PPT-CS 179: GPU Programming
Author : yoshiko-marsland | Published Date : 2019-02-18
Lecture 7 Last Week Memory optimizations using different GPU caches Atomic operations Synchronization with syncthreads Week 3 Advanced GPUaccelerable algorithms
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "CS 179: GPU Programming" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
CS 179: GPU Programming: Transcript
Lecture 7 Last Week Memory optimizations using different GPU caches Atomic operations Synchronization with syncthreads Week 3 Advanced GPUaccelerable algorithms Reductions to parallelize problems that dont seem intuitively parallelizable. . Acknowledgement: the lecture materials are based on the materials in NVIDIA teaching center CUDA course materials, including materials from Wisconsin (. Negrut. ), North Carolina Charlotte (. Wikinson. Dr A . Sahu. Dept of Comp Sc & . Engg. . . IIT . Guwahati. 1. Outline. Graphics System . GPU Architecture. Memory Model. Vertex Buffer, Texture buffer. GPU Programming Model. DirectX. , OpenGL, . using BU Shared Computing Cluster. Scientific Computing and Visualization. Boston . University. GPU Programming. GPU – graphics processing unit. Originally designed as a graphics processor. Nvidia's. Lecture 2: more basics. Recap. Can use GPU to solve highly parallelizable problems. Straightforward extension to C++. Separate CUDA code into .cu and .. cuh. files and compile with . nvcc. to create object files (.o files). Lecture 2: more basics. Recap. Can use GPU to solve highly parallelizable problems. Straightforward extension to C++. Separate CUDA code into .cu and .. cuh. files and compile with . nvcc. to create object files (.o files). Department of Geography and Planning. University at Albany. What is a GPU?. A GPU is a . graphics processing unit. Modern GPUs are composed of multiple processors. Each of these processors can perform operations similar to those of CPUs. Topics. Non-numerical algorithms. Parallel breadth-first search (BFS). Texture memory. GPUs – good for many numerical calculations…. What about “non-numerical” problems?. Graph Algorithms. Graph Algorithms. Week 3. Goals:. More involved GPU-. accelerable. algorithms. Relevant hardware quirks. CUDA libraries. Outline. GPU-accelerated:. Reduction. Prefix sum. Stream compaction. Sorting (quicksort). Reduction. CS 179: GPU Programming Lecture 7 Last Week Memory optimizations using different GPU caches Atomic operations Synchronization with __ syncthreads () Week 3 Advanced GPU-accelerable algorithms “Reductions” to parallelize problems that don’t seem intuitively parallelizable CS 179: GPU Programming Lecture 7 Week 3 Goals: Advanced GPU- accelerable algorithms CUDA libraries and tools This Lecture GPU- accelerable algorithms: Reduction Prefix sum Stream compaction Sorting (quicksort) Scientific Computing and Visualization. Boston . University. GPU Programming. GPU – graphics processing unit. Originally designed as a graphics processor. Nvidia's. GeForce 256 (1999) – first GPU. Patrick Cozzi. University of Pennsylvania. CIS 565 - Fall 2014. Lectures. Monday. 6-9pm. Moore 212. Fall. and . Spring. 2012 lectures were recorded. Attendance is required for guest lectures. Image from . Patrick Cozzi. University of Pennsylvania. CIS 565 - Fall 2013. Lectures. Monday and Wednesday. 6-7:30pm. Towne . 307. Fall. and . Spring. 2012 lectures were recorded. Attendance is required for guest lectures.
Download Document
Here is the link to download the presentation.
"CS 179: GPU Programming"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents