/
Conformational changes associated with proteinprotein Conformational changes associated with proteinprotein

Conformational changes associated with proteinprotein - PDF document

yoshiko-marsland
yoshiko-marsland . @yoshiko-marsland
Follow
386 views
Uploaded On 2015-05-19

Conformational changes associated with proteinprotein - PPT Presentation

There are a number of alternative conceptual models that describe these events particularly induced 64257t and preexisting equilibrium There is evidence for both alternatives from recent studies of conformational change However there is increasing s ID: 70348

There are number

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Conformational changes associated with p..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Conformationalchangesassociatedwithprotein–proteinChern-SingGoh,DuncanMilburnandMarkGersteinMotionsrelatedtoprotein–proteinbindingeventscanbesurveyedfromtheperspectiveoftheDatabaseofMacromolecularMovements.Thereareanumberofalternativeconceptualmodelsthatdescribetheseevents,particularlyinducedtandpre-existingequilibrium.Thereisevidencefor COSTBI113 www.sciencedirect.comCurrentOpinioninStructuralBiology describeoccurrencesofdynamicpopulationshiftinallos-tericregulationmechanisms.Table1providesamorecomprehensiveoverviewofmotionsandtheircorre-spondingmodels.InducedÞtAnelectroncryo-microscopystudyillustratesthattheclosingofmyosinsactin-bindingcleftisstructurallycoupledtotheopeningofthenucleotide-bindingpocketpocket].Initiationofbindingoccursthroughaweakstereospecicinteractionwherebythelowerdomainofmyosincontactstheactinlamentinanopenconforma-tion(Figure2a).Asthisinteractionprogressestowardstrongbinding,thecleftinthemyosindomaincloses,ashasbeenpreviouslysuggested[15].Theuppermyosindomainswingsaroundbyarotationof21,sothatthecardiomyopathyloopcomesincontactwiththeactinsurface,thusdoublingthetotalinteractionsurfaceareaFigure2b).Thiscreatesadisplacementmovementofintheswitch1element,whichcontainsthenucleotide-bindingpocket.Thesestudiesthereforeindicatethatstrongbindingtoactinopensupthe Figure1 L L LL L Current Opinion in Structural Biology Modelsofproteinbindingmechanisms.Lockandkeymodel.Induced-fitmodel.Pre-existingequilibriummodel.L,ligand. Table1Proteincomplexeswithobservedconformationalchanges.ProteinBindingConformation1(PDBcode)Conformation2(PDBcode)MaximumCdisplacement(AMyosinActinNANA9InducedYesAntibodySpe7TrxShear3NANA6.7EquilibriumYesGpIb-IX-VThrombin1P8V1OOK37EquilibriumYessubunitRGS141BOF1KJY10.2177InducedYesFliSFliC1ORJ1ORY29.3168.8InducedYesNtrCP1DC71DC812177EquilibriumYesR1Fc1OVZ1OWO11180InducedImportinSREPB-21GCJ1UKL19BtubColicinE31NQF1UJW13.4179InducedLeukemiainhibitoryfactorGP1301LKI1PVH7169InducedLir-1Hla-A21G0X1P7Q11177InducedGPCRkinase2G21BAK1OMW17171Induced-ATPaseIF1BMF1OHH4.5Her2HerceptinFab1N8Y1N8Z13.7170InducedErythropoietinErythropoietinreceptor1BUY1EER15.4149.5InducedGroELGroES1AON1OEL48.5169.6AllostericCalmodulinCalmodulin-bindingdomainofskeletallightchainmyosinkinase4CLN2BBM17961AllostericProto-oncogeneCblZAP-70kinase2CBL1B47758InducedCDK2CyclinA1FIN1HCK20176InducedMms2Ubc131J741J7D20.7164InducedSteroidreceptorcoactivator-11PRG1FM613169EquilibriumTRAF6RANK1LB41LB516.6133EitherXRCC4DNA-ligaseIV1FU11IK914119InducedRANRAN-bindingprotein21BYU1RRP53.4179InducedCheYCheA3CHY1EAY3.823InducedDatatakenfromtheliterature.Theclassificationsareassumedbasedontheexperimentaldataavailable.NA,notavailable.Foldingandbinding