/
462YJiWJiangJQiumodelsarefoundtobemoreadequatethanintegerordermodelsfo 462YJiWJiangJQiumodelsarefoundtobemoreadequatethanintegerordermodelsfo

462YJiWJiangJQiumodelsarefoundtobemoreadequatethanintegerordermodelsfo - PDF document

victoria
victoria . @victoria
Follow
342 views
Uploaded On 2021-08-06

462YJiWJiangJQiumodelsarefoundtobemoreadequatethanintegerordermodelsfo - PPT Presentation

464YJiWJiangJQiuDefinition22TheCaputoderivativeoffractionalorder11x00000isde12nedascD11yt10n011Zt0ynst0s110n1dsn111providedtherighthandsideispointwisede12nedon01where11denotestheintegerpartofthereal ID: 858500

q1y q2y 2a2 000 q2y q1y 000 2a2 jiang math x0000 zt0 appl iml doml anal erentialequations 2c2 z10g

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "462YJiWJiangJQiumodelsarefoundtobemoread..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 462Y.Ji|W.Jiang|J.Qiumodelsarefoundtobem
462Y.Ji|W.Jiang|J.Qiumodelsarefoundtobemoreadequatethanintegerordermodelsforsomerealworldproblems.Fractionalderivativesprovideanexcellenttoolforthedescrip-tionofmemoryandhereditarypropertiesofvariousmaterialsandprocesses.Thisisthemainadvantageoffractionaldi erentialequationsincomparisonwithclassicalintegerordermodels.Inconsequence,thesubjectoffractionaldi erentialequationsisgainingmuchimportanceandattention.Fordetails,see[3],[8],[9],[14],[20],[21],[32],[35],[36]andthereferencestherein.In[1],[2],[31],[37]{[39],theauthorshavediscussedtheexistenceofsolutionsforBVPofnonlinearfractionaldi erentialequations.Therearealargenumberofpapersdealingwiththesolvabilityofnonlinearfractionaldi erentialequations.How-ever,thetheoryofBVPsfornonlinearfractionaldi erent

2 ialequationsisstillintheinitialstagesand
ialequationsisstillintheinitialstagesandmanyaspectsofthistheoryneedtobeexplored.Tothebestofourknowledge,thereisfewpapertoinvestigatetheresonancecasewithdimKerL=2ontheintegralboundaryconditions.Onthe niteinterval[0;1],the rst-order,second-orderandhigh-ordermulti-pointBVPsatresonancehavebeenstudiedbymanyauthors(see,forexam-ple[4]{[7],[10]{[13],[16],[22]{[28],[30],[34]),wheredimKerL=1.In[18],[40]thesecond-ordermulti-pointBVPsatresonancehavebeendiscussedwhendimKerL=2onthe niteinterval[0;1].Recently,Zhangetal.[40]discussedtheexistenceanduniquenessresultsforthefollowingBVPwithintegralboundaryconditionsatresonanceunderthecasedimKerL=2:8:x00(t)=f(t;x(t);x0(t));t2(0;1);x0(0)=Z10h(t)x0(t)dt;x0(1)=Z10g(t)x0(t)dt;whereh;g2C([0;1];[0;+1))withZ10h(t)dt=1;Z10g(t)dt=1;and

3 f:[0;1]R2!Riscontinuous.In[15],Jiang
f:[0;1]R2!Riscontinuous.In[15],JianginvestigatedtheexistenceofsolutionsforthefollowingBVPoffractionaldi erentialequationsatresonancewithdimKerL=2:8&#x]TJ ;� -1;.93; Td;&#x[000;&#x]TJ ;� -1;.93; Td;&#x[000;:D 0+u(t)=f(t;u(t);D �10+u(t));a.e.t2[0;1];u(0)=0;D �10+u(0)=mXi=1aiD �10+u(i);D �20+u(1)=nXj=1bjD �20+u(j);where2 3,D 0+istheRiemann{Liouvillefractionalderivative,01:::m1,01:::n1,mXi=1ai=1;nXj=1bj=1;nXj=1bjj=1; 464Y.Ji|W.Jiang|J.QiuDefinition2.2.TheCaputoderivativeoffractionalorder �0isde- nedascD y(t)=1 �(n� )Zt0y(n)(s) (t�s) �n+1ds;n=[ ]+1;providedtheright-handsideispointwisede nedon(0;1),where[ ]denotes

