectivebundleP=P(E);onecanseefromthepreviousdescriptionthatthenonzeroglobalsectionsofOP(d);foralld0;formagradedsubmonoidofthee ectiveCartierdivisors.Furthermore,if 2H0(P;OP(d))and 2H0(P;OP(d0))de nesubschemesP P P;respectively,then = willbeaglobalsectionofOP(d0�d): 6NotethatthevectorbundlesOP(d);d�0;arenotnecessarilysub-bundlesoftrivialbundles,orevenprojectivelyembeddable;butthiswillremaintrueofallprojectivebundleswewillconsider,therebynotviolatingRemark2.2. FANOVARIETIESANDUNIRATIONALITY17Bytheprecedingdiscussion,Yisde nedbyasectionofO~(d�1):(a')De nethelocusofde nitionofY;DEF(Y);tobethemaximalopensubsetof(l+1)-planes2forwhichY~hasdimensionl;i.e.isahypersurface.IfDEF(Y)isnon-empty,thenYDEF(Y)!;willbecalledtheresidualfamilyofhypersurfacesattachedto(�;X;P):(b)Thesecondaryresidual-schemeZwillrefertothescheme-theoreticintersectionZ:=Y\�:(b')WriteDEF(Z)forthemaximalopensubsetoverwhichZDEF(Z)!has berdimensionl�1;i.e.isahypersurface.Togive

23 averyroughsummary:the rstofthese,Y;i
averyroughsummary:the rstofthese,Y;isthefamilyofintersectionsofXwiththefamilyof(l+1)-planescontainingthefamilyofl-planes�X,residualto�.Thesecond,DEF(Y);istheopensubsethavingnontrivial bersinY:Thethird,Z;isthefamilyofintersectionsofYwiththebasefamilyofl-planes.NoticethatDEF(Z)DEF(Y):2.4.Explicitdescriptionofthe bersoftheresidualvarieties.Overanindividualclosedpointb2B;the bersoftheresidualvarietiesarereadilydescribableassubvarietiesofPb=Pr.Todothis,weworktemporarilyoverthebaseB=Spec(K):Choosehomo-geneouscoordinatesfV0;:::;Vl;Wl+1;:::;WrgonP=Prsothat�=Pl=fWi=0g:ThenfWigarehomogeneouscoordinateson=Pn�l�1:Writethede ningequationofX(=Xb)asF(V;W)=X0jIjd�1VIFI(W):HereeachIisamulti-indexofdegreejIj;andeachFI(W)isahomogeneouspolynomialofdegreed�jIj1:Now,givenapoint[wl+1;:::;wr]2;wemayparametrizethecorrespondingplaneas=f[V0;:::;Vl;wl+1U;:::;wrU]g:Wethushavehomogeneouscoordinates[V0;:::;Vl;U]onsuchthat�istheplanede nedbyU=0:TherestrictionofFtothe(l+1)-planeisgivenbyF(V;W)j=XVIUd�jIjFI(wl+1;:::;wr):Since0

24 0;jIjd;wemaydividethroughbyUtoobtainthed
0;jIjd;wemaydividethroughbyUtoobtainthede ningequationfortheprimaryresidual-schemeY;FY=F(V;W)j=U=XFI(wl+1;:::;wr)Ud�jIj�1ZI:Thescheme-theoreticintersectionofYwith�isgivensimplybysettingU=0;bywhichweobtainthede ningequationforthesecondaryresidualschemeZ;FZ(V;)=XjI0j=d�1FI0(wl+1;:::;wr)ZI0:Here,theFI0arehomogeneouslinearforms.Fromtheseequations,weseethatthelocusPn�l�1�DEF(Y);i.e.thesetofwhichareequaltoY;isthecommonzerolocus FANOVARIETIESANDUNIRATIONALITY192.5.Numbers.Finally,weintroducetherelevantnumericalboundsofwhichwewillmakeuseinthefollowingsection.De neM(d;l)=l+d�1d�1+l�1:Thisnumberhasthefollowinguse:Lemma2.11.Letd;lk0;andnM(d;l)benon-negativeintegers,andletXPnbeak-planecontainedinahypersurfaceXofdegreed:Thenthereexistsanl-plane�suchthat�X:Proof.SinceM(d;l0)M(d;l)foralll0l;itissucienttoassumek=l�1:ChoosehomogeneouscoordinatesV0;:::;Vk;Wk+1;:::;WnonPnsuchthatthek-plane=fWi=0g:Inthesecoordinates,thede ningpolynomialofXisoftheformF(V;W)=X0jIjVIFI(Wk+1;:::;Wn):Thissumrange

25 soverthe�k+1+d�1d�1=�k+d
soverthe�k+1+d�1d�1=�k+dk+1monomialsVIofdegreelessthand�1;andeachFIarehomogeneousofdegreed�jIj1intheWi:Now,giventhatn�kM�k�k+dk+1;thepolynomialsFIhaveanontrivialcommonroot[Wk+1;:::;Wn]:Thusthespan,�;ofandthepoint[0;:::;0;Wk+1;:::;Wn]isanl-planesuchthat�X;asdesired.Nextwe xanintegerk0andde netwofunctionsrecursively,N0(d;k)andN(d;k):BeginbysettingN(2;k)=N0(2;k)=k+12+3:Thenford3;de nerecursivelyN0(d;k)=M(d;N(d�1;k)+1)andthenN(d;k)=N0(d;k)+k+dd+2;orinotherwords,N0(d;k)=M(d;N0(d�1;k)+k+d�1d�1+3):Notethatbothofthesefunctionsarestrictlyincreasingwithk:Proposition2.12.(a)Inthecased=2;notethatN0(2;k)M(2;k):SofornN0(2;k):SoaquadrichypersurfaceQPnissweptoutbyk-planes.ThisinturnimpliesthatifQissmooth,thendim(Fk(Q))=(n;2;k):(b)Foralld3andk0;N0(d;k)k+dd+3k+1M(d;k); FANOVARIETIESANDUNIRATIONALITY21intersectionsinthesmoothvarietyG(k;n)([13]17.24),ifacomponentFofFk(X)meetsG(k;H)then(6)codim(FG(k;n))codim(Fk(X)G(k;n))codim(Fk(

26 Y)G(k;H))=k+dd:Itremainst
Y)G(k;H))=k+dd:ItremainstoshowthateverycomponentofFk(X)meetsG(k;H):ThiswillfollowfromastandardresultintheintersectiontheoryofGrassmannians,whichwestatewithoutproof:Lemma2.15.IfX1andX2aresubvarietiesofG(k;n)ofcodimensionc1andc2suchthatc1+c2n+1�2k;thentheintersectionX1\X2isnonempty.Notethatinthecasek=0;thisgivesthestandardintersectioncriteriononPn:Now,recallthatFk(X)iscutoutby�k+ddconditions,henceanycomponentF0hascodimensionatmostthatnumber.SothecodimensionsofF0andG(k;H)G(k;n)areatmost�k+ddandk+1;respectively.Wehaven+1�2kN0+1�2kk+dd+3k+2�2k=k+dd+k+2byProposition2.12(b),andsobythelemmaFmeetsG(k;H);whichestablishes6andtheclaim.(b)Assumetheresultofpart(a)forthegivenpaird;k;andletXbeahypersurfaceofdegreedinPn;withnN(d;k):Ifcodim(XsingX)N0thenpart(a)applies;otherwisedim(Xsing)n�N0N(d;k)�N0=�k+dd+2;byde nitionofN(d;k):So,dim(Fk(X))G(k;n)=(n;d;k)+k+dd(n;d;k)+dim(Xsing)�1:Remark2.16.Foranygivenn;d;k;thesecorollariescanbededucedfromthetheoremasappliedonlytothesen;d;k:Thuswewillbe

