/
IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005ACMOSSmartTe IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005ACMOSSmartTe

IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005ACMOSSmartTe - PDF document

yoshiko-marsland
yoshiko-marsland . @yoshiko-marsland
Follow
378 views
Uploaded On 2016-06-14

IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005ACMOSSmartTe - PPT Presentation

01 CFrom 55 Cto125 MichielAPPertijsMemberIEEEKo ID: 361686

0.1 CFrom 55 Cto125 MichielA.P.Pertijs Member IEEE

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005ACMOSSmartTemperatureSensorWitha3Inaccuracyof 0.1 CFrom 55 Cto125 MichielA.P.Pertijs,Member,IEEE,KoÞA.A.Makinwa,SeniorMember,IEEE,andJohanH.Huijsing,Fellow,IEEEAsmarttemperaturesensorin0.7 mCMOSisac-curatetowithin 0.1 C(3 55 Cto125 C.ThesensorusessubstratePNPtransis-torstomeasuretemperature.Errorsresultingfromnonidealitiesinthereadoutcircuitryarereducedtothe0.01 Clevel.Thisisachievedbyusingdynamicelementmatching,achoppedcurrent-gainindependentPTATbiascircuit,andalow-offsetsecond-ordersigma-deltaADCthatcombineschoppingandcorrelateddoublesampling.Spreadofthebase-emittervoltagecharacteristicsofthesubstratePNPtransistorsiscompensatedbytrimming,basedonacalibrationatonetemperature.Ahightrimmingresolutionisob-tainedbyusingasigma-deltacurrentDACtoÞne-tunethebiascurrentofthebipolartransistors.IndexTerms— 55 to125 C).Moreimportantly,theyarerelativelyinaccuratecomparedtoconventionalsensors.Atypicalinaccuracyinthementionedtemperaturerangeis 2 C,whiletheinaccuracythatcanbeobtainedwith,forinstance,aclass-Aplatinumresistorinthatrangeis 0.5 C[6].Higheraccuracycanbeobtainedbycalibrationatmultipletemperatures,butthiswouldundomuchofthecostadvantageofCMOSsmarttemperatureMostCMOSsmarttemperaturesensorsarebasedonthetem-peraturecharacteristicsofparasiticbipolartransistors[1],[2].ManuscriptreceivedApril11,2005;revisedJuly25,2005.Thisworkwas 0.5 C(3 )[5].Inthispaper,aCMOSsmarttemperaturesensorispresentedthatachievesaninaccuracyofonly 0.1 C(3 )overthemili-taryrange[10].Allerrorscausedbythereadoutcircuitryarere-ducedtothe0.01 Clevel.Inadditiontooffsetcancellationandcurvaturecorrection,precisionbiasingtechniquesareused,anddynamicelementmatchingisusedtoreducemismatch-relatederrors.Asaresult,thespreadofthecharacteristicsofthebipolartransistorsistheonlysigniÞcanterrorsourceinthesensor.AcalibrationatasingletemperatureisthensufÞcienttodetermine and .ThesevoltagesarecombinedtoproducethePTATandreferencevoltagesmentionedabove,whichareconvertedtoadigitaltemperaturereading ananalog-to-digitalconverter(ADC).0018-9200/$20.00©2005IEEE IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005 Fig.1.Operatingprincipleofthetemperaturesensor. Fig.2.Temperaturedependencyofthekeyvoltagesinthesensor.Thebase-emittervoltage ofabipolartransistorinitsforward-activeregioncanbedescribedbythefollowingwell-knownlogarithmicequation: (1)where isBoltzmannsconstant, istheelectroncharge, theabsolutetemperature, thetransistorssaturationcurrent, isitscollectorcurrent,determinedbyabiascircuit[11].InthecaseofasubstratePNPtransistor,whichisbiasedviaitsemitter,theresultingcollectorcurrentisaffectedbythescurrentgain.Thiseffectwillbeignoredfornow,anddiscussedinSectionIV-D.Asaresultofthestrongtemperaturedependencyofthesat-urationcurrent ,thebase-emittervoltagehasanegativetem-peraturecoefcientofabout 2mV C(Fig.2).Theexactvaluedependsontheabsolutevalueof and .Theextrap-olatedvalueof to0Kisroughly1.2Vandisoftendenoted ,asitisrelatedtothesiliconbandgapenergy.Thisvoltageisindependentoftheabsolutevaluesof and Using(1),itcanbeeasilyshownthatthedifferenceinbase-emittervoltage betweentwobipolartransistorsoperatedata collector-currentratioisPTAT: Thisdifferenceonlydependsontheratio ,making accuratemeasureoftemperature[2].Alargerratioresultsinalarger ,butcarehastobetakentoensurethatthetwotransistorsremaininthesameoperatingregion.Inourdesign,acurrentratioof isused,resultinginatemperaturecoefcientof0.14mV AbandgapreferencecanbeusedasthereferencevoltageofanADCdesignedtodigitize .AsillustratedinFig.2,thisreferenceisgeneratedbyaddinganampliedversionof to soastoobtainatemperature-independentvoltage : Forthementionedtemperaturecoefcients,againofabout isrequired.AnADCthatconvertstheratioof and beusedtoobtainadigitaltemperaturereading wherethecoef and arechosensoastoobtainadigitaloutputindegreesCelsius[5].B.CorrectionforProcessSpread