/
InternationalConferenceontheApplicationofComputerScienceandMathematics InternationalConferenceontheApplicationofComputerScienceandMathematics

InternationalConferenceontheApplicationofComputerScienceandMathematics - PDF document

winnie
winnie . @winnie
Follow
343 views
Uploaded On 2021-01-11

InternationalConferenceontheApplicationofComputerScienceandMathematics - PPT Presentation

TRabczukJJRodenasandTLahmerResearchTrainingGroup1462BauhausUniversitatWeimarBerkaerStr999423WeimarGermanyEmailshahramghorashiuniweimardeKeywordsCrackEXtendedIsoGeometricAnalysisXIG ID: 829595

nurbs 150 belytschko splines 150 nurbs splines belytschko nement spline mohammadi xiga internationaljournalfornumericalmethodsinengineering ghorashi rabczuk mesh 2011 2012 2010

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "InternationalConferenceontheApplicationo..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 InternationalConferenceontheApplicationo
InternationalConferenceontheApplicationofComputerScienceandMathematicsinArchitectureandCivilEngineeringK.Gurlebeck,T.LahmerandF.Werner(eds.)Weimar,Germany,04–06July2012T-SPLINEBASEDXIGAFORADAPTIVEMODELINGOFCRACKEDS.Sh.Ghorashi ,T.Rabczuk,J.J.RodenasandT.LahmerResearchTrainingGroup1462,Bauhaus-UniversitatWeimarBerkaerStr.9,99423Weimar,GermanyE-mail:shahram.ghorashi@uni-weimar.deKeywords:Crack,EXtendedIsoGeometricAnalysis(XIGA),T-splineBasisFunctions,LocalRenement,StressIntensityFactor.Safetyoperationofimportantcivilstructuressuchasbridgescanbeestimatedbyusingfractureanalysis.Sincetheanalyticalmethodsarenotcapableofsolvingmanycompli-catedengineeringproblems,numericalmethodshavebeenincreasinglyadopted.Inthispaper,apartofisotropicmaterialwhichcontainsacrackisconsideredasapartialmodelandtheproposedmodelqualityisevaluated.EXtendedIsoGeometricAnalysis(XIGA)isanewdevel-opednumericalapproach[1,2]whichbenetsfromadvantagesofitsorigins:eXtendedFiniteElementMethod(XFEM)andIsoGeometricAnalysis(IGA).Itiscapableofsimulatingcrackpropagationproblemswithnoremeshingnecessityandcapturingsingulareldatthecracktipbyusingthecracktipenrichmentfunctions.Also,exactrepresentationofgeometryispossi-bleusingonlyfewelements.XIGAhasalsobeensuccessfullyappliedforfractureanalysisofcrackedorthotropicbodies[3]andforsimulationofcurvedcracks[4].XIGAappliesNURBSfunctionsforbothgeometrydescriptionandsolutioneldapproximation.ThedrawbackofNURBSfunctionsisthatlocalrenementcannotbede

2 nedregardingthatitisbasedontensor-produc
nedregardingthatitisbasedontensor-productconstructsunlessmultiplepatchesareusedwhichhasalsosomelimitations.Inthiscontribution,theXIGAisfurtherdevelopedtomakethelocalrenementfeasiblebyusingT-splinebasisfunctions.Adoptingarecoverybasederrorestimatorintheproposedapproachforevaluationofthemodelqualityandperformingtheadaptiveprocessesisinprogress.Finally,somenumericalexampleswithavailableanalyticalsolutionsareinvestigatedbythedevelopedscheme. 1INTRODUCTIONIncreasinglydevelopmentofcomputersmadethepossibilitytoapplynumericalmethodsforsimulationofcivilstructuresasanalternativetoanalyticalmethodswhicharenotfeasibleinresolvingcomplexproblems.Thishasattractedmanyresearchers'interestsfordevelopingmoreaccurateandefcientcomputationalapproachesinthelastdecades.Fractureanalysisofstructuresisofgreatimportanceforestimationoftheirsafetyoperation.Areliableandefcientnumericalmethodisrequiredforanalysisofcrackedpartofastructure.Theremeshingnecessityandexistenceofasingulareldaroundacracktipinsimulationofcrackpropagationproblemsledtothedevelopmentofanewgenerationofcomputationalapproachessuchasmeshfreemethods[5-14]andtheextendedFEM(XFEM)[15-20]whichbelongstotheclassofPartitionofUnityMethods(PUM).Movingdiscontinuousproblemssuchascrackpropagationcanbeanalyzedbythesemethodswithouttherequrirementofremeshingorrearrangingofthenodalpoints.IntheXFEM,aprioriknowledgeofthesolutionislocallyaddedtotheapproximationspace.Thisenrichmentallowsforcapturingparticularfeaturessuchasdiscontinuiti

3 esandsingularitieswhicharepresentintheso
esandsingularitieswhicharepresentinthesolutionexactly.Morerecently,anumericalapproachcalledextendedisogeometricanalysis(XIGA)[1,2]hasbeendevelopedforsimulationofstationaryandpropagatingcracksbyincorporatingtheconceptsoftheXFEMintotheisogeometricanalysis[21,22].Somesuperioritiesoftheisoge-ometricanalysisincomparisonwiththeconventionalFEMare:simpleandsystematicrene-mentstrategies,anexactrepresentationofcommonandcomplexengineeringshapes,robustnessandhigheraccuracy.XIGAhasalsobeensuccessfullyappliedforfractureanalysisofcrackedorthotropicbodies[3]andforsimulationofcurvedcracks[4].XIGAappliesNURBSfunctionsforbothgeometrydescriptionandsolutioneldapproxima-tion.ThedrawbackofNURBSfunctionsisthatlocalrenementcannotbedenedregardingthatitisbasedontensor-productconstructsunlessmultiplepatchesareusedwhichhasalsosomelimitations.Inthiscontribution,T-splinebasisfunctionsareappliedintheXIGAtomakelocalrenementfeasible.Finally,forqualityevaluationoftheproposedmodel,somenumericalsimulationswithavail-ableanalyticalsolutionsarestudied.2BASISFUNCTIONS2.1NURBSNon-uniformrationalB-splines(NURBS)areageneralizationofpiecewisepolynomialB-splinecurves.TheB-splinebasisfunctionsaredenedinaparametricspaceonaknotvector.Aknotvectorinonedimensionisanon-decreasingsequenceofrealnumbers:;᠀;:::;᠀istheistheknotindex,=1;:::;n+1istheorderoftheB-spline,andisthenumberofbasisfunctions.Thehalfopenintervalal᠀i;᠀iscalledtheknotspananditcanhavezerolengthsinceknotsmayberepeatedmorethan

4 once,andthe intervalal᠀1;᠀iscalledap
once,andthe intervalal᠀1;᠀iscalledapatch.Intheisogeometricanalysis,alwaysopenknotvectorsareemployed.Aknotvectoriscalledopenifitcontains+1repeatedknotsatthetwoends.Withacertainknotspan,theB-splinebasisfunctionsaredenedrecursivelyas,⤀=⤀= ⤀+ =1;:::=1;:::;nAB-splinecurveoforderisdenedby:⤀=istheB-splinebasisfunctionoforderarecontrolpoints,givenind-dimensionalspaceThenon-uniformrationalB-spline(NURBS)curveoforderisdenedas:⤀=⤀= aretheNURBSbasisfunctions,arethecontrolpointsandisthethatmustbenon-negative.Inthetwodimensionalparametricspacespace;1]2,NURBSsurfacesareconstructedbytensorproductthroughknotvectors;᠀;:::;᠀;᠀;:::;᠀.Ityieldsto:;᠀ k;lFormoredetailsonNURBS,referto[23].2.2T-splinesT-splinesisageneralizationofNURBSenablinglocalrenement[26,27].FordeningtheT-splinebasisfunctions,anindexspacecalledT-meshisdened.ItissimilartotheindexspacerepresentationofaNURBS,withthedifferencethatT-junctions,whichareverticesconnectingthreeedges,areallowed.AnexampleofT-meshisillustratedinFig.1.Itisnotedthateachline Figure1:AsampleofT-mesh.inthemeshcorrespondstoaknotvalue.Then,anchorsaredenedontheT-meshtoidentifythelocationofeachbasisfunction.Theyarelocatedattheintersectionsofknotlinesifthepolynomialorderisodd,otherwisetheirlocationareinthecenterofthecells.Regardlessofdegree,ananchorlocationisatthecenterofthesupportofafunctionintheindexspace.FordenitionofT-splines,localknotvectorsaredenedinsteadofusingtheglobalknotvectorssinceeachbas