27 abletousethecorollariesinconjunctionwith
abletousethecorollariesinconjunctionwithourinductionhypothesis.2.6.1.ABertiniLemma.Wewillneedthefollowinglemmatocontrolthesingularitiesofourhypersurfaces.Lemma2.17.(Bertini'sTheoremforaprojectivespace)LetD=fD g 2PmbealinearsystemofhypersurfacesinPn;withbaselocusBPnofdimensionb:De nethesubsetsSk=fD 2Djdim((D )sing)b+kg:ThenSkisaprojectivevarietyandcodim(SkPm)k: FANOVARIETIESANDUNIRATIONALITY23Writef=[F0;:::;Fm]sothattheFiarehomogeneouspolynomialswithnocommonfactorwhicharesimultaneouslyzeronowhereoutsideofB(See[15]vol.Ich.3).Theprojectivevarietyde nedbytheFihasdimensionatmostb:The berover(say)p=[1;0;:::;0]thenisde nedbyF1==Fm=0:Thesectionofthis berbythehypersurfacefF0=0ghasdimensiononeless(sincetheFihavenocommonfactor),andiscontainedinB:Sothe beroverp;de nedbyF1==Fm=0;hasdimensionatmostb+1:Thisestablishes(9),whichimplies(7)andhencethemaininequalityofthelemma.2.6.2.ProofofTheorem2.13.Theorem1.6(c)ofChapter1assertsthatincase(n;d;k)�0andd3;everyhypersurfacecontainsafamilyofk-planesofdimensionatleast(theproofinvoke

28 dtheresultof[1]).Soitremainstoshowthatas
dtheresultof[1]).Soitremainstoshowthatasmoothhypersurfaceofsucientlyhighdimensionhasafamilyofk-planesofdimensionatmost:Tothisend,wewillconstructaconvenientfamilyofpairsofplanes,:Wewillthen ndalowerboundL(step1)andanupperboundU(step2)ondim():TheresultinginequalityLUwillsimplifytothedesiredupperboundondim(Fk(X))(step3).TheboundsLandUwillbeestablishedbyinductionond:Proposition2.12(a)exactlyestablishesthebasecased=2ofthetheorem,forallk:Fortheinduction(theremainderoftheproof), xdandk;andassumethatTheorem2.13anditscorollariesholdforalltriples(n0;d0;k0)withn0n;d0d;k0kbutnotallequal.Notethatthetheoremisvacuousforn0N0(d0;k0).LetXPn;withnN0(d;k);beasmoothhypersurfaceofdegreed:Setl=N(d�1;k);andde nethelocallyclosedsubvarietyFk(X)Fl(X)givenby=f(;�)2Fk(X)Fl(X)jdim(\�)=k�1g:Equivalently,canbede nedbytheconditionthatand�togetherspanan(l+1)-planeinPn(notnecessarilycontainedinX).Remark2.18.Theideaisroughlyasfollows:ournumbersaresucientlyhighthatnotonlywillXbesweptoutbyk-planes,buteachofthesek-planesinXiscontainedinanl=

29 N(d�1;k)-planeinX:Thiswillallowustoap
N(d�1;k)-planeinX:Thiswillallowustoapplyourinductionhypothesisond rsttoshowthatisdenseina berproductof ag-Fanovarieties(step1),thentoinjectintotherelativeFanovarietyofthemainresidualschemeYcomingfromtheintersectionofXwiththevarietyof(N(d�1;k)+1)-planescontainingitsFanovarietyofl=N(d�1;k)-planes(step2).Step1.LetFk�1;k(X)andFk�1;l(X)bethe ag-FanovarietiesFk�1;k(X)=f( ;)j XgG(k�1;n)G(k;n)andFk�1;k(X)=f( ;�)j �XgG(k�1;n)G(l;n):Wewillrealizeasanopen,densesubsetofthe berproduct:=Fk�1;k(X)Fk�1(X)Fk�1;l(X)Fromthede nition,thereisaregularmap!Fk�1(X) FANOVARIETIESANDUNIRATIONALITY25where�= ;�isthe(l+1)-planetheyspan.NotethatY�asrequired:theopendenseset��iscertainlycontainedintheresidualvarietyY�;whichisclosedandhencecontains:Thismapisclearlyinjective.Soinwhatfollows,wewillsimplycomputeanupperboundonthedimensionofFk(Y=):ThiswillfurnishourupperboundUonthedimensionof:Todothis, xanl-plane�0X;andwewillcomputethedimensionofthe