isinsensitivetoprocessspread, ontheabsolutevaluesofboththesaturationcurrentandthebiascurrent,andwillthereforespreadwithvariationsintheICprocess.Assumingthatthespreadofthesecurrentsdoesnotcantlychangetheirtemperaturedependency,theresultingspreadof canbewrittenas (5)where and aretherelativeerrorsinthecollectorandsaturationcurrent,respectively.Thisshowsthattheerrorin withrespecttoitsnominalvalueisPTAT.Providedallothererrorsinthesensorarenegligible,thisPTATerrorin canbedeterminedfromacalibrationatonetemperature.Theerrorcanthenbecorrectedbymeansoftrim-ming.Thisshouldbedoneinsuchawaythattheresultingcor-rectionisPTAT,andwillthusnullthePTATerroroverthecom-pleteoperatingtemperaturerange[2].APTATcorrectionof canbeestablishedbytrimmingthetransistorsemitterarea,itsbiascurrent,orbyaddingapro-grammablePTATvoltagetoit[5].Wechoosetotrimthebiascurrentusingasigma-deltadigital-to-analogconverter(DAC)(seeSectionIV-B)toobtainahightrimmingresolution[12].C.AccuracyRequirementsTomakethementionedtrimmingschemework,allerrorsourcesotherthanPTATspreadof havetobemadenegli-giblebydesign.Systematicerrors,whichresultinnonlinearity,canbecorrectedforbyintroducingacompensatingnonlinearityinthereadoutcircuitry,aswillbeshownbelow.Randomerrorsneedtobereducedbydesigntothe0.01 Cleveltoobtainanoverallinaccuracyof 0.1 ndwhatrandomerrorsin canbetolerated,thesen-sitivityofthesensorsoutput tochangesin hastobe PERTIJSetal.:ACMOSSMARTTEMPERATURESENSORWITHA3 INACCURACY Fig.3.(a)Simulatedtemperaturedependencyofthereferencevoltage asafunctionofthebiascurrentatroomtemperature.(b)Associatednonlinearityofthesensorsoutput (i.e.,errorwithrespecttoalinearcalculated.Thissensitivityislargestatthelowerendofthetem-peraturerange,whereitisapproximately(1/3) C/mV.Amax-imumtemperatureerror0.01 Cthereforeimpliesamaximumrandomvoltageerrorin of30 V.Similarly,themax-imumrandomvoltageerrorin canbefoundtobeabout V.Thismeansthatallcircuiterrors,suchastheinput-re-ferredoffsetofthereadoutelectronics,havetobereducedtotheselevels.D.CurvatureCorrectionSofar,ithasbeenassumedthat isalinearfunctionoftemperature.Inpractice,however, isslightlynonlinear.Themagnitudeofthisnonlinearity,whichwillbereferredtoascur-vature,dependsonthetemperaturedependencyofthesaturationcurrent,andonthatofthecollectorcurrent.ForaPTATcollectorcurrent,itcanbewrittenas[11] (6)where isthetemperatureexponentintheanalyticalexpressionforthesaturationcurrent(aparametercalled inSPICE), isareferencetemperature.Forourprocess .AswillbediscussedinSectionIV-C,weuseabiascurrentderivedfromaPTATvoltageusingapolyresistor.Ifthetemperaturedependencyofthisresistorisalsotakenintoaccount,apredom-inantlyquadraticcurvatureofabout4mVisfoundoverthemil-itaryrange.Asthiscurvatureispresentinthereferencevoltage ,itresultsinaninversequadraticnonlinearityattheoutputofthesensor.ThisisillustratedinFig.3,whichshowsthetemperaturedependencyof andtheresultingnonlinearityoftheoutputgivenby(4),bothwiththebiascurrentatroomtemperatureasaparameter.Forabiascurrentof1 isaconventionalbandgapreferencevoltage,withazerotemperaturecoefatroomtemperatureandasmallquadraticcurvature.Thecur-vaturethenleadstoaquadraticnonlinearityofalmost1 Cattheoutput. Fig.4.Blockdiagramofthetemperaturesensor.Ifthebiascurrentisincreased, becomesanovercom-bandgapreferencevoltage,withapositivetemper-aturecoefcient.Fig.3showsthattheassociatednonlinearityattheoutputthendecreases.Aminimumnonlinearityofabout Cisreachedforabiascurrentbetween4and5 Thiscanbeexplainedasfollows.Thelineartemperaturede-pendencyof givesrisetoanonlinearityattheoutput,sinceitappearsinthedenominatorin(4).Withaproperchoiceofthetemperaturecoefcientofthereference,thisnonlinearitywillcompensateforthenonlinearityduetothecurvatureof Thus,thecurvaturecanlargelybeeliminatedbyusingarefer-encevoltagewithasmallpositivetemperaturecoefcient[7],[7],E.BlockDiagramFig.4showsablockdiagramofthesensor.Abipolarcoregeneratesthevoltages and .Theseareinputtoa modulator,whichproducesabitstream ofwhichtheaveragevalueisequaltotheratioof and .Thecharge-balancingconversionappliedinthisswitched-capacitormodulatoristhetopicofSectionIII,whiledetailsofthemodulatorwillbediscussedinSectionV.Adecimationlterisusedtolterthequantizationnoisefromthebitstreamandperformtherequiredscalingtoobtaintheoutput asgivenby(4).AswillbeexplainedinSec-tionV-E,thislteralsointroducesasmallnonlinearitytocom-pensatefortheabove-mentionedresidualnonlinearityofabout Aspecialbiascircuitisusedtoprovideaccuratebiascurrentstothebipolarcore.ThiswillbediscussedinSectionIV. IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005 