CurrentOpinioninStructuralBiology6www.sciencedirect.com nucleotide-bindingpocket.Thisandotherstudiessug-gestthatstrongbindingofthemyosincross-bridgetoactinprobablyclosestheactin-bindingcleft[16,17]AstructureoftheFliSFliCcomplexdemonstratesthebindingmechanismofthebacterialexportchaperoneanditsroleintypeIIIsecretionetion].FliCmonomerspoly-merizetoformthetaillamentofthebacterialagellumellum.ExportchaperoneFliSbindsspecicallytoFliC[20,21]toaidthecorrectassemblyofthebacterialgellumandtoavoidprematureinteractionswithotherstructuralcomponentsoftheagellum[22,23].ThestructureofFliSisanantiparallelfour-helixbundlewithaquasi-helicalcapformedby16N-terminalresiduesresidues].UponbindingFliC,theN-terminalcapofFliSisdisplacedandre-orientstoformashorthelixononesideofthehelicalbundle(Figure3),whileahelicalsegmentofFliC(residues499505)movesintothepositionthatwasformerlyoccupiedbytheFliSN-terminalcap.ThissuggeststhattheN-terminalcapofFliSworksasamolecularstoppertoblockthehydrophobicbindingsitewhenFliSisnotboundtoFliC.TherecentcrystalstructureofaG-proteinboundtotheGoLocomotiffoundinregulatoryproteinshighlightsimportantresiduesthatcontrolthespecicityoftheGoLocointeractionandsuggestsmechanismsforpreventingthebindingofGG].Regulatoryproteinswiththe19aminoacidGoLocomotif[25,26]canbindtoGsubunitsandmaintainG-proteinsubunitdisassociationiation,27–30].GoLocomotifproteinsinter-actspecicallywithGDP-boundGsubunits,preventingbothGDPreleaseease,27–29]andGreassembly[29,30].Kimpleetal..]determinedthecrystalstructureoftheRGS14GoLocoregionboundtotheadenylylcyclaseinhibitoryGsubunit(InteractionwiththeR14GLpeptide(residues496530ofratRGS14containingtheGoLocoregion)isshowntoaltertheconformationofswitchesIIIIrelativetoGbound.Inparticular,thedeviationinswitchII(whereArg208moves)couldhinderbindingtoGoLoco-complexedGDP.ThelargestchangeoccursintheCloopoftheGhelicaldomain,whereAla114isdisplaced11AawayfromtheRas-likedomain. Figure2 (a)(b)CardiomyopathyCurrent Opinion in Structural Biology Overviewofmyosin(yellow)anditsupper50kDadomain(red)dockedtoactin(blue)usingarigid-bodyX-raymodelofmyosininitsopencleft,weakbindingformandfitwithanindependentupper50kDadomainthatillustratesitsclosed,strongbindingform.Figureproducedwith Figure3 (a)(b)Current Opinion in Structural Biology StructuralconformationsofuncomplexedFliSandFliSboundtoFliC.ConformationalchangesassociatedwithproteinproteininteractionsGoh,MilburnandGerstein3 www.sciencedirect.comCurrentOpinioninStructuralBiology