30 2;berofFk(Y=)over�0:Forthispurpos
2;berofFk(Y=)over�0:Forthispurpose,weneedonlyconsidertheresidualfamilyoverthesinglel-plane�0;i.e.Y0:=fYj2�0=Pn�l�1g:SowewouldliketocomputethedimensionofFk(Y=)�0=Fk(Y=�0)=Fk(Y0=Pn�l�1):TheYhavedegreed�1;sowehopetoapplytheinductionhypothesisonceweknowsomethingabouttheirsingularities.Happily,sinceXissmooth,byProposition2.9thehypersurfacesfZ=Y\�0gformabase-point-freelinearseriesin�0|andsobyProposition2.17,thelocusS=f2DEF(Z)�0Pn�l�1jdim((Z)sing�1ghascodimensionatleastinPn�l�1:Hence,thevarietyW=f2DEF(Z)�0DEF(Y)�0jdim((Y)singgSmustalsohavecodimensionatleastinPn�l�1:Thuswecanchoose2DEF(Z)�0�W1;andthehypersurfaceYhasatmostisolatedsingularities.So,sincel=N(d�1;k);theinductionhypothesisyieldsfromCorollary2.14thatdim(Fk(Y))=(l+1;d�1;k):WemaythusconcludethattheinverseimageofDEF(Z)inthe berFk(Y0=Pn�l�1)=Fk(Y=)�0hasdimension(l+1;d�1;k)+n�l�1:Itremainstocheckthattheinverseimageofthep-dimensionalprojecti

31 velinearspace(DEF(Z)�0)c=Pn�l�1
velinearspace(DEF(Z)�0)c=Pn�l�1�DEF(Z)�0(asperProposition2.9)doesnotintroducecompo-nentsoflargerdimensioninFk(Y=)�0:SincetheseriesfZgisbase-pointfree,wemusthavel+1codim((DEF(Z)�0)cPn�l�1);sincethisisthedimensionofthelinearsys-temfZg:Meanwhilewehavethetrivialupperbounddim(Fk(Y))dim(G(k;l+1));sothe berdimensioncanjumpfromthegenericdimensionbyatmostdim(G(k;l+1))�(l+1;d�1;k)=�k+d�1d�1:Butsincethelocus(DEF(Z)�0)chavingpossiblyhigher-dimensional bershascodimensionatleastl+1�k+d�1d�1;these berscannotcontributeahigher-dimensionalcomponentofFk(Y=)�0:Wecanconcludethatdim(Fk(Y=)�0)=(l+1;d�1;k)+n�l�1:Since�02Fl(X)wasarbitrary,wemayconclude nallythatdim()dim(Fk(Y=))=dim(Fl(X))+(l+1;d�1;k)+n�l�1=dim(Fl(X))+(k+1)(l�k�1)��k+d�1d�1+n�l�1=:U 3.UnirationalityofSmoothHypersurfacesofLowDegree.InthischapterwewilldemonstrateanimportantconsequenceofTheorem2.13:theunirationalityofsmooth,low-degreehypersurfaces.Ourmainreferencewillagainbe[2].InS

32 ection3.3,however,wearriveatsimilarconst
ection3.3,however,wearriveatsimilarconstructionstothoseof[2]muchmorestraightforwardly.Themethodsofthischapterwereoriginallydevelopedforthecaseofageneralhypersurfaces.TheconclusionofthelastchapterwillbeusedtoproveCorollary3.12:weareabletoboundthedimensionofthevarietyofplanescontainedinthesmooth bersinorderto\in ate"theimage,showingsurjectivity.Note:All bersofmorphismswillnowbe\scheme-theoretic,"aswillallinclusions.A\point,"however,willstillreferalwaystoaclosedpoint.Example3.1.OurmethodofproofinthischaptergeneralizesthatofProposition2.3(areviewofthisexampleisrecommended).Webeginwithaheuristicattempttoprovethecaseofquartichypersurfaces,identifyingthemainobstructionstoitssuccess.LetXPnbeasmoothquartichypersurface.HopingtoextendtheproofofPropo-sition2.3,wetakensucientlylargethatwecanchooseanl-plane�Xandconsiderthe(l+1)-planesthatcontainit.AgeneralsuchplaneintersectsXintheunionofaresidualcubichypersurfaceYandtheplane�:Asbefore,theblow-up�:~X=Bl�(X)�!Pn�l�1=hasgeneral beracubichypersurfaceYPl+1:Now,weexpectthatageneral berYof~X!wi