5 isfunctionhasthecompactsupportof+1)+1)kn
isfunctionhasthecompactsupportof+1)+1)knots.Asil-lustratedinFig.2,localknotvectorsineachdirectionaredenedbyhorizontallyorverticallymarchingfromtheanchorsbackwardandforward[27].Afterwards,eachbasisfunctioncanbedenedusingtheEqs.2,3and7anditscorrespondinglocalknotvectors.Inordertorenethemesh,knotinsertionprocessisperformed.Itconsistsofaddingnewknotstothepresentmesh/T-meshandcorrespondingly,modifyingandaddingsomecontrolpoints.FormoreinformationaboutT-splineandlocalrenement,readersarereferredto[26,3EXTENDEDISOGEOMETRICANALYSISExtendedisogeometricanalysis(XIGA)isanewlydevelopedcomputationalapproachwhichusesthesuperioritiesoftheextendedniteelementmethod(XFEM)withintheisogeometricanalysis.Itiscapableofcrackpropagationsimulationwithouttheremeshingnecessitysinceelementedgesaredenedindependentofthecracklocation.SolutionȀeldapproximationisextrinsicallyenrichedbytheHeavisideandbranchfunctionsforcrackfaceandsingulareld(aroundthecracktip)modeling,respectively.;᠀⤀=;᠀;᠀;᠀ThersttermintherighthandsideisstandardIGAapproximation.;᠀aretheT-Splinebasisfunctionsofordersdirections,respectively,atthepoint;᠀ (a) (b) Figure2:Schematicviewofdeninglocalknotvectorsfortheanchor:(a)quadraticpolynomialorder:;᠀;᠀;᠀;᠀;᠀;᠀;(b)cubicpolynomialorder:;᠀;᠀;᠀;᠀;᠀;᠀;᠀;᠀intheparametricspacespace;1]Ȁ[0;1].fajgarethevectorsofadditionaldegreesoffreedomwhicharerelatedtothemodelingofcrackfaces,arethevectorsofadditionaldegreesoffreedomfor

6 modelingthecracktip,isthenumberofnonzero
modelingthecracktip,isthenumberofnonzerobasisfunctionsforagivenknotspan,isthenumberofbasisfunctionswhichhavebeenselectedasbranchenrichedbasisfunctions.Theycanbeselectedusingthetopologicalenrichmentstrategyorgeometri-calenrichmentone.Intopologicalenrichmentscheme,thebasisfunctionswhichcontainthecracktipintheirinuencedomainsareselectedasthebranchenrichedbasisfunctionswhileingeometricalenrichmentmethod,branchenrichedbasisfunctionsconsistofthebasisfunctionschosenfromthepreviousstrategyandtheoneswhichareselectedaccordingtoconsideringaconstantdomainaroundthecracktip.Inthiscontribution,geometricalenrichmentmethodisadoptedandacirculardomainwithapredenedradiusatthecentercracktipisconsideredandbasisfunctionswhoseinuencedomainscontainthecracktipandwhoseanchorslocatedinthecircleareselectedasbranchenrichedbasisfunctions.isthenumberofbasisfunctionsthathavecrackfaceintheirsupportdomainsandhavenotbeenselectedasbranchenrichedbasisfunctions.isthegeneralizedHeavisidefunction[24],⤀=istheunitnormalvectorofcrackalignmentinpointonthecracksurfacewhichisthenearestpointto;᠀InEq.8,=1arethecracktipenrichmentfunctionswhoserolesarerepro-ducingthesingulareldaroundcracktips, rsin 2;p rcos 2;p rsinsin 2;p rsincos 2(10)5 Figure3:AmodeIcrackmodelinaninniteplate.r;ሀarethelocalcracktippolarcoordinateswithrespecttothetangenttothecracktipinthephysicalspace.Readersarereferredto[2]formoreinformationaboutXIGAformulationandimplementa-4NUMERICALEXAMPLESInthissection,twonumericalexampl

7 esareinvestigatedbytheproposedapproach.T
esareinvestigatedbytheproposedapproach.TherstonecontainsamodeIcrackwhiletheotherincludesamixedmodecrack.Newknotsaddedforrenementsatisfytheconditionsofanalysis-suitableT-splines[28].Basisfunctionsofcubicorderareconsidered.Gaussquadraturerulewith4x4Gausspointsfornormalelementsisutilized.Forintegrationoversplitandtipelements,sub-trianglesandalmostpolartechniqueswith13and7x7Gausspointsforeachsub-trianglesareadopted.4.1ModeIcrackmodelintheinniteplateAninniteplateincludingastraightcrackunderpurefracturemodeIisconsidered,asde-pictedinFigure3.Theplateisinplanestrainstate.Then,alocalnitesquaredomainABCDwhichincludesthecracktipinthecenterisdened.ThedomainABCD,whichincludesthe=5mmpartofthecrack,issmallerthanthecracklength=200mmintheinniteplate.ThesizeofthisanalyticaldomainABCDismm.Otherparametersare:Young'smod-=10,Poisson'sratio=0andprescribeduniaxialstress=10Theanalyticalsolutionforthedisplacementandstresseldsintermsoflocalpolarcoordi-natesinareferenceframer;ሀcenteredatthecracktipare:r;ሀ⤀= p 2KI Ep rcos 222cos2 r;ሀ⤀= p 2KI Ep rsin 222cos2 2(11)6 Table1:Errornorms(inpercent)ofthethreemodelsbeforeandafterlocalrenementusingNURBSandT-splines. model localrened basisfunctions controlpoints elements DOFs errornorm(%) L2 energy I no NURBS 64 25 272 0.1341 2.4945 yes NURBS 140 77 500 0.0698 2.1441 yes T-spline 112 77 444 0.0706 2.1595 II no NURBS 324 225 1044 0.0516 1.6823 yes NURBS 680 527 2488 0.0101 0.9486 yes T-spline 442 391 1820 0