Pre-existingequilibriumTherearesomeexperimentaldatathatcandiscriminatebetweeninducedtandpre-existingequilibriummodels.Forhemoglobin,numerousconvincingexperimentssup-porttheMWCmodelandruleouttheinduced-tmodelmodel.Recently,therehavebeenanumberofstudiesre-portedthatsupportthepre-existingequilibriumhypo-thesis.AbreakthroughstudyreportedbyJamesetal.al.]presentscrystalstructuresofamonoclonalIgEantibody,Spe7,thatexistsintwoverydifferentconfor-mations,eachbindingstructurallydistinctantigens.Thepredominantunboundisomer(Ab)hasaat,regularbindingsite,whichisreminiscentofantibodiesthatbindproteinsorpeptides.Thealternativeisomer(Ab)con-tainsadeeper,funnel-shapedpocket,typicalofantibo-diesthatbindhaptens(smallmoleculesthatbecomeantigenicwhenboundtoproteins).TherecombinantproteinantigenTrxShear3bindstoAb,butdoesnotbindtoAb,andhaptensdonotbindtoAb.TheseconformationsresultfromlargebackbonealterationsoftheH3andL3loops,withCatomsdeviatingbyupto6.7AFigure4).TheH3loopipsbetweentheAbisomer,displayingdifferentsidechainrotamers.Thisstudyhighlightsthepotentialroleofconformationaldiversityincross-reactivity,whichcanleadtoauto-immunediseaseandallergyallergy.TwocrystalstructuresrecentlydeterminedbyCelikeletal.al.]andDumasetal.al.](Figure5)illustratetheexistenceofanensembleofpossibleconformationsforboundproteins.Theauthorsdescribethethrombininteraction,butobtainverydifferentcrystalforms.BoththesepapersshowtwothrombinsboundtoeachglycoproteinGpIbonethrombinboundthroughexositeIandtheotherboundthroughexositeII.AlthoughtherstthrombinisboundtoapproximatelythesameregionofGpIbinbothstructures,thestruc-turesdisplaycompletelydifferentcontactsandarerotatedapproximately180aboutanaxisperpendiculartotheinterface.Additionally,structuresofthesecondthrombininterfaceshowtheexibleanionicsegmentofGpIbrotated90,resultingina37AdisplacementofTyr279,asulfatedtyrosinelocatedontheanionicsegmentandshowntobenecessaryforoptimalthrombinbinding[36].ThesetwostructuresofthrombinGpIbbindingillustratetheverydifferentconformationsthatGpIbhavewhileboundtothesameprotein(Figure5).Furtherstudiesmaybeabletoelucidatethepredominantstruc-turalinterfaceandleadtoabetterfunctionalunderstand-ingofthethrombinGpIbinteraction.AllostericregulationthedynamicpopulationshiftmodelAlthoughallostericregulationiswellacceptedformulti-domainproteins,itisnotascommonlythoughtofforsingle-domainproteins.ItwasntuntilarecentNMR Figure4 MainchainconfigurationsoftheIgEantibodySpe7:freeisomersAb(green)andAb(purple),hapten-boundisomerAb(blue)andTrxShear3-boundisomerAb(pink).FigureprovidedbyDanTawfik. Figure5 90iTIITIITIITIIGplb Gplb Gplb TITITI (b) TheGpIbthrombininterface.SurfacerepresentationsoftheCelikeletalal]and(b)Dumasetalal]crystalstructures.TheGpIbN-terminalfragment(gray)isshownwithitsanionicsegment(orange).ThepartofthrombinthatbindstoGpIbthroughexositeI(TI,darkblue)isshowninpaleblueandthepartthatbindsthroughexositeII(TII,darkgreen)isshowninpalegreen.FigurereprintedwithpermissionfromJESadlerr.Copyright2003AmericanAssociationfortheAdvancementofScience.Foldingandbinding CurrentOpinioninStructuralBiology6www.sciencedirect.com