Fig.5.Blockdiagramofthemodulator.III.CA.Charge-BalancingPrincipleFig.5showsablockdiagramofthe modulator.Themod-ulatorconsistsofalooplterandaclockedcomparator.Forsimplicity,onlyarst-orderlooplterisshown.Intheactualmodulator,asecond-orderlterisused(seeSectionV).Everyclockcycle,thecomparatorproducesabitofthebitstream basedonthepolarityoftheoutput ofthelooplter.Thefeedbackisarrangedsoastodrivetheoutputoftheintegratortozero.Ifthebitstreaminagivenclockcycleiszero, integrated,while isintegratedifthebitstreamisone.Asaresultofthefeedbackinthemodulator,theaverageinputtotheintegratoriszero.Inotherwords,thechargeaddedby isbalancedbythechargeremovedby .Iftheaveragevalueofthebitstreamisdenotedas ,thischargebalancingcanbeexpressedas Solvingfor gives Thus,withasimplecharge-balancingscheme,adigitalrepre-sentationoftheratioin(4)isobtained[1].B.Switched-CapacitorImplementationIn[1]and[5],continuous-timeimplementationsoftheabove-mentionedcharge-balancingschemewerepresented.Inthiswork,wechooseforaswitched-capacitorimplementa-tion,becausethisfacilitatestheimplementationofthevariousoffsetcancellationanddynamicelementmatchingtechniquesrequiredtomeetthe 0.1 Cinaccuracytarget.Asimpliedcircuitdiagramofthefront-endofthe ulatorisshowninFig.6.Theintegratorusescorrelateddouble-samplingtoeliminatetheoperationalamplisoffsetand noise[13]andissimilartothedesignpresentedin[8].Theintegratoroperatesintwophases.Suppose,fornow,that ,andhencethe7 capacitorsarenotused.During ,whentheopampisswitchedinunity-gain,thevoltage issampledoncapacitors withrespecttotheopampsvirtualground .Inthesecondphase ,theintegratorcapacitor isswitchedinthefeedbackpath,and Fig.6.Simpliedcircuitdiagramofthefront-endofthemodulator.theinputvoltagechangesto .Asaresult,theoutputoftheintegratorchangesby Thisshowsthatslowlyvaryingsignalsattheopampsvirtualground,suchasitsoffsetand noise,areeliminated.Thechangein isproportionaltothechangein Themodulatorsinput isgeneratedbytwosubstratebipolartransistors and .Thebiascurrentsofthesetran-sistorsaredeterminedbyaswitchnetworkbasedontheinte-gratorphaseandthevalueofthebitstream .If , hastobeintegrated.Toachievethis,the isdirectedto duringphase ,whilea5timeslargercurrentisdirectedto .Asaresult, Duringphase ,thecurrentsareswapped,sothat .Therefore,thechangeintheintegratorsoutputispro-portionalto .Notethatmismatchbetween and doesnotaffecttheaccuracyofthischange. , hastobeintegrated.Duringphase , isshortedtoground,while isbiasedbythecurrent .Asaresult, .Duringphase , isshortedandthecurrent isswitchedto ,sothat .Thechangeintheintegratorsoutputisthenproportional ,sothateffectivelytheaveragebase-emittervoltageofthetwotransistorsisused.Thegain canbeimplementedintwowaysinthisinte-grator.Onewayistousealargersamplingcapacitancewhenintegrating .Alternatively, canalsobeintegratedmultipletimeseverytime .Weuseacombi-nationofthesetechniques:an8timeslargersamplingcapaci-tanceisusedfor ;moreover, isintegratedtwiceif ,while isintegratedonlyonceif .Thus,again of isrealized.IV.BIRCUITRYA.DynamicallyMatchedCurrentRatioMismatchwilllimittheaccuracyofthe1:5currentratioinFig.6,andhencethatof .Itcanbeshownthatthecur-rentratiohastobeaccurateto 0.011%tolimitthetempera-tureerrorresultingfrommismatchto 0.01 C.Suchaccurate PERTIJSetal.:ACMOSSMARTTEMPERATURESENSORWITHA3 INACCURACY Fig.7.Current-sourcecongurationusedtoobtainadynamicallymatched1:5biascurrentratioforgenerating matchingcannotbeexpectedfrompreciselayoutalone.There-fore,dynamicelementmatchingisusedtoaverageoutmis-Fig.7showshowthishasbeenimplemented[2].SixPMOScurrentsourcesprovidecopiesofthecurrentgeneratedinthebiascircuit.Thesecurrentsourcesarenominally1 Aeach.Usingasetofswitches,eachcurrentcaneitherbedirectedto orto .Oneofthemisswitchedtoonetransistor,providingtheunitcurrentinthe1:5ratio,whiletheremainingcurrentsareswitchedtotheothertransistor.Theerrorintheresultingcurrentratiodependsonthemismatchbetweentheunitcurrentsourceandtheaverageoftheothercurrentsources.Byalter-natingtheunitcurrentsourceinsuccessivecyclesofthe modulator,mismatcherrorsareaveragedout.Therequiredav-eragingisperformedbytheintegratorof modulator[14].B.CurrentTrimmingAsdiscussedinSectionII-B,thebiascurrent usedfor hastobetrimmedinordertocompensateforthespread inthenominalvalueofthetransistorssaturationcurrentandthespread ofthebiascurrentitself.Whiletheequivalenttrimmingresolutionatthesensorsoutputhastobeintheorderof0.01 