4 theintegerpartoftherealnumber .Thefo
theintegerpartoftherealnumber .Thefollowingareresultsforafractionaldi erentialequation(see[19]).Lemma2.3(in[19]).Letu2Cn[0;1]andn�1 n,n2Nandv2C1[0;1].Then,fort2[0;1],(a)cD I v(t)=v(t);(b)I cD u(t)=u(t)�n�1Pk=0tk k!u(k)(0).3.PreliminarylemmasInthissection,wepresentthemainresultsinthispaper,whoseproofswillbedonebyusingthefollowing xedpointtheoremduetoMawhin(see[29]).Definition3.1.LetYandZberealBanachspaces,L:domLY!Zisalinearoperator,LissaidtobeaFredholmoperatorofindexzeroprovidedthat(a)ImLisaclosedsubsetofZ,(b)dimKerL=codimImL+1.LetYandZberealBanachspaces,L:domLY!ZbeaFredholmoperatorofindexzeroandP:Y!Y,Q:Z!ZbecontinuousprojectorssuchthatImP=KerL;KerQ=ImL;Y=KerLKerP;Z=ImLImQ:ItfollowsthatLjdomL\KerP:domL\KerP!ImL

5 isinvertible.Wedenotetheinverseofthatmap
isinvertible.WedenotetheinverseofthatmapbyKP.Definition3.2.LetL:domLY!ZbeaFredholmoperatorofindexzero.If isanopenboundedsubsetofYsuchthatdomL\ 6=;,themapN:Y!ZwillbecalledL-compacton ifQN( )isboundedandinverseKP(I�Q)N: !Yiscompact.ThetheoremweuseistheTheorem2.4of[8]ortheTheoremIV.13of[29].Theorem3.3.LetL:domLY!ZbeaFredholmoperatorofindexzeroandletN:Y!ZbeL-compacton .Assumethatthefollowingconditionsaresatis ed:(a)Lx6=Nxforevery(x;)2[(domLnKerL)\@ ](0;1); 466Y.Ji|W.Jiang|J.QiuThentheBVP(1.1)canbewrittenasLx=Nx,x2domL.Forconvenience,wedenoteT1y=Z10h(t)Zt0(t�s) �2 �( �1)y(s)dsdt;T2y=T21y�T22y;whereT21y=Z10(1�s) �2 �( �1)y(s)ds;T22y=Z10g(t)Zt0(t�s) �2 �( �1)y(s)dsdt:Lemma3.4.I

6 fconditions(C1){(C3)hold,thenL:domL
fconditions(C1){(C3)hold,thenL:domLY!ZisaFredholmoperatorofindexzero.Furthermore,thelinearcontinuousprojectoroperatorQ:Z!Zcanbede nedbyQy=Q1y+(Q2y)t;whereQ1y=(411T1y+412T2y)=4,Q2y=(421T1y+422T2y)=4,4ijisthealgebraiccofactorofaij(i;j=1;2),andthelinearoperatorKP:ImL!domL\KerPcanbewrittenby(KPy)(t)=Zt0(t�s) �1 �( )y(s)ds;y2ImL:Moreover,(3.1)kKPykAkykp;y2ImL;where(3.2)A=maxfA1;A2g;A1=1 �( )(( �1)q+1)1=q;A2=1 �( �1)(( �2)q+1)1=q:Proof.ItisclearthatKerL=fa+bt:a;b2R;t2[0;1]g.Moreover,wehave(3.3)ImL=y2Z:T1y=Z10h(t)Zt0(t�s) �2 �( �1)y(s)dsdt=0;T2y=Z10(1�s) �2 �( �1)y(s)ds�Z10g(t)Zt0(t�s) �2 �( �1)y(s)dsdt=0:Infact,Ify2ImL,thenthereexistsx2d