studybyVolkmanetal.al.thatevidencewaspresentedforallosteryinasingle-domainsignalingprotein.Thestudydescribesapopulationshiftinducedbyligandbindingtothephosphorylation-regulatedbacterialresponseregulatorNtrC.ThisworkcharacterizedthemotionsofNtrCintheunphosphorylatedandphosphory-latedstates(Figure6).ForunphosphorylatedNtrC,boththeactiveandinactiveconformationsareevident.However,uponphosphorylation,theproteinisactivatedandtheequilibriumisshiftedtowardtheactiveconfor-mation.Similarly,apreviousstudyhadreportedmultipleconformationalstatesforapo-calmodulin,illustratingaconformationalexchangeprocessprocess.Itwasshownthatunboundcalmodulinexistsinapredominantlyclosedconformation,withasmallerpopulationofmoreopenconformations.Formembraneproteins,kineticstudiesperformedontheallosterictransitionsofTorpedoacet-ylcholinereceptorsshowedthat,withoutligand,11%ofthereceptorspre-existintheactivated(desensitized)conformationmation].Inthepresenceofligand,thispop-ulationincreasesto85%.Nevoetal.al.]presentedfurtherevidenceofmultipleconformationalstatesformacromolecularcomplexessuchastheRanimportin1bindinginteraction.Thisstudydemonstratedtheexistenceoftwodistinctboundconformationalstateswhenimportin1isassociatedwithRanthatisloadedwithanonhydrolyzableGTPanalog(GppNHp).Asmoreexperimentalworkisperformedtocharacterizethedynamicsofbindinginteractions,itisbecomingincreasinglyevidentthatproteinscanexistinanensem-bleofconformationalstates.Ifthishypothesisistrue,thenunboundproteinsshouldhaveapopulationofactivatedconformersandexhibitsomeactivity.Thisseemstobethecaseforproteinssuchasthesingle-domainresponseregulatorCheY,whichshowsalowlevelofactivityinitsunphosphorylatedstatestate.However,otherproteinsdonotexhibitabasallevelofactivityintheirunboundstate.Itispossiblethattheseproteins,suchasNtrC,mayrequireacertainnumberofactivatedconformerstodemonstrateactivityactivityandshowasharpsignalresponse.Theresultsreportedhereshowthatunboundproteinscanexistindifferentconformationalstates.Flexibilitywithinregionsofaproteinallowsittoadoptnewcon-formationsand,inturn,bindstructurallydistinctligands.Thisabilityofproteinstoadoptmultiplestructuresallowsfunctionaldiversitywithoutdependingontheevolutionofsequencediversity,whichcangreatlyfacilitatethepotentialforrapidlyevolvingnewfunctionsandstruc-struc-].SupplementarymaterialMostofthestructuresdiscussedforwhichthree-dimensionaldataareavailablearelistedonlineathttp://molmovdb.org/cosb.Theselistingsincludeaddi-tionalimagesandanimations.TheauthorswouldliketothankNathanielEcholsforscienticandtechnicalcontributions.ReferencesandrecommendedreadingPapersofparticularinterest,publishedwithintheannualperiodofreview,havebeenhighlightedas:ofspecialinterestofoutstandinginterest1.GersteinM,KrebsW:AdatabaseofmacromolecularmotionsNucleicAcidsRes2.EcholsN,MilburnD,GersteinM:MolMovDB:analysisandvisualizationofconformationalchangeandstructuralNucleicAcidsRes3.KrebsWG,GersteinM:Themorphserver:astandardizedsystemforanalyzingandvisualizingmacromolecularmotionsinadatabaseframeworkNucleicAcidsRes4.KoshlandD:ApplicationofatheoryofenzymespecicitytoproteinsynthesisProcNatlAcadSciUSA5.TsaiCJ,KumarS,MaB,NussinovR:Foldingfunnels,bindingfunnels,andproteinfunctionProteinSci6.FrauenfelderH,SligarSG,WolynesPG:Theenergylandscapesandmotionsofproteins:1598-1603.7.BryngelsonJD,OnuchicJN,SocciND,WolynesPG:pathways,andtheenergylandscapeofproteinfolding:aProteins8.KarplusM:TheLevinthalparadox:yesterdayandtodayFoldDes:S69-S75.9.DillKA,ChanHS:FromLevinthaltopathwaystofunnelsNatStructBiol10.MonodJ,WymanJ,ChangeuxJ:Ontheallosterictransitions:aplausiblemodelJMolBiol11.KoshlandDEJr,HamadaniK:ProteomicsandmodelsforenzymecooperativityJBiolChem:46841-46844.12.KoshlandDEJr,NemethyG,FilmerD:Comparisonofexperimentalbindingdataandtheoreticalmodelsinproteinscontainingsubunits Figure6 (a)(b)Current Opinion in Structural Biology StructuralconformationsoftheunphosphorylatedformofNtrC,andthephosphorylatedformofNtrC(cyan)superimposedontheunphosphorylatedform(gray).FigureproducedwithPyMOLPyMOL.ConformationalchangesassociatedwithproteinproteininteractionsGoh,MilburnandGerstein5 www.sciencedirect.comCurrentOpinioninStructuralBiology 13.FreireE:Thepropagationofbindinginteractionstoremotesitesinproteins:analysisofthebindingofthemonoclonalantibodyD1.3tolysozymeProcNatlAcadSciUSA:10118-10122.HolmesKC,AngertI,KullFJ,JahnW,SchroderRR:Electroncryo-microscopyshowshowstrongbindingofmyosintoactinreleasesnucleotide:423-427.Cryo-EMofthemyosinactincomplexrevealsaconformationalchangeuponbinding.Thesestudiessuggestthattheclosingoftheactin-bindingcleftisstructurallylinkedtotheopeningofthenucleotide-bindingpocket.15.RaymentI,HoldenHM,WhittakerM,YohnBC,LorenzM,HolmesKC,MilliganRA:Structureoftheactin-myosincomplexanditsimplicationsformusclecontractionScience16.YengoCM,DeLaCruzEM,ChrinLR,GaffneyDPII,BergerCL:Actin-inducedclosureoftheactin-bindingcleftofsmoothmusclemyosinJBiolChem:24114-24119.17.ConibearPB,BagshawCR,FajerPG,KovacsM,Malnasi-CsizmadiaA:MyosincleftmovementanditscouplingtoactomyosindissociationNatStructBiolEvdokimovAG,PhanJ,TropeaJE,RoutzahnKM,PetersHK,PokrossM,WaughDS:SimilarmodesofpolypeptiderecognitionbyexportchaperonesinagellarbiosynthesisandtypeIIIsecretionNatStructBiolrstcrystallographicstructureofaagellarexportchaperone,AquifexaeolicusFliS,anditscomplexwithFliC(agellin).19.AldridgeP,HughesKT:RegulationofagellarassemblyCurrOpinMicrobiol:160-165.20.FraserGM,BennettJC,HughesC:Substrate-specicbindingofhook-associatedproteinsbyFlgNandFliT,putativechaperonesforagellumassemblyMolMicrobiol21.AuvrayF,ThomasJ,FraserGM,HughesC:polymerisationcontrolbyacytosolicexportchaperoneJMolBiol22.BennettJC,HughesC:agellumassemblytovirulence:theextendedfamilyoftypeIIIexportchaperonesTrendsMicrobiol23.PageAL,ParsotC:ChaperonesofthetypeIIIsecretionpathway:jacksofalltradesMolMicrobiolKimpleRJ,KimpleME,BettsL,SondekJ,SiderovskiDP:StructuraldeterminantsforGoLoco-inducedinhibitionofnucleotidereleasebyGalphasubunitsNature2002,416:878-881.TheauthorspresentthecrystalstructureoftheRGS14GoLocoregionboundtotheadenylylcyclaseinhibitoryGsubunit(GDP).Thestructurerevealstheconformationalchangesthatprecludeconcurrentbindingtothecomplex.25.SiderovskiDP,Diverse-PierluissiM,DeVriesL:TheGoLocomotif:aGalphai/obindingmotifandpotentialguanine-nucleotideexchangefactorTrendsBiochemSci26.TakesonoA,CismowskiMJ,RibasC,BernardM,ChungP,HazardSIII,DuzicE,LanierSM:Receptor-independentactivatorsofheterotrimericG-proteinsignalingpathwaysJBiolChem27.DeVriesL,FischerT,TronchereH,BrothersGM,StrockbineB,SiderovskiDP,FarquharMG:ActivatorofGproteinsignaling3isaguaninedissociationinhibitorforGalphaisubunitsProcNatlAcadSciUSA:14364-14369.28.NatochinM,LesterB,PetersonYK,BernardML,LanierSM,ArtemyevNO:AGS3