C,thetemperatureerrorduetospreadcanbeseveraldegrees.Thisimpliesatrimmingrangeofabout10Conventionaltrimmingtechniquesincludeadjustmentoftheemitterareaorthebiascurrentusingswitchablebinary-scaledtransistorsorbiascurrentsources[2].Giventhelargerequiredrange,suchtechniqueswouldbecomecomplexandrequirealargechiparea.Instead,weuseacompactsigma-deltaDACtotrimthebiascurrent[12].Fig.8showshowthishasbeenimplemented.ThesamesixPMOScurrentsourcesusedforgeneratingthe1:5cur-rentratioareusedtogenerate .Thisispossiblebecause and areneverneededatthesametime.Fiveofthesesourcesareusedforcoarsetrimming,andareswitchedonoroffbasedonthedigitalinput .Thesixthsourceisusedfornetrimming,andismodulatedbythebitstream ofa modulator.Theresultingtotalcurrent isthusswitchingbackandforthbetween and timestheunitcurrentof1 A.Theinput ofthedigitalmodulatorcanbe Fig.8.Current-sourcecongurationusedtoobtainatrimmablebiascurrent forgenerating usedtoprogramtheaveragevalueofthecurrent.Therequiredaveragingtakesplaceintheintegratoroftheanalog lator.An8-bitrst-orderdigital modulatorisusedtoobtainatrimmingresolutionof4nA,whichcorrespondsto0.01 attheoutputofthesensor.Acompactimplementationofsuchamodulatorisan8-bitaccumulatorofwhichthecarrybitisusedtogeneratethebitstream[15].Thetotaltrimmingrangeof0 Aissufcienttocompensateforpracticalspreadof and Intheimplementation,currentsourceswhoseoutputsarenotusedareconnectedtoanextradiode-connectedtransistor(notshowninFig.8),soastolimittheswitchingtransientsattheirC.ChoiceofBiasCurrentTypeWhilespreadintheabsolutevalueofthebiascurrentcanbetolerated,asitcanbetrimmedout,othererrorsinthebiascurrent,suchasvariationwiththesupplyvoltageandspreadofitstemperaturedependency,shouldbeminimized.Abiascurrentisgenerallyderivedfromabiasvoltageusingaresistor.Adifferenceinbase-emittervoltageisagoodcandi-dateforthebiasvoltage,because,asdiscussedbefore,itonlydependsonacurrentratio.AnadditionaladvantageofusingsuchaPTATbiasvoltageisthattheresultingtemperaturede-pendencyofthebiascurrentreducesthecurvatureof paredto,forinstance,aconstantbiasvoltage[11].Asbiasresistorweuseahigh-resistivitypolysiliconresistor.Thetemperaturedependencyofthisresistoraffectsthecurva-tureof ,andhasbeentakenintoaccountinthedesignofthecurvaturecorrection(seeSectionII-D).Spreadofthistemper-aturedependencyresultsinanon-PTATspreadof ,whichcannotbetrimmedout.Itisthereforeimportanttochooseabiasresistorwithareproducibletemperaturedependency.Sincedataonthisreproducibilitywerenotavailablefortheresistorsofourprocess,wechosetouseahigh-resistivitypolysiliconresistor, IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005whichisavailableasaprocessoptionforanalogapplications,andwasthereforeexpectedtobereasonablywellcontrolled.D.Current-GainIndependentBiasCircuitAsasubstratePNPtransistorhastobebiasedviaitsemitter,thetransistorsforwardcurrent-gain affectsitscollectorcur-rent,andhencethegeneratedbase-emittervoltage: Itcanbeshownthatspreadof doesnotresultinapurelyPTATspreadof ,asaresultofthestrongtemperature-de-pendencyof .Theresultingtemperatureerrorsthereforecannotbecompletelytrimmedout.Foranominalcurrent-gain of22,asfoundinour0.7 mCMOSprocess,theresultingerroraftertrimmingisabout0.05 Cattheextremesoftheoperatingtemperaturerangefora 10%spreadof .ThiserrorwillbelargerformoremodernCMOSprocessesinwhichsmallervaluesof arefound.Fig.9showsaPTATbiascircuitthatcanbeusedtoeliminatethecurrent-gaindependencyof .TwoPNPtransistors and arebiasedata1: currentratio.Asaresult,thedif-ferencebetweentheirbase-emittervoltagesis Thefeedbackloopensuresthattheinputvoltageoftheopampiszero,sothatwecanwrite Solvingfor gives thatis,thegeneratedbiascurrentdependson .Substitutingthiscurrentin(10)showsthatthe -dependenttermscancel(assumingidealmatching),sothatthegeneratedbase-emittervoltage isindependentofthecurrentgain.Thepresentedbiascircuithasaninherentlyhighpower-supplyrejection,asallPMOStransistorsconnected havematcheddrain-sourcevoltages,includingtheoutputtransistorthatprovidesbiascurrenttothebipolarcore.Intheimplementedcircuit,cascodinghasbeenusedtofurtherimprovethepowersupplyrejection.E.OffsetCancellationOffsetsinthebiascircuitofFig.9introducespreadin thatcannotbecompletelytrimmedout.Thisappliestoboththeoffsetoftheopampandthatduetomismatchbetween and .Theseoffsetsmustbesmallcomparedto .Itcanbeshownthatforacurrent-ratio ,thecombinedoffset Fig.9.PTATbiascircuitthatmakes independentoftheforwardcurrent-gain. Fig.10.Implementationofthebiascircuitthatuseschoppingtocanceltheoffset . hastobesmallerthan 70 Vtoresultinatemperatureerrorsmallerthan 0.01 