7 omLsuchthatcD x(t)=y(t).Integratingi
omLsuchthatcD x(t)=y(t).Integratingitfrom0tot,weknow(3.4)x0(t)=Zt0(t�s) �2 �( �1)y(s)ds+b0:Substitutingboundaryconditionx0(0)=R10h(t)x0(t)dtintothe(3.4),wehavex0(t)=Z10h(t)x0(t)dt+Zt0(t�s) �2 �( �1)y(s)ds: 468Y.Ji|W.Jiang|J.QiuitisobviousthatdimImQ=2.AgainfromQ1(Q1y)=1 4(411T1(Q1y)+412T2(Q1y))=1 4(411a11+412a12)(Q1y)=Q1y;Q1((Q2y)t)=1 4(411T1((Q2y)t)+412T2((Q2y)t))=1 4(411a21+412a22)(Q2y)=0;Q2(Q1y)=1 4(421T1(Q1y)+422T2(Q1y))=1 4(421a11+422a12)(Q1y)=0;Q2((Q2y)t)=1 4(421T1((Q2y)t)+422T2((Q2y)t))=1 4(421a21+422a22)(Q2y)=Q2y;wehaveQ2y=Q(Q1y+(Q2y)t)=Q1((Q1y)+((Q2y)t))+Q2((Q1y)+((Q2y)t))t=Q1(Q1y)+Q1((Q2y)t)+Q2(Q1y)t+Q2((Q2y)t)t=Q1y+(Q2y)t=Qy;whichimpliestheoperatorQisaline

8 arprojector.Obviously,Qiscontinuous.Now,
arprojector.Obviously,Qiscontinuous.Now,wewillshowthatKerQ=ImL.Ify2KerQ,fromQy=0,weget(411T1y+412T2y=0;421T1y+422T2y=0:Since 411412421422 =46=0;soT1y=T2y=0,whichyieldsy2ImL.Ontheotherhand,ify2ImL,thenT1y=T2y=0,fromthede nitionsofoperatorQ,itisobviousthatQy=0,thusy2KerQ.Hence,KerQ=ImL.Fory2Z,y=(y�Qy)+Qy,wehaveQy2ImQandQ(y�Qy)=0.ItfollowsfromQ(y�Qy)=0,thede nitionsofQ,Q1,Q2andcondition(C3),thatT1(y�Qy)=T2(y�Qy)=0,i.e.y�Qy2ImL.So,Z=ImL+ImQ.Takey2ImL\ImQ,theny=Qy=0,i.e.Z=ImLImQ,So,wehavedimKerL=dimImQ=codimImL=2,thusLisaFredholmoperatorwithindexzero. 470Y.Ji|W.Jiang|J.QiuForx2 ,sincefisaS-Caratheodoryfunction,bythede nitionsofQ1and(C3),wegetjQ1Nx(s)j= 1 4(411T1Nx(s)+412T2Nx(s)

9 ) 1 4[a22jT1Nx(s
) 1 4[a22jT1Nx(s)j+a21jT2Nx(s)j]1 4[a22T1('r(s)+je(s)j)+a21(T21('r(s)+je(s)j)+T22('r(s)+je(s)j))]l1:Similarly,weobtainjQ2Nx(s)j= 1 4(421T1Nx(s)+422T2Nx(s)) 1 4[a12jT1Nx(s)j+a11jT2Nx(s)j]1 4[a12T1('r(s)+je(s)j)+a11(T21('r(s)+je(s)j)+T22('r(s)+je(s)j))]l2:Thus,(3.5)kQNxkp=Z10jQNx(s)jpds1=pZ10(jQ1Nx(s)j+jQ2Nx(s)j)pds1=pl1+l2:So,QN( )isbounded.Now,wewillprovethatKP(I�Q)N( )iscompact.(a)Obviously,KP(I�Q)N: !Yiscontinuous.Forx2 ,since(3.6)kNxkp=Z10jf(s;x(s);x0(s))+e(s)jpds1=pZ10('r(s)+je(s)j)pds1=p:=l3;wehavejKP(I�Q)Nx(t)j= 1 �( )Zt0(t�s) �1(I�Q)Nx(s)ds 1 �

10 ( )Zt0j(t�s) �1(I�Q)Nx(
( )Zt0j(t�s) �1(I�Q)Nx(s)jds1 �( )(( �1)q+1)1=q(l1+l2+l3):Similarly,weobtainj[KP(I�Q)Nx]0(t)j= 1 �( �1)Zt0(t�s) �2(I�Q)Nx(s)ds 472Y.Ji|W.Jiang|J.Qiu(l1+l2+l3) �( )(( �1)q+1)1=q((t( �1)q+12�t( �1)q+11)1=q+(t2�t1)( �1)+1=q)(l1+l2+l3) �( )(( �1)q+1)1=q([( �1)q+1]1=q(t2�t1)1=q+(t2�t1)1=q)(l1+l2+l3) �( )(( �1)q+1)1=q([( �1)q+1]1=q+1)(t2�t1)1=q":Next,wewillprovethatift1;t22[0;1]aresuchthat0t2�t12,then(3.8)j[KP(I�Q)Nx]0(t2)�[KP(I�Q)Nx]0(t1)j":Infact,j[KP(I�Q)Nx]0(t2)�[KP(I�Q)Nx]0(t1)j= 1 �( �1)Zt20(t2�s) �2

11 (I�Q)Nx(s)ds�1 �( �1)Zt1
(I�Q)Nx(s)ds�1 �( �1)Zt10(t1�s) �2(I�Q)Nx(s)ds 1 �( �1)Zt10 [(t2�s) �2�(t1�s) �2](I�Q)Nx(s) ds+1 �( �1)Zt2t1j(t2�s) �2(I�Q)Nx(s)jds(kNxkp+kQNxkp) �( �1)Zt10j(t1�s) �2�(t2�s) �2jqds1=q+Zt2t1jt2�sj( �2)qds1=q(l1+l2+l3) �( �1)Zt10[(t1�s)( �2)q�(t2�s)( �2)q]ds1=q+Zt2t1jt2�sj( �2)qds1=q=(l1+l2+l3) �( �1)(( �2)q+1)1=q((t( �2)q+11+(t2�t1)( �2)q+1�t( �2)q+12)1=q+((t2�t1)( �2)q+1)1=q)(l1+l2+l3) �( �1)(( �2)q+1)1=q2

12 4;( �2)+1=q2":By(3.7)and(3.8),weg
4;( �2)+1=q2":By(3.7)and(3.8),wegetthatfunctionsfromKP(I�Q)N( )areequi-conti-nuouson[0;1].TheArzela{AscoliTheoremimpliesthatNisL-compacton . 474Y.Ji|W.Jiang|J.QiuThus,fromthis,by(4.3)and(4.4),weobtain(4.5)kPxk=maxmaxt2[0;1]jx(0)+x0(0)tj;jx0(0)jjx(0)j+jx0(0)jc1+2c2+2A2kNxkp:Againfromallx2 1;(I�P)x2domL\KerP,LPx=0,thusfromLemma3.4,weget(4.6)k(I�P)xk=kKPL(I�P)xkAkL(I�P)xkp=AkLxkpAkNxkp:Hence,from(4.5)and(4.6),wehave(4.7)kxkkPxk+k(I�P)xkc1+2c2+(A+2A2)kNxkp:If(H1)holds,thenfrom(4.1)and(4.7),weget(4.8)kxk(A+2A2)(k 1kpkxk1+k 2kpkx0k1+ky3kpkx0k1+krkp+kekp)+c1+2c2:Thus,fromkxk1kxkand(4.8),weobtain(4.9)kxk1A+2A2 1�(A+2A2)k 1kpk 2kpkx0k1+k 3kpkx0k1+krkp+kekp+c1+2c2 A+2A2&#