inhibitsGDPdissociationfromgalphasubunitsoftheGifamilyandrhodopsin-dependentactivationoftransducinJBiolChem:40981-40985.29.NatochinM,GasimovKG,ArtemyevNO:InhibitionofGDP/GTPexchangeonGalphasubunitsbyproteinscontainingG-proteinregulatorymotifs30.SchaeferM,PetronczkiM,DornerD,ForteM,KnoblichJA:HeterotrimericGproteinsdirecttwomodesofasymmetriccelldivisioninthenervoussystem:183-194.31.EatonWA,HenryER,HofrichterJ,MozzarelliA:Iscooperativeoxygenbindingbyhemoglobinreallyunderstood?NatStructJamesLC,RoversiP,TawkDS:AntibodymultispecimediatedbyconformationaldiversityScience:1362-1367.ThisstudyreportsthecrystalstructuresoftwodifferentconformationsoftheunboundantibodySpe7.Thetwoconformationsarefoundtobindstructurallydistinctligandsusingverydifferentbindingsites.Thecon-formationthatbindstheantigenisatwithashallowgroove,whereastheconformationthatbindstohaptensisadeephole.33.OldstoneMB:MolecularmimicryandautoimmunediseaseCelikelR,McClintockRA,RobertsJR,MendolicchioGL,WareJ,VarugheseKI,RuggeriZM:Modulationofalpha-thrombinfunctionbydistinctinteractionswithplateletglycoproteinScienceThispaperdescribesthedeterminedstructureofplateletglycoproteinIb(GpIb)boundtothrombinat2.3Aresolution.ThestructuredisplaysadifferentcrystalformandadistinctmodeofthrombinbindingcomparedtotheDumasetal.al.].35.DumasJJ,KumarR,SeehraJ,SomersWS,MosyakL:structureoftheGpIbalpha-thrombincomplexessentialforplateletaggregationScienceThispaperreportsthecrystalstructureoftheGpIbthrombincomplexat2.6Aresolutionn].36.MarcheseP,MurataM,MazzucatoM,PradellaP,DeMarcoL,WareJ,RuggeriZM:cationofthreetyrosineresiduesofglycoproteinIbalphawithdistinctrolesinvonWillebrandfactorandalpha-thrombinbindingJBiolChem:9571-9578.37.VolkmanBF,LipsonD,WemmerDE,KernD:Two-stateallostericbehaviorinasingle-domainsignalingprotein:2429-2433.38.MalmendalA,EvenasJ,ForsenS,AkkeM:StructuraldynamicsintheC-terminaldomainofcalmodulinatlowcalciumlevelsJMolBiolMartinezKL,GohonY,CorringerPJ,TribetC,MerolaF,ChangeuxJP,PopotJL:AllosterictransitionsofTorpedoacetylcholinereceptorinlipids,detergentandamphipols:molecularinteractionsvs.physicalconstraintsFEBSLett:251-256.KineticexperimentsrevealtwoconformationalstatesfortheunboundTorpedoacetylcholinereceptor.NevoR,StrohC,KienbergerF,KaftanD,BrumfeldV,ElbaumM,ReichZ,HinterdorferP:AmolecularswitchbetweenalternativeconformationalstatesinthecomplexofRanandimportinNatStructBiol:553-557.DynamicforcespectroscopyanalysisoftheRanimportin1complexrevealstwodistinctboundstates.41.BarakR,EisenbachM:CorrelationbetweenphosphorylationofthechemotaxisproteinCheYanditsactivityattheBiochemistry:1821-1826.42.WymanC,RombelI,NorthAK,BustamanteC,KustuS:UnusualoligomerizationrequiredforactivityofNtrC,abacterialenhancer-bindingproteinScienceJamesLC,TawkDS:Conformationaldiversityandproteina60-year-oldhypothesisrevisitedTrendsBiochem:361-368.Thisinterestingdiscussionfocusesonthehypothesisthatagivenproteinsequencecanadoptmultiplestructuresandfunctions.44.ThePyMOLMolecularGraphicsSystemonWorldWideWebURL:http://www.pymol.org45.SadlerJE:Structuralbiology.Amenageatroisintwogurations:177-179.Foldingandbinding CurrentOpinioninStructuralBiology6www.sciencedirect.com