C.Thisimpliesthatsomeformofoffsetcancellationisrequired.Fig.10showstheimplementationofthebiascircuit,inwhichchoppingisusedtocanceltheoffset .Acurrentratio andabiasresistor areusedtoobtainnominalcurrentsof0.5and5 A.Thenominalbiascurrentprovidedtothebipolarcoreis1 Thebiascircuitischoppedsynchronouslywiththeintegratorofthe modulator(Fig.6).ThepositionoftheswitchesshowninFig.10correspondstophase oftheintegrator.ThecircuitcongurationisthenthesameasinFig.9,andtheoffset addsto ,resultinginabiascurrentwhichisabittoolarge.ViathetrimmingcircuitofFig.8,thiscurrentisap-pliedtotransistor .Withtheswitchesintheotherposition(whichcorrespondstophase ),thepolarityoftheoffsetisef-fectivelyreversed,resultinginabiascurrentwhichisabittoosmall.Thiscurrentisappliedtotransistor .Sincetheinte-gratoreffectivelyintegratesthesumofthebase-emittervoltages and ,theerrorduetotheoffsetislargelyeliminated.Duetothelogarithmiccharacteristicoftransistors,thecancella-tionisnotperfect,buttheresidualquadraticerrorisnegligible.Thechoppingschemerequiresanextrabiasresistorof120k comparedtotheunchoppedcircuit.Itcanbeshownthatthereisnoseverematchingrequirementbetweenthebias PERTIJSetal.:ACMOSSMARTTEMPERATURESENSORWITHA3 INACCURACY Fig.11.Circuitdiagramofthesecond-ordermodulator.resistors.Theopampisasimplefolded-cascodedesign.Itsoutputcurrentmirrorischoppedtomaintainnegativefeedback.V.SELTAA.ModulatorTopology ADC,consistingofa modulatorandadeci-lter,converts and toadigitaltemperature .Aquantizationerrorintheorderof0.01 Cisde-sired,whichcorrespondstoabout16bits(sincethefullscaleisequivalenttoabout600K;seeFig.2).Thedesiredconversiontimeis100ms. ADCisoperateddifferentlythanconventional susedforaudioorcommunicationapplications.Insuchapplications,the isrunningcontinuously,producingabit-streamwhichislteredanddecimatedtoNyquist-rateoutputdatabyadecimationlter.Thesensor,incontrast,requiresatypeofoperation.Afterpower-up,themodulatorandthedecimationlterareresetinordertobringtheminawell-de-nedstate.Themodulatorthenproducesagivennumberofbits,whichareturnedintoasingletemperaturereadingbythedeci-lter.Finally,thesensorispowereddownagaintosavepower.Suchoperationisalsoreferredtoaseration,andimpliesthatarelativelysimpledecimationlterofthesameorderasthemodulatorcanbeused[16].Whenusinga modulator,asimplecountercanbeusedasdecimationlter[1],[7].However,2 cyclesarere-quiredtoachievearesolutionof16bits.Toobtainaconversiontimeof100ms,aclockfrequencyofabout650kHzwouldberequired,whichwouldresultinanundesirablyhighpowercon-Toreducetherequiredclockfrequency,asecond-ordermod-ulatorisused.Suchamodulator,operatedasanincrementalADC,canobtainaresolutionof16bitsinonlyafewhun-dredclockcycles(dependingontheexactimplementation)[16].Thus,theclockfrequencycanbereducedtoafewkilohertz.Asingle-loopsecond-ordertopologyisusedthatissimilartothatpresentedin[5].Afullydifferentialswitched-capacitorimple-mentationisused,ratherthanthesingle-endedmixedcontin-uous-timeswitched-capacitorimplementationdescribedthere.B.Switched-CapacitorImplementationFig.11showsacircuitdiagramofthe modulator.Ignoringthechopperswitchesfornow,therstintegratorworksasdescribedinSectionIII-B:ina cycleinwhichthe , isintegratedintwointegrationcycles; , isintegratedinoneintegrationcycle(seethetimingdiagraminFig.11).Thesamplingcapacitoroftheintegratorissplitineightunitcapacitorsof5pFeach.Allofthemareusedwhenintegrating ,whileonlyoneisusedwhenintegrating .Thus,again isrealized.Mismatchbetweentheunitcapacitorslimitstheaccuracyof .Itcanbeshownthat hastobeaccurateto 0.0067%tolimitthetemperatureerrorresultingfrommismatchto 0.01 C.Assuchaccuratematchingcannotbeexpectedfrompreciselayoutalone,dynamicelementmatchingisused.Byalternatingtheunitcapacitorusedinsuccessivecyclesofthe inwhich ,mismatcherrorsareaveragedout[14].rstintegratoressentiallydeterminestheaccuracyofthemodulator.Toguaranteenegligibleerrorsinthisintegratorduenitegain,again-boostedfolded-cascodeimplementationwithaDCgainof100dBwasused[17]. IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005Attheendofa cycle,theoutputoftherstintegratorissampledoncapacitors (of2pF),whicharedischargedintothesecondintegratoratthebeginningofthenext cycle.Toensurestabilityofthemodulator,afeedforwardbranchfromtheinputtothesecondintegratorisused.Thesamplingcapacitors (of1pF)and ofthisbranchareswitchedwiththesametimingastheinputsamplingcapacitors.Sinceerrorsintroducedbythesecondintegratorareattenuatedbythegainoftheintegrator,nooffsetcancellation,dynamicelementmatching,orgainboostingisneededhere.Asimplefolded-cascodeopampisused.Thepolarityofoutputofthesecondintegratorisevaluatedattheendofevery cyclebyaclockedcomparator.Theresultdeterminesthevalueofthebitstreamforthenextcycle.Thecomparatorisimplementedasadynamiclatchprecededbyapreamp,whichpreventskickbacktotheoutputofthesecondintegrator.Themodulatorusesnonoverlappingclocks.Switchinginthefront-endcircuitryandupdatingofthebitstreamoutputtakeplaceinthetimegapbetweentheclockphases and sothatanyresultingchargeinjectiondoesnotresultinerrors.Clockswithdelayedfallingedges(e.g., )areusedtopre-ventsignal-dependentchargeinjection[18].C.System-LevelChoppingWhileoffsetand noiseoftherstintegratorarereducedbytheappliedcorrelateddouble-sampling,charge-injectionmismatchintheswitchesdrivenby and resultsinresidualoffset.Minimum-sizeNMOSswitchesareusedtominimizethisoffset.Nevertheless,anoffsetofafewtensof Vremains.Thisistoolarge,giventhattheerrorin hastobeintheorderof2 Tofurtherreducetheoffset,themodulatorischoppedatsystem-level.Achopperswitchattheinputandaswitchattheoutputperiodicallyreversethepolarityoftheinputsignalandthebitstream.Toavoiddisturbingtheoperationofthemod-ulatorwhenchopping,itsstateisalsoinvertedbyswappingtheintegrationcapacitorsofbothintegrators.Thechoppingisdoneataslowspeedtomakeerrorsduetocharge-injectioninthechopperswitchesnegligible.Twochoppingperiodsperconversionareused,soastomodulatetheoffsettothezeroofthedecimationlter(seeFig.12).D.TimingofaTemperatureConversionThetimingofacompletetemperatureconversionisillus-tratedinFig.12.Afterthechiphaspoweredup,theintegra-torsofthemodulatorarereset.Themodulatorthenrunsfor400cycles,producingabitstreamwhichisfedintothedecimationlter.Theresultingconversionresulthasaresolutionof0.01 AnarbitraryfragmentofthebitstreamisshowninFig.12toillustratethetimingofthedynamicelementmatchingofthe1:5currentratioandthe1:8samplingcapacitorratio,andthetimingofthe -modulatedtrimmingofthebiascurrent.Thecurrentsourceusedforgeneratingtheunitcurrentinthe1:5ratioisselectedbyacycliccounterthatcountsfrom1to Fig.12.Timingdiagramofacompletetemperatureconversion.6.Thiscounterisenabledonlyifthebitstreamis0.Similarly,theunitcapacitorusedforsampling isselectedbyacyclic1to8counter,whichisenabledonlyifthebitstreamis1[14].Thedigital modulatorthatproducesthe (Fig.8),isonlyclockedattheendof cyclesinwhich .If (indicatedbytheshadedareasinFig.12),themodulatorisfrozen.Fig.12showshowthisworksoutif hasa50%dutycycle:arepetitive0101patternappearsinsuccessive cyclesinwhich operationofthedigital ulatorpreventsquantizationnoisefrombeingmodulatedintothesignalbandduetointermodulationbetweenthetwobit-streams[12].Suchintermodulationcanoccur,becausethetwobitstreamsareeffectivelymultiplied;thisisaresultofthefact ,whichismodulatedby ,isonlyintegrated E.DecimationFilterThedecimationlterproducesatemperaturereading fromthe400bitsproducedbythemodulator.A isused,ofwhichthesymmetricaltriangularimpulseresponseisshowninFig.12.Anonsymmetricaltriangularimpulsere-sponsecouldbeusedtoobtaintherequiredresolutioninfewerclockcycles[16].Suchalter,however,wouldnotproperlyav-erageoutthemodulatedoffsetandDEMresiduals.Moreover,theuseofalterwithasymmetricalimpulseresponseensuresthattheconversionresultisarepresentationoftheaveragetem-peratureduringaconversion.AsmentionedinSectionII-D,thedecimationlterisusedtointroduceasmallnonlinearitythatcorrectsforthenonlinearitythatremainsaftercurvaturecorrection.Thisnonlinearityisonlyintheorderof0.1 C.Inthepresentimplementation,thecorrec-tionwasimplementedbyanoff-chiplookuptable.Withonlyasmallcircuitoverhead,itcanbeimplementedon-chipusingthetechniquesdescribedin[19].VI.EXPERIMENTALESULTSThesensorwasrealizedina0.7 mCMOSprocesswithlinearcapacitorsandhigh-resistivitypolyresistors.AchipmicrophotographisshowninFig.13.Thechipareais4.5mm , PERTIJSetal.:ACMOSSMARTTEMPERATURESENSORWITHA3 INACCURACY Fig.13.Chipmicrophotographofthetemperaturesensor. Fig.14.Measuredpowerspectrumofthebitstream,withthedigitaltrimmingmodulatoroperatedinfree-runningandinbitstream-controlledmode(4096bits,16averaged,Hanningwindowed).whichincludesbondpadsandsometestcircuitry.Thedeci-lteranddigitalcontrolcircuitrywereimplementedoff-chipfortestingexibility.Fig.14showsmeasuredpowerspectraofthebitstreamofthe modulator.Thesecond-ordernoiseshapingisclearlyvisible.Thegureshowstheeffectivenessofthebit-stream-controlledoperationofthedigitaltrimmingmodulator.Withafree-runningtrimmingmodulator,thenoiseoorin-creasesbyabout30dBasaresultofintermodulatedquantiza-tionnoisethatendsupinthesignalband.Todeterminethetemperatureerrorofthesensor,24samplesfromonebatchweremountedinceramicpackages,placedinanoven,andcomparedwithaplatinumthermometer.Thisther-mometerwascalibratedto20mKattheDutchMetrologyInsti-tute.Thetemperatureerrorofthe24samplesbeforetrimmingisshowninFig.15.The3 spreadovertherangeof 55 to125 Cis C.Thefactthatthespreadincreasestowardthehighendofthetemperaturerangeisconsistentwiththeas-sumptionthatitismainlyduetothePTATspreadof Fig.16showsthemeasuredtemperatureerrorofthesamesamplesaftertrimming.Thetrimmingconsistedofadjustingthecoarseandnetrimmingparameters and (seeFig.8)soastonullthetemperatureerrorat30 C.Thisreducesthe spreadatthetrimmingtemperatureto 0.03 C,whilethespreadoverthefulloperatingtemperaturerangeisreducedto 0.1 C.Thisperformancemeetstheoriginaltarget,andshowstheeffectivenessoftheappliedreadouttechniques. Fig.15.Measuredtemperatureerrorof24devicesbeforetrimming;boldlinesindicatetheaverageerrorandvalues. Fig.16.Measuredtemperatureerrorof24devicesaftertrimming;boldlinesindicatetheaverageerrorandvalues.TABLEIUMMARY Theabove-mentionedmeasurementswereperformedatasupplyvoltageof3.3V.Thesensorisfunctionalforsupplyvoltagesfrom2.5to5.5V.Overthisrange,thepower-supply IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.40,NO.12,DECEMBER2005TABLEIIOMPARISONOFNACCURACY sensitivityis0.03 C/V,whichisatenfoldimprovementoverpreviouswork[5].Thiscanbeattributedtothesupply-in-sensitivebiascircuitandthefullydifferentialcircuitry.AperformancesummaryisgiveninTableI.TableIIcomparestheachievedperformancewithpreviouswork[3][5].Sincemostworkintheeldofsmarttemperaturesensorsisdoneinindustry,thespecicationsoffourleadingcommercialsensorshavealsobeenincluded[20][23].Ourmeasuredinaccuracyintherange 55 Cto125 Cisavefoldimprovementoverthehighestperformancepublishedtodate.VII.CACMOSsmarttemperaturesensorwithintegratedsecond- ADChasbeenpresented.Thesensorwasdesignedtoachieveanoverallinaccuracyof 0.1 Thedesignphilosophywastoreducealltemperatureerrorsresultingfromcircuitnonidealitiestothe 0.01 Clevel.Er-rorsduetooffsetwerereducedbyacombinationofcorrelateddouble-samplingandsystem-levelchoppinginthe lator,andchoppinginthebiascircuit.Aspecialbiascircuitwasusedtomakethesensorinsensitivetovariationsinthecurrentgainofthesubstratebipolartransistorused,andtovariationsinthesupplyvoltage.Mismatch-relatederrorswereeliminatedbymeansofdynamicelementmatching.Curvature,nally,wascorrectedforbyusingatemperature-dependentreferenceandaslightlynonlineardecimationlter.Spreadofthebase-emittervoltageofthebipolartransistorsisthentheonlyremainingsig-canterrorsource.Thiserroristrimmedoutbasedonacali-brationatonetemperature,bymeansofahigh-resolutiontrim-mingcircuitbasedona currentDAC.Therealizationin0.7 mCMOSmeetsthetargetof 0.1 overthefulltemperaturerangeof 55 Cto125 C.Thisis,todate,thehighestreportedaccuracyforthisclassoftemperature[1]A.BakkerandJ.H.Huijsing,High-AccuracyCMOSSmartTemperatureSensors.Boston,MA:KluwerAcademic,2000.[2]G.C.M.Meijer,G.Wang,andF.Fruett,TemperaturesensorsandvoltagereferencesimplementedinCMOStechnology,IEEESensors,vol.1,no.3,pp.225234,Oct.2001.[3]A.BakkerandJ.H.Huijsing,MicropowerCMOStemperaturesensorwithdigitaloutput,IEEEJ.Solid-StateCircuits,vol.31,no.7,pp.937,Jul.1996.[4]M.Tuthill,Aswitched-current,switched-capacitortemperaturesensorin0.6-mCMOS,IEEEJ.Solid-StateCircuits,vol.33,no.7,pp.1122,Jul.1998.[5]M.A.P.Pertijs,A.Niederkorn,X.Ma,B.McKillop,A.Bakker,andJ.H.Huijsing,ACMOSsmarttemperaturesensorwitha3inaccuracy Cfrom CCto120 IEEEJ.Solid-StateCircuits,vol.40,no.2,pp.454461,Feb.2005.[6]G.C.M.MeijerandA.W.vanHerwaarden,ThermalSensors.Bristol,U.K.:IOPPublishing,1994.[7]M.A.P.Pertijs,A.Bakker,andJ.H.Huijsing,Ahigh-accuracytem-peraturesensorwithsecond-ordercurvaturecorrectionanddigitalbusinterface,Proc.ISCAS,May2001,pp.368[8]C.Hagleitneretal.AgasdetectionsystemonasingleCMOSchipcomprisingcapacitive,calorimetric,andmass-sensitivemicrosensors,IEEEISSCCDig.Tech.Papers,Feb.2002,pp.430[9]G.C.M.Meijeretal.Athree-terminalintegratedtemperaturetrans-ducerwithmicrocomputerinterfacing,SensorsActuators,vol.18,pp.206,Jun.1989.[10]M.A.P.Pertijs,K.A.A.Makinwa,andJ.H.Huijsing,ACMOStemperaturesensorwithainaccuracyof Cfrom Cto IEEEISSCCDig.Tech.Papers,Feb.2005,pp.238[11]G.C.M.Meijer,Thermalsensorsbasedontransistors,SensorsActu-ators,vol.10,pp.103125,Sep.1986.[12]M.A.P.PertijsandJ.H.Huijsing,Bitstreamtrimmingofasmarttem-peraturesensor,Proc.IEEESensors,pp.904907,Oct.2004. PERTIJSetal.:ACMOSSMARTTEMPERATURESENSORWITHA3 INACCURACY[13]C.C.EnzandG.C.Temes,Circuittechniquesforreducingtheeffectsofop-ampimperfections:autozeroing,correlateddoublesampling,andchopperstabilization,Proc.IEEE,vol.84,no.11,pp.15841614,Nov.