33 llbesmooth.7Inthiscase,Ywillbeunirat
llbesmooth.7Inthiscase,Ywillbeunirational,byProposition2.3.However,ifwehopetousethisfact,wemustbeabletochooseak-plane oneachcubicY:Asbefore,wecannarrowdownthechoicebylookingonlywithinthel-plane�;whichmeetsYinthesecondaryresidualschemeZ=�\Y:Asinthecaseofcubics,wedonotexpecttochooseauniquesuchplaneforeachZ;i.e.arationalsection.Insteadwesetuptheincidencecorrespondence :=f(; )j Z=Y\�gPn�l�1G(k;�):(Forcubics,wehadk=0sothatG(0;�)=�:)Asbefore,weformthepullbackof~X!=Pn�l�1tothisvariety !;H:=~X :ThefamilyH1! isthenak-planedfamilyofcubichypersurfaces.ThisgivesusaunirationalparametrizationofeachcubicY:AndweshouldbeabletofurtherpullbackH1toobtaina\pointed,k-planedfamilyofhypersurfaces"H0;dominatedbyavarietywhichwillberational|providedthat itselfisrational.(SeeSection3.4.1forabetterdescription.)Thequestionofwhether isrationalcanbeapproachedasbefore,byconsideringtheprojectionmaptothesecondfactorG(k;�):AsinProposition2.9,thesecondaryresidualhypersurfacesfZgformalinearsystem,andeachpoint �imposesacertainnumberoflinearco

34 nditionson2:Thuswemayhopethat is
nditionson2:Thuswemayhopethat isaprojectivebundleovertherationalbaseG(k;�);andwillhenceberational. 7Infactitwillbesucientthatthegeneral berhaveatworstisolatedsingularietieswhennd;asintheproofofTheorem2.13.27 FANOVARIETIESANDUNIRATIONALITY29(ThefactT=n=Tn=nnis[19]Prop.5.1.5.)Theinverseimage\x"ofxinthe berXycorrespondstotheideal(m 1)(S TK)=m TK:Furthermore,thelocalring(S TK)m TKisnaturallyisomorphictoSm TK;underwhichthemaximalidealcorrespondstomm TK|thisisreadilyseenfromexaminingthesurjectiveringhomomorphismS!S T1;whichexpressesS TKS=((n)m);andfromtheexactnessoflocalization([16]Ch.3).Weprovetheexactnessofthedualsequencetotheonestated,TyY�!TxX�!TxXb�!0(10)nn=n2nx�!mm=m2m�!(mm=m2m) TK�!0:(11)Wemaywriteout(mm=m2m) TK=(mm TT)=(m2m TT+mm Tn)mm=(m2m+(n)mm):But(n)mm=x(nn)mminthelocalringOX;x=Smsinceanyelements62nissentto(s)62m:Thustherightsideofthelastequationisequalsimplyto(mm=m2m)=(x(nn));whichisjustthedesiredstatementthat(10)isexact.Proposition3.3.LetXBPnbeafamily,withXandBvarieties.Ifthescheme-theoretic ber

35 sXboverclosedpointsb2Barek-dimensionalli
sXboverclosedpointsb2Barek-dimensionallinearsubspacesofPn;thenXisaprojectivebundleofrankkoverB;i.e.islocallytrivial.Note.TherequirementthatXbeasub-bundleofatrivialbundle,i.e.XBPn;isessential,asperRemark2.2.Proof.Givenb02BaclosedpointandXb0=Pka ber,choosean(n�k�1)-plane=Pn�k�1PnsuchthatXb0\=;:LetUbetheopensubsetfb2BjXb\=;g.Let:Pn�!Pkbetheprojectionfrom:ThenIdisbijectivebetweentheclosedpointsofXU=�11(U)andUPk(linearalgebra).From[13]Corollary14.10,itremainstoshowthatIdhasinjectivedi erentialatallclosedpoints(b;p)2XU:Formthediagram0// T(b;p)Xb//  T(b;p)XU// (Id)(b;p) TbU//  00// T(b;(p))(fbgPk)// T(b;(p))(UPk)// TbU// // 0;where(ifthisisnotobvious)theleftverticalmapisderivedfromthesequencePk=Xb!XU!UPk!Pk!fbgPk;whichisanisomorphismsincenonconstant.Theleftandrightverticalmapsinthediagramarethusisomorphisms,thereforethecentralmapisanisomorphism.Alternatively,noticethat[14],III-56directlyimpliesthatX!Bisa atfamily.SoXisa berproductw

36 iththeGrassmannianbundle,henceabundleits
iththeGrassmannianbundle,henceabundleitself. FANOVARIETIESANDUNIRATIONALITY31Corollary3.10.IfasmoothhypersurfaceXPnkofdegreedcontainsanL(d)-planethatisrationaloverk;thenXisunirationaloverk:Asanexampleofhowthismightwork,considertheresultsofSection3.1above.NotethattheL(d)-planeXisrationaloverkifandonlyiftheresidue eldateachclosedpointx2L(d)isequaltok|andinthiscase,thetangentspacesatxand(x)are nite-dimensionalk-vector-spaces,andthestatement(andproof)ofLemma3.2makessense.3.3.Constructions.Inthissectionwemakefurtherconstructionscorrespondingtoagivenl-planedfamilyofhypersurfaces(�;X;P)overB:ThesewillformalizethetechniquesofProposition2.3andExample3.1.Weassumethattheschemes;Y;Z;etc.,ofSection2.3.4correspondtoourgivenl-planedfamily.LetG:=Grassk(�)bethefamilyofk-planescontainedintheprojectivebundle�:ThereisamapGrassk(�)!GcomingfromthemapofB-schemes(12)Grassk(�)�!Grassk(�)B�!Grassk(�)=G;fromwhichwegetanothermap :Fk(Z=),!Grassk(�)�!G:Now,each berofFk(Z=)!Goverak-planeb2Gbisinfactalinearsubspaceofb=Pn�l�1:Thisfo

37 llowsformProposition2.9ofSection2.4:each
llowsformProposition2.9ofSection2.4:eachpointof�bsimplyimposesalinearconditiononthelinearseriesfZbgb2b;sothepointsofbmerelyimposesomanylinearconditionsontheparametersb2b.(Byapplyingthede nitionoftherelativeFanovarietytothediscussionofSection2.4,oneisreadilyconvincedthattheselinearconditionscutoutthe berinFk(Z=)overbscheme-theoretically,sothatthe berisareducedlinearspace.)However,wecannotbeassuredthatallofthe bershavethesamedimension;althoughgenerically,theydo,bytheTheoremonFiberDimension(1.3).LetCbetheopensubsetoftheirreducibleprojectivevarietyGoverwhichthe bersofthismap havetheminimumpossibledimensionl��k+d�1k;i.e.thesetofk-planesimposingindependentconditionsonthelinearseries.Atpresentwedonotknowthatthisisnonempty;thiswillfollowfromCorollary3.12,ifthedimensionlisappropriatelyhigh.Thus,fromLemma3.3,therestrictiontoCofFk(Z=)!GisinfactaprojectivebundleoverC,whichwewilldenotebyQ:Fk(Z=)C=:Q�!CG:WealsohaveamorphismQ�!;sinceQisasub-bundleoftherestrictiontoCofthePn�l�1-bundleGB�!G:ApointofthevarietyQoveraclosedpointb2Bcan

38 bethoughtofasapair( b;b)2Grassk(�
bethoughtofasapair( b;b)2Grassk(�b)b;suchthatsuchthat bZb|inotherwords, bZb�bbPb;whichalsoimpliesthat bYbb FANOVARIETIESANDUNIRATIONALITY333.4.Proofofunirationalityofsmoothlow-degreehypersurfaces.InSection3.4.2,wewillshowthatforafamilyofhypersurfacesX!Bofappropriatelyhighdimensionrelativetoitsdegreed(seesection3.2),thenaturalmapYD!Xisdominant.ThedegreeofthefamilyofhypersurfacesYDisequaltod�1;whichwewillusetoinductondegreeinSection3.4.3.3.4.1.Roughdescriptionoftheproof.Intheinductionargumenttofollow,thelocationoftheparametrizingvarietyitselfisobscured.ItisthereforeinstructivetogivethefollowingroughdescriptionoftheproofofTheorem3.6:ApplyProposition3.11toobtainsuccessivefamiliesofhypersurfacesYd�iDd�iofdegreed�1;d�2;d�3:::;witheachfamilydominatingthepreviousones;theirbasesDd�iwillformacombovertheoriginalbaseB;providedtheDicanbechosennonempty(wewillestablishthisusingthedimension,degree,andsmoothnessrequirementsofthetheorem).Thiscanbedrawnoutasfollows:X Yd�1Dd�1 oo Yd�2Dd�2 oo :::oo Y1D1=D0&#