8 .0101 0.9252 III no NURBS 784 625 2592 0
.0101 0.9252 III no NURBS 784 625 2592 0.0230 1.2012 yes NURBS 1620 1377 5864 0.0039 0.6358 yes T-spline 972 891 3848 0.0040 0.6238 r;ሀ⤀= p ᤀr 21sin 2sin3 yyr;ሀ⤀= p ᤀr 1+sin 2sin3 r;ሀ⤀= p ᤀr 2cos 2cos3 2(12)whereKI=op ᤀaisthemodeIstressintensityfactor.Analyticaldisplacementeld(Eq.11)isprescribedontheboundariesexceptforthecrackboundary.Unlikehomogeneousessen-tialboundaryconditions,inhomogeneousboundariescannotbeimposedinastraightforwardapproachinisogeometricanalysis;becausethenon-interpolatingnaturesofNURBSandT-splinesdonotallowforsatisfactionofthekroneckerdeltaproperty.Forimpositionofessentialboundaryconditions,theleast-squaresminimizationmethod[1]isapplied.Threemodelswithuniformlydistributedelementsareconsidered:modelIwithments,modelIIwithelements,andmodelIIIwithelements.Forthispurpose,theh-renement(knotinsertion)processisutilized.Inordertolocallyrenethemesharoundthecrack,theelementsintersectedwiththecrackarechosenforuniformrenementinamesh.BothNURBSandT-splinebasisfunctionsareappliedforeachmodel.Meshandele-mentsforthemodelIIIbeforeandafterlocalrenementaredisplayedinFig.4.Theexact(ofdisplacement)andenergyerrornorms(inpercent)ofallmodelsaregiveninTable1.ItisobservedthatinsomecasesthemodelswhicharelocallyrenedbyusingT-splinesresultinevenmoreaccurateresultsthanthoseobtainedbyusingNURBS,althoughmuchlessnumberofcontrolpointsanddegreesoffreedomareapplied.4.2InclinedcentercrackinasquareplateunderuniaxialtensionMixedmodestressinten

9 sityfactorsforasquareplatewithacenterinc
sityfactorsforasquareplatewithacenterinclinedcrackunderremoteuniaxialtensilestress(Fig.5)areinvestigated.Theplateisinplanestressstate,with=10=0.Sincetheplatedimensionsarelargeincomparisontothecracklength,thenumericalresultscanbereasonablycomparedwiththeanalyticalsolutionofinniteplate.Forthepredenedloading,theexactmixedmodestressintensityfactorsare: ᤀaḻKII ᤀaisthecrackinclinationanglewithrespecttothehorizontalline. (a) (b) (c) (c) Figure4:MeshandelementsofthemodelIIIbeforeandafterlocalrenement:(a)mesh/elementsbeforelocalre-nement;(b)mesh/elementsafterlocalrenementusingNURBS;(c)meshafterlocalrenementusingT-splines;(c)elements(forintegration)afterlocalrenementusingT-splines. Figure5:Geometryandloadingofasquareplatewithacenterinclinedcrack.Table2:Errors(%)ofcomputedmixed-modeSIFsfordifferentcrackinclinationangles,(degree). KI II NURBS T-spline NURBS T-spline 0 0.4339 0.4339 - - 15 0.3786 0.3786 0.2912 0.2913 30 0.477 0.477 1.0711 1.07 45 0.4759 0.4759 1.0388 1.0387 60 0.6498 0.6526 1.3027 1.3039 75 0.4746 0.4746 1.1389 1.1389 SinceDirichletboundaryconditionishomogeneousinthisexample,nospecictechniqueisutilizedforimpositionofessentialboundaryconditions.Fordiscretizingthemodel,rstlyuniformlydistributedelementsareconstructedusingtheh-renement,thentheelementslocatedinin;6]Ȁ[4;6]areselectedforuniformrenementinamesh.BothNURBSandT-splinebasisfunctionsareappliedforanalysis.ModeldiscretizationsformodelswhichuseNURBSandT-splinebas