13 19;:Againfrom(4.8),(4.9),onehas(4:10)kx0
19;:Againfrom(4.8),(4.9),onehas(4:10)kx0k1(A+2A2)k 3kp 1�(A+2A2)(k 1kp+k 2kp)kx0k1+A+2A2 1�(A+2A2)(k 1kp+k 2kp)krkp+kekp+c1+2c2 A+2A2:Since2(0;1),fromtheabovelastinequality,thereexistsaconstantK1�0suchthat(4.11)kx0k1K1;thusfrom(4.9)and(4.11),thereexistsaconstantK2�0suchthatkxk1K2,hencekxk=maxfkxk1;kx0k1gmaxfK1;K2g.Therefore 1isbounded.If(4.2)holds,similartotheaboveargument,wecanprovethat 1isboundedtoo.TheproofofStep1is nished.Step2.Let 2=fx2KerL:Nx2ImLg.Nowweshowthat 2isbounded.Infact,x2 2impliesx=a+bt,a;b2RandQNx=0.Thus,Q1N(a+bt)=Q2N(a+bt)=0.By(H2),thereexistt0;t12[0;1]suchthatjx(t0)jc1,jx0(t1)jc2,thenkx0k1=jbjc2: 476Y.Ji|W.Jiang|J.Qiu5.ExampleExample5.1.ConsiderthefollowingBVP(5.1)8�

14 0;�����
0;�����&#x]TJ ;� -1;.93; Td;&#x[000;&#x]TJ ;� -1;.93; Td;&#x[000;&#x]TJ ;� -1;.93; Td;&#x[000;&#x]TJ ;� -1;.93; Td;&#x[000;&#x]TJ ;� -1;.93; Td;&#x[000;&#x]TJ ;� -1;.93; Td;&#x[000;:cD3=2x(t)=m(t)t2+sinx(t) 12+(1+t)x0(t) 14+3sin(x0(t))1=3+5+cos2t;0t1;x0(0)=Z10x0(t)dt;x0(1)=Z10x0(t)dt;where(5.2)m(t)=8&#x]TJ/;ñ 9;&#x.963;&#x Tf ;'.3;— 0;&#x Td[;&#x]TJ/;ñ 9;&#x.963;&#x Tf ;'.3;— 0;&#x Td[;&#x]TJ/;ñ 9;&#x.963;&#x Tf ;'.3;— 0;&#x Td[;&#x]TJ/;ñ 9;&#x.963;&#x Tf ;'.3;— 0;&#x Td[;&#x]TJ ;� -1;.93; Td;&#x[000;&#x]TJ ;� -1;.93; Td;&#x[000;&#x]TJ ;� -1;.93; Td;&#x[000;&#x]TJ ;� -1;.9

15 3; Td;&#x[000;:�1;t2[0;1=3];3t�
3; Td;&#x[000;:�1;t2[0;1=3];3t�2;t2[1=3;2=3];0;t2[2=3;4=5];5t�4;t2[4=5;1]:Let =3=2,p=3,q=3=2,h(t)=1,g(t)=1,andf(t;x(t);x0(t))=m(t)!(t;x(t);x0(t))=m(t)t2+4+sinx(t) 12+(1+t)x0(t) 14+3sin(x0(t))1 3;e(t)=m(t)(t)=m(t)[1+cos2t]:ItisnotdiculttoseethatZ10h(t)dt=1;Z10g(t)dt=1;A=2p 2 p and4= 1 �(3 2)Z10t3=2�1dt1 �(3 2)1�Z10t3=2�1dt1 �(3 2+1)Z10t3=2dt1 �(3 2+1)1�Z10t3=2dt = 4 3p 2 3p 8 15p 4 5p  6=0:Nowweprove(H1){(H3)aresatis ed.Let 1(t)=1=12, 2(t)=1=7, 3(t)=3,r(t)=5,=1=3.Thenwehave(A+2A2)(k 1kp+k 2kp)=19 14r 2 1andj

16 f(t;u;v)j=jm(t)jj!(t)j=jm(t)j
f(t;u;v)j=jm(t)jj!(t)j=jm(t)j t2+4+sinu 12+(1+t)v 14+3sin(v1=3)  1(t)juj+ 2(t)jvj+ 3(t)jvj+r(t):Thus(H1)issatis ed. 478Y.Ji|W.Jiang|J.Qiu[14]R.W.IbrahimandM.Darus,Subordinationandsuperordinationforunivalentsolu-tionsforfractionaldi erentialequations,J.Math.Anal.Appl.345(2008),871{879.[15]W.Jiang,Theexistenceofsolutionstoboundaryvalueproblemsoffractionaldi eren-tialequationsatresonance,NonlinearAnal.74(2011),1987{1994.[16]G.L.KarakostasandP.Ch.Tsamatos,Onanonlocalboundaryvalueproblematresonance,J.Math.Anal.Appl.259(2001),209{218.[17]A.A.Kilbas,H.M.SrivastavaandJ.J.Trujillo,TheoryandApplicationsofFrac-tionalDi erentialEquations,North-HollandMathematicsStudies,vol.204,ElsevierScienceB.V.,Amsterdam,20

17 06.[18]N.Kosmatov,Amulti-pointboundaryva
06.[18]N.Kosmatov,Amulti-pointboundaryvalueproblemwithtwocriticalconditions,Non-linearAnal.65(2006),622{633.[19] ,Integralequationsandinitialvalueproblemsfornonlineardi erentialequationsoffractionalorder,NonlinearAnal.70(2009),2521{2529.[20]S.LadaciandJ.L.LoiseauandA.Charef,Fractionalorderadaptivehigh-gaincontrollersforaclassoflinearsystems,Commun.NonlinearSci.Numer.Simul.13(2008),707{714.[21]M.P.Lazarevic,FinitetimestabilityanalysisofPD fractionalcontrolofrobotictime-delaysystems,Mech.Res.Comm.33(2006),269{279.[22]B.Liu,Solvabilityofmulti-pointboundaryvalueproblematresonance(II),Appl.Math.Comput.136(2003),353{377.[23] ,Solvabilityofmulti-pointboundaryvalueproblematresonancePart(IV),Appl.Math.Comput.143(2003),275{299.[24]Y.LiuandW.Ge,Solvabilityofnonlocal

18 boundaryvalueproblemsforordinarydif-fere
boundaryvalueproblemsforordinarydif-ferentialequationsofhigherorder,NonlinearAnal.57(2004),435{458.[25]S.LuandW.Ge,Ontheexistenceofm-pointboundaryvalueproblematresonanceforhigherorderdi erentialequation,J.Math.Anal.Appl.287(2003),522{539.[26]R.Ma,Multiplicityresultsforathirdorderboundaryvalueproblematresonance,Non-linearAnal.32(1998),493{499.[27] ,Multiplicityresultsforathree-pointboundaryvalueproblematresonance,Non-linearAnal.53(2003),777{789.[28] ,Existenceresultsofam-pointboundaryvalueproblematresonance,J.Math.Anal.Appl.294(2004),147{157.[29]J.Mawhin,Topologicaldegreemethodsinnonlinearboundaryvalueproblems,NS-FCBMSRegionalConferenceSeriesinMathematics,Amer.Math.Soc.,Providence,RI,1979.[30]R.K.NagleandK.L.Pothoven,Onathird-ordernonlinearboundaryvalueproblematres

19 onance,J.Math.Anal.Appl.195(1995),148{15
onance,J.Math.Anal.Appl.195(1995),148{159.[31]A.M.Nakhushev,TheSturm{Liouvilleproblemforasecondorderordinarydi erentialequationwithfractionalderivativesinthelowerterms,Dokl.Akad.NaukSSSR234(1977),308{311.[32]I.Podlubny,FractionalDi erentialEquations,AcademicPress,SanDiego,1999.[33] ,FractionalDi erentialEquations,MathematicsinScienceandEngineering,vol.198,AcademicPress,NewYork,London,Toronto,1999.[34]B.PrezeradzkiandR.Stanczy,Solvabilityofamulti-pointboundaryvalueproblematresonance,J.Math.Anal.Appl.264(2001),253{261.[35]S.Z.Rida,H.M.El-SherbinyandA.A.M.Arafa,OnthesolutionofthefractionalnonlinearSchrodingerequation,Phys.Lett.A372(2008),553{558.[36]S.G.Samko,A.A.KilbasandO.I.Marichev,FractionalIntegralsandDerivatives,TheoryandApplications,GordonandBreach,Yv

Related Contents


Next Show more