[14]M.A.P.PertijsandJ.H.Huijsing,Asigma-deltamodulatorwithbit-stream-controlleddynamicelementmatching,Proc.ESSCIRC,Sep.2004,pp.187[15]G.v.d.HornandJ.H.Huijsing,IntegratedSmartSensors:DesignandCalibration.Boston,MA:KluwerAcademic,1998.[16]J.RobertandP.Deval,Asecond-orderhigh-resolutionincrementalA/Dconverterwithoffsetandchargeinjectioncompensation,IEEEJ.Solid-StateCircuits,vol.23,no.3,pp.736741,Jun.1988.[17]K.BultandG.J.G.M.Geelen,Afast-settlingCMOSopampforSCcircuitswith90-dBDCgain,IEEEJ.Solid-StateCircuits,vol.25,no.12,pp.13791384,Dec.1990.[18]S.R.Norsworthy,R.Schreier,andG.C.Temes,Eds.,Delta-SigmaDataConverters:Theory,DesignandSimulation.NewYork:IEEEPress,[19]P.Malcovati,C.A.Leme,P.OLeary,F.Maloberti,andH.Baltes,SmartsensorinterfacewithA/Dconversionandprogrammablecali-IEEEJ.Solid-StateCircuits,vol.29,no.8,pp.963966,Aug.[20]LM92DataSheet,NationalSemiconductorCorp.(2005,Mar.).[On-line].Available:http://www.national.com[21]DS1626DataSheet,MaximIntegratedProducts.(2005,May).[Online].Available:http://www.maxim-ic.com[22]SMT160-30DataSheet,SmartecB.V.(2003,May).[Online].Available:http://www.smartec.nl[23]ADT7301DataSheet,AnalogDevicesInc.(2004,Aug.).[Online].Available:http://www.analog.com MichielA.P.Pertijs05)wasbornonMay31,1977.HereceivedtheM.Sc.degreeinelectricalengineering(cumlaude)fromDelftUniversityofTechnology,Delft,TheNetherlands,in2000.InNovember2005,heexpectstoreceivethePh.D.degreefromthesameuniversityforhisworkonhigh-accuracyCMOSsmarttemperaturesensors.SinceAugust2005,hehasbeenworkingforNa-tionalSemiconductorinDelft.From2000to2005,heworkedasaresearchassistantattheElectronicInstrumentationLaboratoryofDelftUniversityofTechnology.In2000,hewasaninternwithPhilipsSemiconductors,Sunnyvale,CA,workingonanalogcircuitdesign.From1997to1999,heworkedpart-timeforEARSB.V.,Delft,ontheproductionanddevelopmentofahandheldphotosynthesismeter.Hisresearchinterestsincludeanalogandmixed-signalinterfaceelectronicsandsmartsensors. A.A.Makinwa05)receivedtheB.Sc.andM.Sc.degreesfromObafemiAwolowoUniversity,Ile-Ife,Nigeria,theM.E.E.degreefromPhilipsInternationalInstitute,Eindhoven,TheNetherlands,andthePh.D.degreefromDelftUniversityofTechnology,Delft,TheNetherlands.From1989to1999,hewasaresearchscientistatPhilipsResearchLaboratories,wherehedesignedsensorsystemsforinteractivedisplays,andanalogfront-endsforopticalandmagneticrecordingsystems.In1999,hejoinedDelftUniversityofTechnology,whereheiscurrentlyanAssistantProfessorattheElectronicInstrumentationLaboratory.HeholdsnineU.S.patents,hasauthoredorco-authoredover20technicalpapers,andhasgiventutorialsattheEurosensorsandtheIEEESensorsconferences.Hismainresearchinterestsareinthedesignofprecisionanalogcircuitry,sigma-deltamodulatorsandsensorinterfaces.Dr.MakinwaisontheprogramcommitteesoftheIEEEInternationalSolid-StateCircuitsConference(ISSCC)andtheIEEESensorsconference.In2005,hereceivedtheVeniawardfromtheDutchTechnologyFoundation(STW). JohanH.Huijsing97)wasbornonMay21,1938.HereceivedtheM.Sc.degreeinelectricalengineeringfromtheDelftUniversityofTechnology,Delft,TheNetherlands,in1969,andthePh.D.degreefromthesameuniversityin1981forhisthesisonop-erationalampliHehasbeenanAssistantandAssociateProfessorinelectronicinstrumentationattheFacultyofElec-tricalEngineeringofDelftUniversityofTechnologysince1969,wherehebecameafullProfessorinthechairofElectronicInstrumentationin1990,andhasbeenProfessorEmeritussince2003.From1982to1983,hewasaSeniorscien-tistatPhilipsResearchLaboratories,Sunnyvale,CA.Since1983,hehasbeenaconsultantforPhilipsSemiconductors,Sunnyvale,andsince1998alsoacon-sultantforMaxim,Sunnyvale.Hisresearchworkisfocusedonthesystematicanalysisanddesignofoperationalampliers,analog-to-digitalconverters,andintegratedsmartsensors.Heisauthororco-authorofsome200scienticpa-pers,40patentsandninebooks,andco-editorof11books.Dr.HuijsingisaFellowofIEEEforcontributionstothedesignandanalysisofanalogintegratedcircuits.HewasawardedthetitleofSimonStevinMeesterforAppliedResearchbytheDutchTechnologyFoundation.Heisinitiatorandco-chairmanoftheInternationalWorkshoponAdvancesinAnalogCircuitDe-sign,whichhasbeenheldannuallysince1992inEurope.HewasamemberoftheprogramcommitteeoftheEuropeanSolid-StateCircuitsConferencefrom1992to2002.HehasbeenchairmanoftheDutchSTWPlatformonSensorTechnologyandchairmanofthebiennialNationalWorkshoponSensorTech-nologyfrom1991until2002.