10 isfunctionsareillustratedinFigs.6and7,re
isfunctionsareillustratedinFigs.6and7,respectively.Differentinclinationangleshavebeenmodeledusingthetwoaforementioneddiscretizations.ItisinterestingtonotethatthebothresultedinverysimilarmixedmodeSIFswhile2304controlpointsand2025elementsaremodeledfortherstdiscretizationand1504controlpointsand1465elementsaremodeledforthesecondone.Errors(%)ofthecomputedSIFsaregiveninTable2andtheexactandcomputednormalizedmixedmodeSIFsareillustratedinFig.8.ThecomputedSIFsareclosetotheexactSIFs.5CONCLUSIONInthiscontribution,theXIGAmethodhasbeenfurtherdevelopedbyusingtheT-splinebasisfunctions.Thismethodiscapableoflocalrenementwhichisnecessaryforadaptiveprocedure. (a) (b) Figure6:DiscretizationofasquareplatewithacenterinclinedcrackusingNURBS:(a)mesh;(b)controlpoints. (b) (c) Figure7:DiscretizationofasquareplatewithacenterinclinedcrackusingT-splines:(a)mesh;(b)controlpoints;(c)elementsforintegration. Figure8:AnalyticalandcomputednormalizedmixedmodeSIFsforseveralcrackinclinationanglesAdoptingarecoverybasederrorestimatorintheproposedapproach(whichisinprogressbytheauthors),canmakeXIGAarobustandpracticalmethodforfractureanalysisofstructures.ACKNOWLEDGEMENTThisresearchissupportedbytheGermanResearchInstitute(DFG)viaResearchTrain-ingGroup鑅瘀aluationofCoupledNumericalPartialModelsinStructuralEngineering(GRK1462)”,whichisgratefullyacknowledgedbytheauthors.[1]E.DeLuycker,D.J.Benson,T.Belytschko,Y.BazilevsandM.C.Hsu,X-FEMinIso-geometricAnalysisforLinearFractureMechanics.InternationalJour

11 nalforNumericalMethodsinEngineering,541&
nalforNumericalMethodsinEngineering,541–565,2011.DOI:10.1002/nme.3121[2]S.Sh.Ghorashi,N.ValizadehandS.Mohammadi,EXtendedIsoGeometricAnalysis(XIGA)forSimulationofStationaryandPropagatingCracks.InternationalJournalforNumericalMethodsinEngineering,1069–1101,2012.DOI:10.1002/nme.3277[3]S.Sh.Ghorashi,N.ValizadehandS.Mohammadi,AnalysisofCrackedOrthotropicMe-diaUsingtheEXtendedIsoGeometricAnalysis(XIGA).InternationalConferenceonEx-tendedFiniteElementMethods-RecentDevelopmentsandapplications,XFEM2011,Cardiff,UK,2011.[4]S.Sh.Ghorashi,N.Valizadeh,S.MohammadiandT.Rabczuk,ExtendedIsogeometricAnalysisofPlateswithCurvedCracks.TheEighthInternationalConferenceonEngi-neeringComputationalTechnology,ECT2012,Dubrovnik,Croatia,2012. [5]T.Belytschko,Y.Y.LuandL.Gu,Element-FreeGalerkinMethods.InternationalJournalforNumericalMethodsinEngineering,229–256,1994.[6]T.Belytschko,Y.Krongauz,D.Organ,M.FlemingandP.Krysl,MeshlessMethods:AnOverviewandRecentDevelopments.ComputerMethodsinAppliedMechanicsand(1-4),3–47,1996.[7]V.P.Nguyen,T.Rabczuk,S.BordasandM.Duot,MeshlessMethods:AReviewandComputerImplementationAspects.MathematicsandComputersinSimulation763–813,2008.[8]S.Sh.Ghorashi,S.MohammadiandS.R.Sabbagh-Yazdi,OrthotropicEnrichedElementFreeGalerkinMethodforFractureAnalysisofComposites.EngineeringFractureMe-chanics,1906–1927,2011.[9]T.RabczukandT.Belytschko,CrackingParticles:ASimpliedMeshfreeMethodforArbitraryEvolvingCracks.InternationalJournalforNumericalMethodsi