39 15; oo BDd�1oo Dd�2oo :::oo D
15; oo BDd�1oo Dd�2oo :::oo D1:oo WewillarriveatafamilyofhypersurfacesY1D1ofdegreed=1dominatingallpriorfamiliesYd�iDd�i.ByProposition3.3,thislastfamilyY1D1isthenitselfaprojectivebundleoverD1;whichwemaycallD0:HenceD0!D1!:::!BwillbeacomboverB(ifnon-empty),withadominantmapD0!XgivenbythecompositionofdominantmapsD0!Y2D2!!X:ToobtainCorollary3.7,simplyobservethatiftheoriginalbaseBisrational,thenthebasesDiateachsteparerational(seeProposition3.5).ThisincludesthelastfamilyD0;whichisrationalandwilldominateallthepreviousvarietiesYiDiandX:HenceXwillbeunirational.IncaseB=Spec(K)andXisasinglehypersurface,theparametrizingvarietyisacertainsubvarietyofacross-productof agmanifoldsinPr(see[2]foranexplicitdescription).3.4.2.DominanceofYD!X.WeproceedtoestablishtheremainingfactswhicharenecessarytoshowthatYD!Xisdominant.TheseareobtaineddirectlyfromTheorem2.13ofthepreviouschapter.Corollary3.12.Letdandkbepositiveintegers,andletN=N(d;k)asde nedinSection2.5.LetlN(d;k)beaninteger,andletD=fD Plg 2Pmbeabase-point-freelinearseriesofhypersurfacesofdegreedinPlparametrizedbyPm(necessarily,ml).Let =f(

40 ;)2PmG(k;l)jD
;)2PmG(k;l)jD gbetheincidencecorrespondence.Then, FANOVARIETIESANDUNIRATIONALITY35bereducible.Buteachset-theoretic beroverG(k;l)isaprojectivespace,soauniquecomponentof dominates.Now,assumegivenanl-planedfamilyofhypersurfaces(�;X;P)overanintegralbaseB;andassumethattheconstructionsofsection3.3havebeenmadeforthisfamily.Proposition3.13.IfX!Bissmoothalong�andlN(d�1;k);thenDisnonempty,henceacomboverB;andthenaturalB-morphismYD!Xis ber-by- berdominantoverB(andthereforedominant).Proof.(Itmaybehelpfulheretorefertothediagram(14).)Asbefore,itwillsucetoworkoverasingleclosedpointb2B;soweassumetemporarilythatB=Spec(K):ThusX=Xbissmoothalong�=�b=Pl;andbyProposition2.9(b),thesecondaryresidualschemesfZgformabase-pointfreelinearseriesofdegreed�1in�(abasepointwouldbesingular).ThereisatrivialtechnicalitycomingfromProposition2.9:thelinearseriesfZgisparametrizednotby=Pr�l�1butbyaquotientof;whichwewillcallPm:ThereisthusasurjectivemapDEF(Z)Pmwhose bersareprojectivesubspacesPpDEF(Z)ofrankp=r�l�m�1:Thismapinducesasurje

