/
MIT OpenCourseWare MIT OpenCourseWare

MIT OpenCourseWare - PDF document

ximena
ximena . @ximena
Follow
342 views
Uploaded On 2021-01-11

MIT OpenCourseWare - PPT Presentation

httpocwmitedu 2094 Finite Element Analysis of Solids and Fluids Spring 2008 For information about citing these materials or our Terms of Use visit httpocwmiteduterms 233 ID: 828864

094 mit element space mit 094 space element det elements isoparametric terms weight gauss integration find x0000 vector finite

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "MIT OpenCourseWare" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 MIT OpenCourseWare http://ocw.mit.edu
MIT OpenCourseWare http://ocw.mit.edu 2.094 Finite Element Analysis of Solids and Fluids Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.  | {z } X X MIT 2.0947. Isoparametric elements  = Bu^u^ T = u1 u2 v4(7.7)  2 @u 3@x 67 67 6 @v 7 = Bu^(7.8)

2 6@y 7 45 @u + @v @y@x 012
6@y 7 45 @u + @v @y@x 012 301 @ @x @y @ @r @r @r @x @A = 4 5@A(7.9) @ @x @y @ @s @s @s @y J 01 01 @@ @x @r @A = J� 1 @A (7.10) @@ @y @s J must be non-singular which ensures that there is unique correspondence between (x;y) and (r;s). Hence, Z 1 Z 1 K = B T CB t det(J) dr ds(7.11) � 1 � 1 | {z } dV Z

3 1 Z 1 Also, RB = H T f B t det(J) dr
1 Z 1 Also, RB = H T f B t det(J) dr ds(7.12) � 1 � 1 Numerical integration (Gauss formulae) (Ch. 5.5) = t B T det(Jij )  (weight i, j) (7.13) ij K ij CB ij 2x2 Gauss integration, (i = 1; 2) (7.14) (j = 1; 2) (weight i; j = 1 in this case) (7.15) 29 Z MIT 2.094 7. Isoparametric elements Convergence Principle of virtual work: Reading: Z

4 Sec. 5.5.5, 4.3  T C dV =
Sec. 5.5.5, 4.3  T C dV = R ( u ) (7.21) V Find u, solution, in V, vector space (any continuous function that satis\fes boundary conditions), satisfying  T C dV = a(u; v) =(f; v) for all v, an element of V. (7.22) | {z } |{z} V bilinear form R (v) Example: Finite Element problem Find uh 2 Vh, where Vh is F.E. vector space such thata(uh; v

5 h)=(f; vh) 8 vh 2 Vh (7.23) Size
h)=(f; vh) 8 vh 2 Vh (7.23) Size of Vh ) # of independent DOFs (here it's 12). Note: a(w; w) � 0 for w 2 V(w = 0) | {z } 6 2x (strain energy when imposing w) Also, a(wh; wh) � 0 for wh 2 Vh (Vh  V, wh = 0) 6 31 | {z } MIT 2.094 7. Isoparametric elements Property I De\fne: eh = u � uh. From (7.22) , a(u; vh)=(f; vh) (7.24) From (7

6 .23) , a(uh; vh)=(f; vh) (7.25) Hence,
.23) , a(uh; vh)=(f; vh) (7.25) Hence, a(u � uh; vh) = 0 (7.26) a(eh; vh) = 0 (7.27) (error is orthogonal in that sense to all vh in F.E. space). Property II (7.28) a(uh; uh)  a(u; u) Proof: a(u; u)= a(uh + eh; uh + eh) (7.29) = a(u h ; u h )+     : 0 by Prop. I 2a(uh; eh)+ a(eh; eh) (7.30)  0 ) a(u; u)  a(uh; uh) (7.31)