12 nEngineering(13),2316–2343,2004.[10
nEngineering(13),2316–2343,2004.[10]T.Rabczuk,G.Zi,S.BordasandH.Nguyen-Xuan,ASimpleandRobustThree-DimensionalCracking-ParticleMethodwithoutEnrichment.ComputerMethodsinAp-pliedMechanicsandEngineering(37-40),2437–2455,2010.[11]T.RabczukandT.Belytschko,AThreeDimensionalLargeDeformationMeshfreeMethodforArbitraryEvolvingCracks.ComputerMethodsinAppliedMechanicsand(29-30),2777–2799,2007.[12]T.Rabczuk,P.M.A.AreiasandT.Belytschko,AMeshfreeThinShellMethodforNon-linearDynamicFracture.InternationalJournalforNumericalMethodsinEngineering(5),524–548,2007.[13]T.RabczukandG.Zi,AMeshfreeMethodBasedontheLocalPartitionofUnityforCohesiveCracks.ComputationalMechanics(6),743–760,2007.[14]T.Rabczuk,S.BordasandG.Zi,OnThree-DimensionalModellingofCrackGrowthusingPartitionofUnityMethods.Computers&Structures(23-24),1391–1411,2010.[15]T.BelytschkoandT.Black,ElasticCrackGrowthinFiniteElementswithMinimalInternationalJournalforNumericalMethodsinEngineering,601–620,[16]S.Mohammadi,ExtendedFiniteElementMethodforFractureAnalysisofStructures.Wi-ley/Blackwell,UnitedKingdom,2008.[17]T.-P.FriesandT.Belytschko,TheExtended/GeneralizedFiniteElementMethod:AnOverviewoftheMethodandItsApplications.InternationalJournalforNumericalMeth-odsinEngineering(3),253–304,2010.[18]A.AsadpoureandS.Mohammadi,DevelopingNewEnrichmentFunctionsforCrackSim-ulationinOrthotropicMediabytheExtendedFiniteElementMethod.InternationalJour-nalforNumericalMethodsinEngineering,2150–2172,2007. [19

13 ]D.MotamediandS.Mohammadi,DynamicAnalysi
]D.MotamediandS.Mohammadi,DynamicAnalysisofFixedCracksinCompositesbytheExtendedFiniteElementMethod.EngineeringFractureMechanics,3373–3393,[20]S.EsnaAshariandS.Mohammadi,DelaminationAnalysisofCompositesbyNewOr-thotropicBimaterialExtendedFiniteElementMethod.InternationalJournalforNumeri-calMethodsinEngineering(13),1507–1543,2011.doi:10.1002/nme.3114[21]T.J.R.Hughes,J.A.CottrellandY.Bazilevs,IsogeometricAnalysis:CAD,FiniteEl-ements,NURBS,ExactGeometryandMeshRenement.ComputerMethodsinAppliedMechanicsandEngineering,4135–4195,2005.[22]J.A.Cottrell,T.J.R.HughesandY.Bazilevs,IsogeometricAnalysis:TowardsIntegrationofCADandFEA.Wiley,Chichester,2009.[23]L.PieglandW.Tiller,TheNURBSBook.Springer-Verlag,NewYork,1997.[24]N.Moes,J.DolbowandT.Belytschko,AFiniteElementMethodforCrackGrowthwith-outRemeshing.InternationalJournalforNumericalMethodsinEngineering,131–150,1999.[25]T.BelytschkoandT.Black,ElasticCrackGrowthinFiniteElementsWithMinimalInternationalJournalforNumericalMethodsinEngineering,601–620,[26]T.W.Sederberg,J.Zheng,A.BakenovandA.Nasri,T-splinesandT-NURCCSs.ACMTransactionsonGraphics(3),477–484,2003.[27]Y.Bazilevs,V.M.Calo,J.A.Cottrell,J.A.Evans,T.J.R.Hughes,S.Lipton,M.A.ScottandT.W.Sederberg,IsogeometricanalysisusingT-splines.ComputerMethodsinAppliedMechanicsandEngineering(5-8),229–263,2010.[28]M.A.Scott,X.Li,T.W.SederbergandT.J.R.Hughes,LocalRenementofAnalysis-SuitableT-splines.ComputerMethodsinAppliedMechanicsandEngineering206

Related Contents


Next Show more