41 ctiverationalmap fromtheFanovariety(
ctiverationalmap fromtheFanovariety(overb),Fk(Z=)(Grassk(�)B)b=G(k;l)Pn�l�1;ontothetheincidencecorrespondence\ "G(k;l)PmofCorollary3.12:Fk(Z=) ////____ $$IIIIIIIIII zzuuuuuuuuuuu @@@@@@@@@G=G(k;l)////___Pm:Each berofthismap isofcoursealsoaprojectivespacePp:Now,byCorollary3.12(a),sincelN(d�1;k)�k+d�1k;thegeneralk-planeimposesindependentconditionsonthelinearseriesfZg;andeach berisnon-empty.Thus !Gissurjective,asisFk(Z=)!G;andtheopensubsetCGisnon-empty.So,theprojectivebundleQFk(Z=)isanon-emptyopensubset.Ontheotherhand,theopensubset0isalsonon-empty(overb):for,DEF(Z)bisnon-emptybyCorollary3.12(b),andthegeneralZissmoothbyLemma2.17.SoDQ;theinverseimageof0:Therefore,followingProposition3.11,D!C!Bisinfactacomb.WenowshowthatYD!Xdominatesoverb.ByCorollary3.12(b),\ "dominatesPm;henceFk(Z=)dominates=Pr�l�1asdotheopensubsetsQandD:Let10beanopensubsetcontainedintheimageofD:LetX0Xbetheopensubsetlyingoutsideofboth�andtheinverseimageof�1underthepro

42 jection�:X��!;thissetX
jection�:X��!;thissetX0isnon-emptysince10DEF(Z)DEF(Y):Furthermore,X0isdense,sinceX=Xbmustbeintegralinordernottomeet�inasingularpoint.Letx= x;�:Chooseak-plane xZx;so( x;x)isaclosedpointofD(possiblesincelN(d�1;k)).Thenbecausex62�;wehavex2Y( x;x):ThusxisintheimageofY( x;x);andwearedonesincex2X0wasgeneral. FANOVARIETIESANDUNIRATIONALITY37References[1]M.HochsterandD.Laksov,LinearSyzygiesofGenericForms,Comm.inAlgebra15(1,2),227-239(1987).[2]J.Harris,B.Mazur,andR.Pandharipande,HypersurfacesofLowDegree,DukeMath.J.95,No.1(1998),125-160.[3]O.Debarre,LinesonSmoothHypersurfaces,preprint,http://www-irma.u-strasbg.fr/debarre/.[4]J.M.Landsberg,Di erentialGeometryofSubmanifoldsofProjectiveSpace,preprint,http://arxiv.org.[5]R.Beheshti,LinesonProjectiveHypersurfacesJ.reineangew.Math,2006.[6]K.ParanjapeandV.Srinivas,UnirationalityoftheGeneralCompleteIntersectionofSmallMultidegree,Asterisque211,Soc.Math.France,Montrouge,1992.[7]U.Morin,\Sull'unirationalitadell'ipersuper ciealgebricadiqualunqueordineedimensionesuciente-mentealta,"AttiSecondoCo

43 ngressoUn.Mat.Ital.,Bologna,1940,Edizion
ngressoUn.Mat.Ital.,Bologna,1940,EdizioniCremorense,Rome,1942,298-302.[8]Zariski,Oscar,OnCastelnuovo'scriterionofrationalitypa=P2=0ofanalgebraicsurface,IllinoisJ.Math.2(1958),303{315.[9]J.Starr,FanoVarietiesandLinearSectionsofHypersurfaces,preprint,http://arxiv.org(2006).[10]J.Harris,M.Roth,andJ.Starr,RationalCurvesonHypersurfacesofLowDegree,preprint,http://arxiv.org(2002).[11]X.Chen,UnirationalityofFanoVarieties,DukeMath.J.90No.1,63-71(1997).[12]J.Kollar.LowDegreePolynomialEquations:Arithmetic,GeometryandTopology,preprint,http://arxiv.org(1996).[13]J.Harris,AlgebraicGeometry:aFirstCourse,GTM133,NewYork,Springer-Verlag,1992.[14]D.EisenbudandJ.Harris,TheGeometryofSchemes,GTM197,NewYork,Springer-Verlag,2000.[15]I.R.Shafarevich,BasicAlgebraicGeometryvols.1and2,NewYork,Springer-Verlag,1994.[16]M.AtiyahandI.G.Macdonald,IntroductiontoCommutativeAlgebra,London,Addison-Wesley,1969.[17]R.Hartshorne,AlgebraicGeometry,GTM52,NewYork,Springer-Verlag,1977.[18]D.Eisenbud,CommutativeAlgebrawithaViewtowardAlgebraicGeometry,GTM133,NewYork,Springer-Verlag,1994,http://books.google.com.[19]P.Samuel,AlgebraicTheoryofNumbers,Boston,HoughtonMi&

Related Contents


Next Show more