/
Quantum-classical hybrid algorithms Quantum-classical hybrid algorithms

Quantum-classical hybrid algorithms - PowerPoint Presentation

ximena
ximena . @ximena
Follow
65 views
Uploaded On 2023-10-29

Quantum-classical hybrid algorithms - PPT Presentation

on a small trappedion quantum computer Norbert M Linke Joint Quantum Institute University of Maryland College Park MD USA 4 Feb 2019 UT Quantum Workshop College Park Maryland USA Overview ID: 1026450

machine quantum learning arxiv quantum machine arxiv learning zhu 1806 phys nature qubit 02807 optimization 2018 2017 ion nml

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Quantum-classical hybrid algorithms" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1. Quantum-classical hybrid algorithms on a small trapped-ion quantum computerNorbert M. LinkeJoint Quantum Institute, University of Maryland, College Park, MD USA4 Feb 2019, UT Quantum WorkshopCollege Park, Maryland, USA

2. OverviewQuantum computer module prototype (5-7 qubits) modular gates and compiler Quantum algorithms Benchmark comparisons Deuteron nucleus Quantum Machine Learning Outlook: challenges and scaling upQuantum computing hardware why ions make good qubits

3. Trapped ions A good quantum computing candidate – why?Isolated quantum system, preparation and read-out with laser lightgate operations (using lasers/microwaves)1〉|0〉|1〉|0〉|laserdetector++

4. The ion trap quantum computer (vision)Ion trap Quantum computing – the big picquantum register“accumulator” segmented electrodes D. J. Wineland et al. 1998C. Monroe / J. Kim et al. 2013Are we there yet…? – challengesHigher fidelity operationsScalability: control over more qubits

5. trapped ion Coulomb crystalsIon traps: hardware in current UMD module

6. S. Olmschenk, et al., PRA 76 (2007)Trapped ion qubits: 171Yb+ level structureatomic clock qubit -> B-field insensitivelong coherence times: ~1scompare: “true” clock qubit in 43Ca+ at 146Gcoherence time ~1minT.P. Harty, et al., PRL 113 (2015)

7. Modular architectureS. Debnath et al. Nature 536 (2016)Grover, Hidden Shift, EC …

8. Hardware2S1/22P3/2D=33 THz|0|1355 nm2P1/2171Yb+D=66 THz

9. Hardware: Read-out

10. Modular architectureS. Debnath et al. Nature 536 (2016)Grover, Hidden Shift, EC …

11. Quantum control: Single qubit rotationsR-gateRaman beat note

12. Beatnote frequencytransition probabilitycarrierredsidebandbluesidebandQuantum control: Exciting the motion…mode1mode21515K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82 (1999)S.-L. Zhu et. al., Phys. Rev. Lett. 97 (2006)T. Choi et al., Phys. Rev. Lett. 112 (2014)

13. Quantum control: Full connectivitynot limited to local operationsNML et al. PNAS 114, 13 (2017)

14. Modular architectureS. Debnath et al. Nature 536 (2016)Grover, Hidden Shift, EC …

15. C-SWAPQuantum compiler: Fredkin gate

16. NML et al., arxiv 1712.08581 (2017) Quantum compiler: Fredkin gate circuit

17. Quantum compiler: Fredkin gate resultsFredkin [1,2:4], F=86.8(3)%(corrected for 2% spam error)

18. Modular architectureGrover, Hidden Shift, EC …S. Debnath et al. Nature 536 (2016)

19. Quantum algorithms: build it …and they will come!1 S. Debnath et al. Nature 536 (2016) 2 NML et al., PNAS 114, 13 (2017)3 NML et al., Sci Adv. 3, 10 (2017) 4 C. Figgatt et al., Nat. Communs. 8, 1918 (2017)5 N. Solmeyer et al., QST 3 045002 (2018) 6 NML et al., Phys. Rev. A 98, 052334 (2018)7 K. A. Landsman et al., arxiv 1806.02807 8 D. Zhu et al., arXiv 1812.08862 (2018)9 A. Seif et al., J. Phys. B 51 174006 (2018) 10 in preparationFault-tolerant quantum error detection3 – K. Brown (Georgia Tech.)Renyi entropy measurement of a Fermi-Hubbard model system6 – S. Johri (Intel)Quantum game theory and Nash equilibria5 – N. Solmeyer (Army Research Lab)Quantum machine learning8 – A. Ortiz (NASA)Quantum scrambling and out-of-time-order correlators7 – N. Yao (UC Berkeley)Hidden Shift algorithm2 – M. Roetteler (Microsoft)Quantum Fourier Transform, Bernstein-Vazirani algorithm, Deutsch-Josza algorithm1Grover’s algorithm4 – D. Maslov (NSF)…Bacon-Shor quantum error correction codes10 – T. Yoder (Harvard)Deuteron VQE10 – R. Pooser (Oak Ridge)Quantum Approximate Optimization (QAOA) of critical states10 – T. Hsieh (Perimeter)Neural-network-based qubit readout9 – A. Seif (QuiCS/UMD)

20. Example algorithms on multiple platforms (Princeton)P. Murali and M. Martonosi (Princeton), A. J. Abhari (IBM), NML (UMD) et al. ISCA-2019 #1300

21. Example algorithms on multiple platforms (Princeton)P. Murali and M. Martonosi (Princeton), A. J. Abhari (IBM), NML (UMD) et al. ISCA-2019 #1300

22. Quantum-classical hybrid computing

23. Ground state of the Deuteron nucleusH3 = 15.531709 I + 0.218291 Z0 − 6.125 Z1 − 9.625 Z2 − 2.143304 X0 X1 − 2.143304 Y0 Y1 − 3.913119 X1 X2 − 3.913119 Y1 Y23-qubit Hamiltonian (EFT), -2.046MeV:nuclear binding energy (NIST table): -2.2MeV

24. Dumitrescu, E. F., et al. PRL 120 (2018)Ground state of the Deuteron nucleusCanonical 3-qubit UCC ansatz

25. Ground state of the Deuteron nucleusRichardson, L. F. Phil. Trans. Roy. Soc. A 210 (1911)Temme, K. et al. PRL 119 (2017)Li, Y. PRX 7, 2 (2017)Zero-noise extrapolation experiment for the (theory-)optimal anglesDumitrescu, E. F., et al. PRL 120 (2018)UMD/IonQ: error margin 0.8(3)%

26. Dumitrescu, E. F., et al. PRL 120 (2018)Ground state of the Deuteron nucleusCanonical 4-qubit UCC ansatz4-qubit Hamiltonian (EFT), -2.14MeV:

27. Ground state of the Deuteron4-qubit theory: -2.14 MeV:Experimental binding energy value: -2.2(1)MeVparameter space

28. Quantum machine learning: Bars and Stripes

29. Quantum machine learning: Bars and StripesD. Zhu et al. arXiv 1806.02807

30. Quantum machine learning: Bars and StripesD. Zhu et al. arXiv 1806.02807

31. Quantum machine learning: Bars and StripesD. Zhu et al. arXiv 1806.02807

32. Quantum machine learning: Bars and StripesAnimation from Wikipedia by EphramacClassical Leaner 2: Bayesian Optimization (BO)Classical Leaner 1: Particle Swarm Optimization (PSO)surrogate modelUsing “Optaas” package by Mindfoundry (Oxford)

33. D. Zhu et al. arXiv 1806.02807Quantum machine learning: Particle Swarm Results

34. D. Zhu et al. arXiv 1806.02807Quantum machine learning: Particle Swarm Results

35. D. Zhu et al. arXiv 1806.02807Quantum machine learning: Particle Swarm Results

36. Quantum machine learning: Particle Swarm ResultsD. Zhu et al. arXiv 1806.02807

37. Quantum machine learning: Bayesian Optimization ResultsD. Zhu et al. arXiv 1806.02807

38. Quantum machine learning: Bayesian Optimization ResultsD. Zhu et al. arXiv 1806.02807

39. Quantum machine learning: Bayesian Optimization ResultsD. Zhu et al. arXiv 1806.02807successful 26-parameter optimization

40. Quantum machine learning… thoughtsD. Zhu et al. arXiv 1806.02807

41. no system will be fully connected for large Nthe compilation challengeD. Kielpinski et al., Nature 417 (2002)C. Monroe et al., Phys. Rev. A 89 (2014)Outlook : the future - scaling upD. Hucul, et al., Nature Phys. 11 (2015)

42. Michael Goldman 0.5 m Marko CetinaScaling concept 1: control over ~20 qubitsLaird Egan

43. “EURIQA”system

44. no system will be fully connected for large Nthe compilation challengeD. Kielpinski et al., Nature 417 (2002)C. Monroe et al., Phys. Rev. A 89 (2014)Scaling concept 2: ion-photon entanglementD. Hucul, et al., Nature Phys. 11 (2015)

45. A direct-transmission networking nodesmallest-wavelength minimum (Telecom O-band)

46. “phonon-polariton” statesScaling concept 3: motional degrees of freedom

47. Chris MonroeAlejandroPerdomo-Ortiz(NASA)Marcello Benedetti(UCL)Omar Shehab(IonQ)Yunseong Nam(IonQ)Cinthia H. AldereteDaiwei ZhuNhung NguyenNMLAutumn ChiuKevin LandsmanMika ChmielewskiSonika Johri (Intel)Tim Hsieh(Perimeter)